Invariant φ -means for abstract Segal algebras related to locally compact groups

Hossein Javanshiri

Mehdi Nemati

Abstract

In this paper, for a locally compact group \mathcal{G} we characterize character amenability and character contractibility of abstract Segal algebras with respect to the group algebra $L^1(\mathcal{G})$ and the generalized Fourier algebra $A_p(\mathcal{G})$. As a main result we prove that \mathcal{G} is discrete and amenable if and only if some class of abstract Segal algebras in $L^1(\mathcal{G})$ is character amenable. We also prove a similar result for abstract Segal algebras in $A_p(\mathcal{G})$ and $C_0(\mathcal{G})$. Finally, under some conditions we investigate when a commutative, semisimple, Tauberian Banach algebra is an ideal in its second dual space.

1 Introduction

Let \mathcal{A} be a Banach algebra and let X be a Banach \mathcal{A} -bimodule. A *derivation* from \mathcal{A} into X is a linear map $D : \mathcal{A} \to X$ such that

$$D(ab) = a \cdot D(b) + D(a) \cdot b,$$

for all $a, b \in A$. For example, the map $ad_x : A \to X$ defined by $ad_x(a) = a \cdot x - x \cdot a$ is a derivation for all $a \in A$ and $x \in X$. Such derivations are called *inner derivations*. Here, let us mention that X^* , the first dual space of X, becomes a Banach A-bimodule in the natural way. The algebra A is called *amenable* if every continuous derivation $D : A \to X^*$ is inner for each Banach A-bimodule X. The notion of amenability for Banach algebras was introduced by B. E. Johnson [11].

Received by the editors in February 2018 - In revised form in May 2018.

Communicated by F. Bastin.

²⁰¹⁰ Mathematics Subject Classification : Primary 43A07, 46H05,; Secondary 46H25.

Key words and phrases : Banach algebra, φ -amenability, φ -contractibility, locally compact group, abstract Segal algebra.

Let $\varphi \in \Delta(\mathcal{A})$, consisting of all non-zero characters on \mathcal{A} . Kaniuth, Lau and Pym in [12] and [13] introduced and studied the concept of φ -amenability for Banach algebras as a generalization of left amenability of Lau algebras or *F*-algebras [14]. In fact, \mathcal{A} is called φ -amenable if every continuous derivation $D : \mathcal{A} \to X^*$ is inner for each Banach \mathcal{A} -bimodule X with the left module action given by $a \cdot x = \varphi(a)x$ for all $x \in X$ and $a \in \mathcal{A}$. Recall from [12] that \mathcal{A} is φ -amenable if and only if there is a φ -mean in \mathcal{A}^{**} , i.e., a bounded linear functional m on \mathcal{A}^* satisfying

$$\langle m, \varphi \rangle = 1, \quad \langle m, f \cdot a \rangle = \varphi(a) \langle m, f \rangle$$

for all $a \in A$ and $f \in A^*$. Around the same time, Monfared introduced and studied in [16] the notion of character amenability for Banach algebras. Precisely, a Banach algebra A is called *character amenable* if A is φ -amenable for all $\varphi \in \Delta(A)$ and it has a bounded right approximate identity. There are many characterizations for φ -amenability and character amenability of Banach algebras. For example in [12, Theorem 1.4], the authors characterized φ -amenability of Banach algebras in terms of the existence of *bounded approximate* φ -*means*, i.e., a bounded net (a_{α}) in A such that

$$\varphi(a_{\alpha}) \to 1$$
, $||aa_{\alpha} - \varphi(a)a_{\alpha}|| \to 0$

for all $a \in A$. Also, concepts of φ -contractibility and character contractibility of A were laid by Hu, Monfared, and Traynor [10].

Recently, Nasr-Isfahani and the second author have introduced and studied φ -pseudo-amenability and character pseudo-amenability of \mathcal{A} as a new notion of amenability based on the existence of approximate φ -means and right approximate identities (not necessarily bounded) [18].

Several authors has been studied various notions of amenability for abstract Segal algebras; see for example [1, 5, 6]. Here, we characterize som notions of amenability such as φ -amenability, character amenability, character pseudoamenability, φ -contractibility and character contractibility of some Banach algebras. In particular, we offer some applications to the abstract Segal algebras related to group algebra and generalized Fourier-algebra of a locally compact group \mathcal{G} . Moreover, we investigate when certain abstract Segal algebras in $L^1(\mathcal{G})$ or $A_v(\mathcal{G})$ are ideals in their second dual spaces.

2 Character amenability of abstract Segal algebras

We start the paper with the definition of abstract Segal algebras.

Let \mathcal{A} be a Banach algebra with the norm $\|\cdot\|_{\mathcal{A}}$. Then a Banach algebra \mathcal{B} with the norm $\|\cdot\|_{\mathcal{B}}$ is an abstract Segal algebra with respect to \mathcal{A} if

(1) \mathcal{B} is a dense left ideal in \mathcal{A} .

(2) There exists M > 0 such that $||b||_{\mathcal{A}} \leq M ||b||_{\mathcal{B}}$ for each $b \in \mathcal{B}$.

(3) There exists C > 0 such that $||ab||_{\mathcal{B}} \leq C ||a||_{\mathcal{A}} ||b||_{\mathcal{B}}$ for all $a, b \in \mathcal{B}$.

We recall from [2, Theorem 2.1] that $\Delta(\mathcal{B})$ and $\Delta(\mathcal{A})$ are homeomorphic.

Definition 2.1. Let \mathcal{A} be a Banach algebra and let $\varphi \in \Delta(\mathcal{A})$. We say that \mathcal{A} is φ -pseudo-amenable if it has an approximate φ -mean (not necessarily bounded).

We also say that A is *character pseudo-amenable* if A has a right approximate identity and it is φ -pseudo-amenable for all $\varphi \in \Delta(A)$.

Let \mathcal{G} be a locally compact group with left Haar measure λ and let $L^1(\mathcal{G})$ be the group algebra of \mathcal{G} endowed with the norm $\|\cdot\|_1$ and the convolution product * and let $M(\mathcal{G})$ be the measure algebra of \mathcal{G} . We denote by $\widehat{\mathcal{G}}$ the set of all continuous homomorphisms ρ from \mathcal{G} into the circle group \mathbb{T} , and define $\varphi_{\rho} \in \Delta(L^1(\mathcal{G}))$ to be the character induced by ρ on $L^1(\mathcal{G})$; that is,

$$\varphi_{\rho}(h) = \int_{G} \overline{\rho(x)} f(x) \, d\lambda(x) \quad (f \in L^{1}(\mathcal{G})).$$

It is known that there are no other characters on $L^1(\mathcal{G})$; that is,

$$\Delta(L^1(\mathcal{G})) = \{ \varphi_\rho : \rho \in \widehat{\mathcal{G}} \};$$

see, for example [9, Theorem 23.7]. Recall that, \mathcal{G} is called *amenable* if there is a bounded net $(k_{\alpha}) \subseteq L^{1}(\mathcal{G})$ such that $k_{\alpha} \geq 0$, $||k_{\alpha}||_{1} = 1$ and $||\delta_{x} * k_{\alpha} - k_{\alpha}||_{1} \to 0$ for all $x \in G$, where δ_{x} denotes the Dirac measure at $x \in G$; see Runde [19] for details.

Lemma 2.2. Let \mathcal{G} be a locally compact group and let $S(\mathcal{G})$ be an abstract Segal algebra with respect to $L^1(\mathcal{G})$ such that $\rho \in \widehat{\mathcal{G}}$. Then $S(\mathcal{G})$ is $\varphi_{\rho}|_{S(\mathcal{G})}$ -pseudo-amenable if and only if \mathcal{G} is amenable.

Proof. Suppose that \mathcal{G} is amenable. Then $S(\mathcal{G})$ is $\varphi_{\rho}|_{S(\mathcal{G})}$ -amenable by [1, Corollary 3.4]. Consequently, it is $\varphi_{\rho}|_{S(\mathcal{G})}$ -pseudo-amenable.

Conversely, suppose that $S(\mathcal{G})$ is $\varphi_{\rho}|_{S(\mathcal{G})}$ -pseudo-amenable. Then $L^{1}(\mathcal{G})$ is φ_{ρ} -pseudo-amenable by the same argument used in the proof of [1, Proposition 2.3]. Moreover, it is easy to see that $L^{1}(\mathcal{G})$ is φ_{1} -pseudo-amenable if and only if it is φ_{ρ} -pseudo-amenable; this is an immediate consequence of the following equality

$$\|f * h - \varphi_{\rho}(f)h\|_{1} = \|(\overline{\rho}f) * (\overline{\rho}h) - \varphi_{1}(\overline{\rho}f)(\overline{\rho}h)\|_{1}$$

for all $f, h \in L^1(\mathcal{G})$. Now, suppose that $(f_\alpha) \subseteq L^1(\mathcal{G})$ is an approximate φ_1 -mean and let $h_\alpha = h * f_\alpha$, where $f_0 \in L^1(\mathcal{G})$ with $\varphi_1(f_0) = \int_{\mathcal{G}} f_0 = 1$. Then for each $x \in \mathcal{G}$ we have

$$\|\delta_x * h_\alpha - h_\alpha\|_1 \le \|(\delta_x * f_0) * f_\alpha - f_\alpha\|_1 + \|f_0 * f_\alpha - f_\alpha\|_1 \to 0.$$

We may assume that $||h_{\alpha}||_1 \ge 1/2$ for all α . So, if we put

$$k_{\alpha} := |h_{\alpha}| / \|h_{\alpha}\|_1$$

for all α , then we have $k_{\alpha} \ge 0$, $||k_{\alpha}||_1 = 1$ and $||\delta_x * k_{\alpha} - k_{\alpha}||_1 \to 0$ for all $x \in G$; indeed,

$$\|\delta_x * |h_{\alpha}| - |h_{\alpha}|\|_1 = \||\delta_x * h_{\alpha}| - |h_{\alpha}|\|_1 \le \|\delta_x * h_{\alpha} - h_{\alpha}\|_1 \to 0.$$

Thus, \mathcal{G} is amenable.

For a locally compact group \mathcal{G} and $1 , denote by <math>A_p(\mathcal{G})$ the generalized Fourier algebra of \mathcal{G} as defined in [4]. Elements of $A_p(\mathcal{G})$ can be represented, nonuniquely, as $u = \sum_{i=1}^{\infty} (f_i * \check{g}_i)$, where $f_i \in L^p(\mathcal{G})$, $g_i \in L^q(\mathcal{G})$, $\frac{1}{p} + \frac{1}{q} = 1$, $\check{g}(x) = g(x^{-1})$ and $\sum_{i=1}^{\infty} ||f_i||_p || ||g_i||_q < \infty$. Then

$$\|u\|_{A_p} = \inf\left\{\sum_{i=1}^{\infty} \|f_i\|_p \|\|g_i\|_q : u = \sum_{i=1}^{\infty} (f_i * \check{g}_i)\right\}$$

is a norm on $A_p(\mathcal{G})$. For p = 2, $A_p(\mathcal{G})$ coincides with the Fourier algebra $A_2(G)$ which is denoted by $A(\mathcal{G})$. With the usual operations of pointwise addition and multiplication, $A_p(G)$ is a commutative Banach algebra and $A_p(\mathcal{G}) \subseteq C_0(\mathcal{G})$, the space of continuous functions on \mathcal{G} vanishing at infinity. We also recall that the spectrum of $A_p(\mathcal{G})$ can be canonically identified with \mathcal{G} . More precisely, the map $x \to \varphi_x$, where $\varphi_x(u) = u(x)$ for $u \in A_p(\mathcal{G})$, is a homeomorphism from \mathcal{G} onto $\Delta(A_p(\mathcal{G}))$. The

In the sequel, we characterize character amenability of abstract Segal algebras with respect to them.

Lemma 2.3. Let \mathcal{G} be a locally compact group, and \mathcal{A} be either of the Banach algebras $L^1(\mathcal{G})$ or $A_p(\mathcal{G})$ for $1 . Suppose that <math>\mathcal{B}$ is an abstract Segal algebra with respect to \mathcal{A} . Then the following statements are equivalent.

(a) \mathcal{B} is character amenable.

(b) \mathcal{B} is character pseudo-amenable and has a bounded right approximate identity.

(c) $\mathcal{B} = \mathcal{A}$ and \mathcal{G} is amenable.

Proof. That (a) implies (b) is trivial.

(b) \Rightarrow (c). First let $\mathcal{A} = A_p(\mathcal{G})$. Then it is known that $A_p(\mathcal{G})$ is φ_x -amenable for all $x \in G$; see [15, Lemma 3.1]. Thus, \mathcal{B} is φ_x -amenable by [1, Proposition 2.3]. Now, if \mathcal{B} has a bounded approximate identity, then $\mathcal{B} = \mathcal{A}$; see [1, Theorem 2.1]. Hence, \mathcal{G} is amenable by [8, Theorem 6].

(c)⇒(a). When $\mathcal{A} = A_p(\mathcal{G})$, this follows from the fact that \mathcal{G} is amenable if and only if $A_p(\mathcal{G})$ has a bounded approximate identity. For the case of $\mathcal{A} = L^1(\mathcal{G})$, it follows from Lemma 2.2 and [1, Theorem 2.1].

For 1 , let

$$\mathcal{L}_{p}^{1}(\mathcal{G}) := L^{1}(\mathcal{G}) \cap L^{p}(\mathcal{G}), \quad \|f\|_{1,p} = \|f\|_{1} + \|f\|_{p}$$

for all $f \in \mathcal{L}_p^1(\mathcal{G})$. Then $\mathcal{L}_p^1(\mathcal{G})$ endowed with convolution product becomes an abstract Segal algebra with respect to $L^1(\mathcal{G})$.

Theorem 2.4. Let G be a locally compact group and let 1 . Then the following statements are equivalent.

- (a) $\mathcal{L}^1_p(\mathcal{G})$ equipped with the convolution product is character amenable.
- (b) \mathcal{G} is discrete and amenable.

Proof. Suppose that $\mathcal{L}_p^1(\mathcal{G})$ is character amenable. Then \mathcal{G} is amenable and $L^1(\mathcal{G}) \subseteq L^p(\mathcal{G})$ by Lemma 2.3. So, it suffices to show that \mathcal{G} is discrete. For

this end, let (e_{α}) be a bounded right approximate identity for $\mathcal{L}_{p}^{1}(\mathcal{G})$ and let u be a weak*-cluster point of (e_{α}) in $L^{p}(\mathcal{G})$. Then f * u = f for all $f \in L^{1}(\mathcal{G})$. If \mathcal{G} were not discrete, then we can find a compact neighborhood U of the identity element e of \mathcal{G} such that

$$\lambda(U) < \frac{1}{2^q \|u\|_p^q}.$$

Since the indicator function χ_U of U lies in $L^p(\mathcal{G})$ for all $1 \le p \le \infty$ and $L^p(\mathcal{G})$ is a left $L^1(\mathcal{G})$ -module, it follows that $\|\chi_U\|_p = \|\chi_U * u\|_p \le \|\chi_U\|_1 \|u\|_p$. Now, on the one hand,

$$\|\chi_{U}\|_{1} \leq \|\chi_{U}\|_{p} \|\chi_{U}\|_{q},$$

which implies that $1 \leq \|\chi_U\|_q \|u\|_p$. On the other hand,

$$\|\chi_U\|_q \|u\|_p = \lambda(U)^{\frac{1}{q}} \|u\|_p \le \frac{1}{2}$$

which is a contradiction. Converse is trivial.

For a locally compact group \mathcal{G} , we denote by $C_b(\mathcal{G})$, the space of all bounded continuous complex-valued functions on \mathcal{G} , and we denote by $LUC(\mathcal{G})$, the space of bounded left uniformly continuous functions on \mathcal{G} as defined in [9].

Theorem 2.5. Let G be a locally compact group. Then the following statements are equivalent.

(a) $\mathcal{L}^{1}_{\infty}(\mathcal{G})$ equipped with the convolution product is character amenable.

(b) $\mathcal{L}^{1}_{\infty}(\mathcal{G})$ equipped with the convolution product is character-pseudo amenable.

(c) \mathcal{G} is discrete and amenable.

Proof. The implication (a) \Rightarrow (b) is trivial.

(b) \Rightarrow (c). Suppose that $\mathcal{L}^{1}_{\infty}(\mathcal{G})$ is character-pseudo amenable. Then, $\mathcal{L}^{1}_{\infty}(\mathcal{G})$ has a right approximate identity such as (e_{α}) . Therefore, $||f * e_{\alpha} - f||_{\infty} \to 0$ for all $f \in \mathcal{L}^{1}_{\infty}(\mathcal{G})$. Moreover, $f * e_{\alpha} \in LUC(\mathcal{G})$ for all α and consequently $f \in LUC(\mathcal{G})$. Hence, $\mathcal{L}^{1}_{\infty}(\mathcal{G}) \subseteq LUC(\mathcal{G})$. Now, let A be a measurable subset of \mathcal{G} with $\lambda(A) < \infty$. Then the indicator function χ_{A} of A lies in $\mathcal{L}^{1}_{\infty}(\mathcal{G})$ and so $\chi_{A} \in LUC(\mathcal{G})$ which implies that A is an open subset in \mathcal{G} . Thus \mathcal{G} is discrete. Amenability of \mathcal{G} follows from Lemma 2.2. Finally, (c) \Rightarrow (a) is trivial.

Let *X* be a closed subspace of $L^{\infty}(\mathcal{G})$ with $C_0(\mathcal{G}) \subseteq X \subseteq LUC(\mathcal{G})$ which is left invariant; i.e. $\ell_x f \in X$ for all $f \in X$ and $x \in G$. Then $L^1(\mathcal{G}) \cap X$ with the convolution product and the norm $\|\cdot\|_{1,\infty}$ is an abstract Segal algebra with respect to $L^1(\mathcal{G})$.

Theorem 2.6. Let \mathcal{G} be a locally compact group and let X be a closed and left invariant subspace of $L^{\infty}(\mathcal{G})$ such that $C_0(\mathcal{G}) \subseteq X \subseteq LUC(\mathcal{G})$. Then the following statements are equivalent.

(a) $L^1(\mathcal{G}) \cap X$ endowed with the convolution product is character amenable.

(b) \mathcal{G} is discrete and amenable.

Proof. (a) \Rightarrow (b). Suppose that $L^1(\mathcal{G}) \cap X$ is character amenable. Then $L^1(\mathcal{G}) \cap X = L^1(\mathcal{G})$ and \mathcal{G} is amenable by Lemma 2.3. Thus $L^1(\mathcal{G}) \subseteq X$. Now, consider the inclusion map $\iota : L^1(\mathcal{G}) \to X$. Then ι is continuous by the closed graph theorem. Suppose on the contrary that \mathcal{G} is not discrete. Then we can choose a sequence $\{U_n\}$ of open neighborhoods of the identity element e of \mathcal{G} with compact closure in \mathcal{G} such that $\lambda(U_n) \to 0$. Let f_n be a continuous function vanishing outside U_n , $f_n(e) = 1$ and $0 \leq f_n(x) \leq 1$ for all $x \in G$. Let $g_n := \lambda(U_n)^{-1} f_n$ and note that $g_n \in L^1(\mathcal{G}) \cap X$. Moreover, $||g_n||_{\infty} \to \infty$ and $||g_n||_1 \leq 1$ for all $n \in \mathbb{N}$. This contradicts the continuity of ι .

(b) \Rightarrow (a). Now, suppose that \mathcal{G} is discrete and amenable. Then $L^1(\mathcal{G})$ is character amenable by Lemma 2.3. Moreover, $L^1(\mathcal{G}) = L^1(\mathcal{G}) \cap X$. Hence, the norms $\|\cdot\|_{1,\infty}$ and $\|\cdot\|_1$ are equivalent on $L^1(\mathcal{G}) \cap X$ by the open mapping theorem. Thus $L^1(\mathcal{G}) \cap X$ is character amenable.

It is not hard to see that $L^1(\mathcal{G}) \cap C_0(\mathcal{G})$ with pointwise product and the norm $\|\cdot\|_{1,\infty}$ is an abstract Segal algebra with respect to $C_0(\mathcal{G})$.

Lemma 2.7. Let G be a locally compact group. Then the following statements are equivalent.

(a) $L^1(\mathcal{G}) \cap C_0(\mathcal{G})$ endowed with the pointwise product has a bounded approximate identity.

(b) G is compact.

Proof. (a) \Rightarrow (b). Suppose that e_{α} is a bounded approximate identity for $L^1(\mathcal{G}) \cap C_0(\mathcal{G})$. If \mathcal{G} were not compact, then we can find a sequence $\{U_n\}$ of open neighborhoods of the identity *e* with compact closure such that $\lambda(U_n) \rightarrow \infty$. Choose a symmetric neighborhood *V* of *e* with compact closure. Set

$$f_n := rac{1}{\lambda(V)} \chi_{U_n V} * \chi_V.$$

Then it is easy to see that $f_n \in C_c(\mathcal{G})$, the space of all continuous functions with compact support, and $f_n|_{U_n} = 1$. By assumption for each $n \in \mathbb{N}$ there is a α_n such that $||e_{\alpha}f_n - f_n||_{\infty} \leq \frac{1}{2}$ for all $\alpha \geq \alpha_n$. In particular, $|e_{\alpha}(x) - 1| \leq \frac{1}{2}$ for all $x \in U_n$. Therefore,

$$\|e_{lpha}\|_{1,\infty} \geq \|e_{lpha}\|_1 = \int_{U_n} |e_{lpha}(x)| dx \geq rac{1}{2}\lambda(U_n)
ightarrow \infty,$$

which is a contradiction. The implication $(b) \Rightarrow (a)$ is trivial.

Recall that $\Delta(C_0(\mathcal{G})) = \{\varphi_x : x \in G\}$ and $C_0(\mathcal{G})$ is φ_x -amenable for all $x \in G$. As a consequence of Lemma 2.7 we have the following result.

Theorem 2.8. Let G be a locally compact group. Then the following statements are equivalent.

(a) $L^1(\mathcal{G}) \cap C_0(\mathcal{G})$ endowed with the pointwise product is character amenable. (b) \mathcal{G} is compact.

Let G be a locally compact group and let

$$\mathcal{A}_{p}^{1}(\mathcal{G}) := L^{1}(\mathcal{G}) \cap A_{p}(\mathcal{G}), \quad |||f||| = ||f||_{1} + ||f||_{A_{p}}$$

for all $f \in \mathcal{A}_p^1(\mathcal{G})$. Then $\mathcal{A}_p^1(\mathcal{G})$ with this norm and the convolution product is an abstract Segal algebra with respect to $L^1(\mathcal{G})$; see [7] for details.

Now, we have the following result whose proof is omitted, since it can be proved in the same direction of Theorem 2.6.

Theorem 2.9. Let G be a locally compact group and let 1 . Then the following statements are equivalent.

- (a) $\mathcal{A}_{v}^{1}(\mathcal{G})$ endowed with the convolution product is character amenable.
- (b) \mathcal{G} is discrete and amenable.

Recall from [7] that $\mathcal{A}_p^1(\mathcal{G})$ with the norm $||| \cdot |||$ and the pointwise product is an abstract Segal algebra with respect to $A_p(\mathcal{G})$.

Theorem 2.10. *Let* G *be a locally compact group and let* 1*. Then the following statements are equivalent.*

(a) $\mathcal{A}_p^1(\mathcal{G})$ endowed with the pointwise product is character amenable.

(b) \mathcal{G} is compact.

Proof. Suppose that \mathcal{G} is compact. Then it is clear that the constant function 1 is the identity of $A_p^1(\mathcal{G})$. Moreover, $A_p^1(\mathcal{G})$ is φ_x -amenable for all $x \in G$ by [15, Lemma 3.1] and [1, Proposition 2.3].

For the converse, we can apply the same argument for the proof of Lemma 2.7.

Recall that if \mathcal{A} is a Banach algebra, then \mathcal{A}^{**} , the second dual of \mathcal{A} with the first Arens multiplication \odot which is defined as follows is a Banach algebra

$$(m \odot n)(f) = m(n \cdot f), \quad (n \cdot f)(a) = n(f \cdot a), \quad (f \cdot a)(b) = f(ab)$$

for all $m, n \in \mathcal{A}^{**}$, $f \in \mathcal{A}^*$, and $a, b \in \mathcal{A}$.

Theorem 2.11. Let \mathcal{G} be a locally compact group and let $S(\mathcal{G})$ be an abstract Segal algebra with respect to $L^1(\mathcal{G})$. Then $S(\mathcal{G})^{**}$ endowed with the first Arens product is character amenable if and only if \mathcal{G} is finite.

Proof. Suppose that $S(\mathcal{G})^{**}$ is character amenable. Then $S(\mathcal{G})$ is character amenable by [10, Theorem 3.8]. In particular, it has a bounded right approximate identity. Thus $S(\mathcal{G}) = L^1(\mathcal{G})$ by [2, Theorem 1.2]. The rest of the proof follows from [10, Theorem 3.10].

Using a same argument for the proof of the above theorem and applying [10, Theorem 3.12] we have the following result.

Theorem 2.12. Let \mathcal{G} be a locally compact group and let $SA(\mathcal{G})$ be an abstract Segal algebra with respect to $A(\mathcal{G})$. Then $SA(\mathcal{G})^{**}$ endowed with the first Arens product is character amenable if and only if \mathcal{G} is finite.

3 Character contractibility

Let \mathcal{A} be a Banach algebra and let $\varphi \in \Delta(\mathcal{A})$, and recall that a φ -diagonal for \mathcal{A} is an element $\mathbf{m} \in \mathcal{A} \widehat{\otimes} \mathcal{A}$ such that

$$\varphi(\pi(\mathbf{m})) = 1$$
 and $a \cdot \mathbf{m} = \varphi(a)\mathbf{m}$

for all $a \in A$. Here and in the sequel π always denotes the product morphism from $A \otimes A$ into A, specified by $\pi(a \otimes b) = ab$ for all $a, b \in A$. The Banach algebra A is called φ -contractible if there is a φ -diagonal $\mathbf{m} \in A \otimes A$. Also, A is called *character contractible* if it has a right identity and it is φ -contractible for all $\varphi \in \Delta(A)$. These notions was introduced by Hu, Monfared, and Traynor [10]. Before, we give the next result, recall from [3] that a Banach algebra A is a left (resp. right) ideal in A^{**} if and only if, for every $a \in A$, the operator $\lambda_a : b \mapsto ba$ (resp. $\rho_a : b \mapsto ab$) is weakly compact on A. We also recall that when A is commutative then for each $a \in A$ the letter \hat{a} refers to the Gelfand transform of awhich is defined on $\Delta(A)$ endowed with the Gelfand topology by $\hat{a}(\varphi) := \varphi(a)$ for all $\varphi \in \Delta(A)$. As usual, we say that A is Tauberian if the set of all $a \in A$ such that \hat{a} has compact support is norm dense in A. Note that this condition is obviously fulfilled if A has an identity or it is a C*-algebra. Moreover, Tauberian Banach algebras form an important and large class of Banach algebras related to locally compact groups.

Theorem 3.1. Let A be a commutative, semisimple, Tauberian Banach algebra. Then the following statements are equivalent.

(a) \mathcal{A} is a left ideal in its second dual and it is φ -amenable for all $\varphi \in \Delta(\mathcal{A})$.

(b) \mathcal{A} is φ -contractible for all $\varphi \in \Delta(\mathcal{A})$.

(c) $\Delta(A)$ is discrete with respect to the Gelfand topology.

Proof. (a) \Rightarrow (b). We note that if (a) holds, then $n := m \odot a_0$ is a φ -mean in \mathcal{A} , where m is a φ -mean in \mathcal{A}^{**} and $a_0 \in \mathcal{A}$ with $\varphi(a_0) = 1$. Therefore, $n \otimes n$ is a φ -diagonal in $\mathcal{A} \otimes \mathcal{A}$.

(b) \Rightarrow (c). Let φ be an arbitrary element of $\Delta(\mathcal{A})$. We will show $\{\varphi\}$ is an open subset of $\Delta(\mathcal{A})$ with respect to the Gelfand topology. Since \mathcal{A} is φ -contractible, there is an element $\mathbf{m} \in \mathcal{A} \widehat{\otimes} \mathcal{A}$ such that

$$\pi(\mathbf{m})(\varphi) = 1$$
 and $a \cdot \mathbf{m} = \varphi(a)\mathbf{m}$.

This implies that $\pi(\mathbf{m})(\varphi) = 1$ and $a\pi(\mathbf{m}) = \hat{a}(\varphi)\pi(\mathbf{m})$ for all $a \in \mathcal{A}$. Thus, we conclude that $\pi(\mathbf{m})$ is the the indicator function at φ . That is, $\{\varphi\}$ is open in $\Delta(\mathcal{A})$ with respect to the Gelfand topology.

(c) \Rightarrow (a). Let *a* be an arbitrary element of \mathcal{A} and consider the operator $\lambda_a : b \mapsto ba$ on \mathcal{A} . Since \mathcal{A} is Tauberian, there exist a sequence (a_n) in \mathcal{A} norm convergent to *a* such that each $\hat{a_n}$ has compact and hence finite support, say K_n . By Shilov's idempotent theorem for each $\varphi \in \Delta(\mathcal{A})$, there is an idempotent a_{φ} in \mathcal{A} such that $\hat{a_{\varphi}}$ equals the indicator function at φ . This implies that a_{φ} is a φ -mean in \mathcal{A} and that the operator $\lambda_{a_{\varphi}}$ is one-dimensional. Moreover, $a_n = \sum_{\varphi \in K_n} \hat{a_n}(\varphi) a_{\varphi}$.

Therefore, each λ_{a_n} has finite rank. Since (λ_{a_n}) is norm convergent to λ_a , we obtain that λ_a is a compact operator. It follows that \mathcal{A} is an ideal in \mathcal{A}^{**} .

In the sequel, we present some examples to motivate and complement the main result of this section.

Example 3.2. Let \mathcal{X} be a compact metric space with metric d and let $0 < \alpha < 1$. Then $\operatorname{Lip}_{\alpha}(\mathcal{X})$ denotes the set of all Lipschitz functions of order one on \mathcal{X} ; that is, all continuous complex-valued functions f on \mathcal{X} for which

$$p_{\alpha}(f) := \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} : x, y \in \mathcal{X}, x \neq y\right\}$$

is finite. Moreover, $\lim_{\alpha} (\mathcal{X})$ denotes the set of all functions in $\operatorname{Lip}_{\alpha}(\mathcal{X})$ satisfying

$$\frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} \longrightarrow 0 \quad \text{as} \quad d(x, y) \longrightarrow 0.$$

Then $\operatorname{Lip}_{\alpha}(\mathcal{X})$ endowed with the pointwise operations and the norm $||f||_{\alpha} := ||f||_{\sup} + p_{\alpha}(f)$ is a commutative, semisimple and Tauberian Banach algebra, such that $\operatorname{lip}_{\alpha}(\mathcal{X})$ is a closed subalgebra of $\operatorname{Lip}_{\alpha}(\mathcal{X})$. The map $x \to \varphi_x$, where $\varphi_x(f) = f(x)$ for $f \in \operatorname{Lip}_{\alpha}(\mathcal{X})$, is a homeomorphism from \mathcal{X} onto $\Delta(\operatorname{Lip}_{\alpha}(\mathcal{X}))$ endowed with the Gelfand topology. Similarly, $\Delta(\operatorname{lip}_{\alpha}(\mathcal{X}))$ can be identified with \mathcal{X} . If \mathcal{X} is finite, then $\operatorname{lip}_{\alpha}(\mathcal{X}) = \operatorname{Lip}_{\alpha}(\mathcal{X})$ is semisimple and finite-dimensional and hence is an ideal in its second dual. Therefore, by [13, Example 5.3] and Theorem 3.1, we have the following characterizations.

(a) $\operatorname{Lip}_{\alpha}(\mathcal{X})$ is an ideal in its second dual.

(b) $\operatorname{Lip}_{\alpha}(\mathcal{X})$ is φ_x -amenable for all $x \in \mathcal{X}$.

- (c) $\operatorname{Lip}_{\alpha}(\mathcal{X})$ is φ_{x} -contractible for all $x \in \mathcal{X}$.
- (d) \mathcal{X} is finite.

Note that a same result is true for $\lim_{\alpha} (\mathcal{X})$.

Lemma 3.3. Let A be a commutative Banach algebra and let B be an abstract Segal algebra in A such that the linear span of the set $AB = \{ab : a \in A, b \in B\}$ is dense in B. Then the following hold.

(a) If A is Tauberian, then B is also Tauberian.

(b) If \mathcal{A} is semisimple and Tauberian and it is φ -amenable for all $\varphi \in \Delta(\mathcal{A})$, then \mathcal{A} is a left ideal in its second dual if and only if \mathcal{B} is a left ideal in its second dual.

Proof. (a). First note that, for arbitrary $b \in \mathcal{B}$, by assumption, there are $u_i \in \mathcal{A}$ and $b_i \in \mathcal{B}$ (i = 1, ..., n) with $||b - \sum_{i=1}^n u_i b_i||_{\mathcal{B}} < \varepsilon/2$. Since \mathcal{A} is Tauberian, it follows that for each $1 \le i \le n$ there is $v_i \in \mathcal{A}$ such that \hat{v}_i has compact support and $||u_i - v_i||_{\mathcal{A}} < \varepsilon/(2nM||b_i||_{\mathcal{B}})$. Thus

$$\left\|\sum_{i=1}^n u_i b_i - \sum_{i=1}^n v_i b_i\right\|_{\mathcal{B}} \leq \sum_{i=1}^n M \|u_i - v_i\|_{\mathcal{A}} \|b_i\|_{\mathcal{B}} < \varepsilon/2.$$

Therefore,

$$\left\|b-\sum_{i=1}^n v_i b_i\right\|_{\mathcal{B}} \leq \left\|b-\sum_{i=1}^n u_i b_i\right\|_{\mathcal{B}} + \left\|\sum_{i=1}^n u_i b_i-\sum_{i=1}^n v_i b_i\right\|_{\mathcal{B}} < \varepsilon.$$

It is clear that $\sum_{i=1}^{n} v_i b_i \in \mathcal{B}$ and $\widehat{\sum_{i=1}^{n} v_i} b_i = \sum_{i=1}^{n} \widehat{v_i} \widehat{b_i}$ has compact support as required.

(b). Suppose that \mathcal{A} is semisimple and Tauberian which is φ -amenable for all $\varphi \in \Delta(\mathcal{A})$ and that the linear span of the set \mathcal{AB} is dense in \mathcal{B} . Then, from part (a) and the correspondence between $\Delta(\mathcal{A})$ and $\Delta(\mathcal{B})$, we obtain respectively, that \mathcal{B} is semisimple and Tauberian. Moreover, it is shown in [1] that \mathcal{A} is φ -amenable [resp. φ -contractible] if and only if \mathcal{B} is $\varphi|_{\mathcal{B}}$ -amenable [resp. $\varphi|_{\mathcal{B}}$ -contractible]. Therefore, in light of Theorem 3.1, \mathcal{A} is a left ideal in its second dual if and only if \mathcal{B} is a left ideal in its second dual.

Next, we examine the abstract Segal algebra in generalized Fourier algebra.

Example 3.4. Let \mathcal{G} be a locally compact group with identity e and let 1 . $Then <math>A_p(\mathcal{G})$ is a commutative, semisimple, and Tauberian Banach algebra. In [15, Lemma 3.1], it is proved that $A_p(\mathcal{G})$ is φ_x -amenable for all $x \in \mathcal{G}$. Note that $m \in A_p(\mathcal{G})$ is a φ_x -mean if and only if $\ell_{x^{-1}}m$ is a φ_e -mean in $A_p(\mathcal{G})$, where $\ell_{x^{-1}}$ is the left translations by x^{-1} on $A_p(\mathcal{G})$.

(i) If $SA_P(\mathcal{G})$ is an abstract Segal algebra in $A_p(\mathcal{G})$ such that the linear span of $A_p(\mathcal{G})SA_p(\mathcal{G})$ is dense in $SA_p(\mathcal{G})$, then $SA_p(\mathcal{G})$ is Tauberian and so by Theorem 3.1 the following statements are equivalent.

- (a) $SA_p(\mathcal{G})$ is an ideal in its second dual.
- (b) $SA_p(\mathcal{G})$ is φ_x -contractible for all $x \in G$.
- (c) $SA_p(\mathcal{G})$ is φ_x -contractible for some $x \in G$.
- (d) \mathcal{G} is discrete.

(ii) If $MA_p(\mathcal{G})$ is the space of pointwise bounded multipliers of $A_p(\mathcal{G})$ equipped with the multiplier norm

$$||v||_M = \sup \left\{ ||vu||_{A_p(\mathcal{G})} : u \in A_p(G), ||u||_{A_p(\mathcal{G})} \le 1 \right\};$$

that is, those (necessarily continuous and bounded) functions v on G such that $vA_p(\mathcal{G}) \subseteq A_p(\mathcal{G})$. It is well-known that $A_p(\mathcal{G}) \subseteq MA_p(\mathcal{G})$ and $||u||_M \leq ||u||_{A_p(\mathcal{G})}$ for all $u \in A_p(\mathcal{G})$. We denote by $A_p^M(\mathcal{G})$ the $|| \cdot ||_M$ -closure of $A_p(\mathcal{G})$ in $MA_p(\mathcal{G})$. Then, $A_p^M(\mathcal{G})$ with pointwise product is a commutative, semisimple, and Tauberian Banach algebra containing $A_p(\mathcal{G})$ as an abstract Segal algebra. Therefore, by Theorem 3.1 the above characterizations are true for $A_p^M(\mathcal{G})$ to be an ideal in its second dual.

Before giving the following result, recall that a locally compact group G is called amenable if $L^1(G)$ is φ_1 -amenable. The following result on unimodular locally compact groups is from Mustafayev [17].

Theorem 3.5. [17, Corollary 3] Let \mathcal{G} be a unimodular locally compact group. Then $\mathcal{L}_p^1(\mathcal{G})$ endowed with the convolution product is an ideal in its second dual if and only if \mathcal{G} is compact.

Here, we will now show that this result is also valid for the class of amenable groups.

Theorem 3.6. Let \mathcal{G} be a locally compact group. Then $\mathcal{L}_p^1(\mathcal{G})$ endowed with the convolution product is an ideal in its second dual and \mathcal{G} is amenable if and only if \mathcal{G} is compact.

Proof. Suppose that \mathcal{G} is compact. Then $\mathcal{L}_p^1(\mathcal{G}) = L^p(\mathcal{G})$ and consequently $\mathcal{L}_p^1(\mathcal{G})$ is an ideal in its second dual.

Conversely, Suppose that $\mathcal{L}_p^1(\mathcal{G})$ is a left ideal in its second dual. Since \mathcal{G} is amenable, it follows from [1, Proposition 2.3], that $\mathcal{L}_p^1(\mathcal{G})$ has a bounded approximate φ_1 -mean, say (f_α) . Let m be any weak^{*} cluster point of (f_α) in $(\mathcal{L}_p^1(\mathcal{G}))^{**}$. Then $\varphi_1(m) = 1$ and for each $f \in \mathcal{L}_p^1(\mathcal{G})$ we have $f \odot m = \varphi_1(f)m$ by the weak^{*} continuity of the map $n \mapsto f \odot n$ on $(\mathcal{L}_p^1(\mathcal{G}))^{**}$. Take $g_0 := (m \odot f_0)$, where $f_0 \in \mathcal{L}_p^1(\mathcal{G})$ with $\varphi_1(f_0) = 1$ and note that $g_0 \in \mathcal{L}_p^1(\mathcal{G})$. Furthermore,

$$\varphi_1(g_0) = \varphi_1(m \odot f_0) = \varphi_1(m) = 1,$$

and for each $f \in \mathcal{L}_p^1(\mathcal{G})$,

$$f * g_0 = f * (m \odot f_0)$$

= $(f \odot m) * f_0$
= $\varphi_1(f)(m \odot f_0)$
= $\varphi_1(f)g_0.$

That is, g_0 is a φ_1 -mean in $\mathcal{L}^1_p(\mathcal{G})$. Consequently \mathcal{G} is compact by [1, Theorem 3.3].

Theorems 3.5 and 3.6 lead us to the following problem.

Problem 3.7. *Is Theorem 3.6 true for each locally compact group G? That is, must G be compact when* $\mathcal{L}_p^1(\mathcal{G})$ *, endowed with the convolution product, is an ideal in its second dual?*

References

- [1] M. ALAGHMANDAN, R. NASR-ISFAHANI, AND M. NEMATI, Character amenability and contractibility of abstract Segal algebras, *Bull. Austral. Math. Soc.* **82** (2010), 274-281.
- [2] J. T. BURNHAM, Closed ideals in subalgebras of Banach algebras I, Proc. Amer. Math. Soc. 32 (1972), 551-555.
- [3] J. DUNCAN AND S. A. R. HOSSEINIUN, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A, 84 (1979), 309-325.
- [4] A. FIGÁ-TALAMANCA, Translation invariant operators in L_p, Duke Math. J. 32 (1965), 459-501.
- [5] F. GHAHRAMANI AND A.T. LAU, Weak amenability of certain classes of Banach algebras without bounded approximate identities, *Math. Proc. Camb. Phil. Soc.* 133 (2002), 357-371.

- [6] F. GHAHRAMANI AND A. T. LAU, Approximate weak amenability, derivations and Arens regularity of Segal algebras. *Studia Math.* **169** (2005), 189-205.
- [7] E. E. GRANIRER, The Figa-Talamanca-Herz-Lebesgue Banach algebras $A_p^r(\mathcal{G}) = A_p(\mathcal{G}) \cap L^r(\mathcal{G})$, *Math. Proc. Camb. Phil. Soc.* **140** (2006), 401-416.
- [8] C. HERZ, Harmonic synthesis for subgroups, Ann. Inst. Fourier, 23 (1973), 91-123.
- [9] E. HEWITT AND K. A. ROSS, Abstract harmonic analysis I, Springer-Verlag, Berlin, 1970.
- [10] Z. HU, M. S. MONFARED AND T. TRAYNOR, On character amenable Banach algebras, *Studia Math.* **193** (2009) 53-78.
- [11] B. E. JOHNSON, Cohomology in Banach algebras, *Mem. Amer. Math. Soc.* **127**, 1972.
- [12] E. KANIUTH, A. T. LAU AND J. PYM, On *φ*-amenability of Banach algebras, *Math. Proc. Camb. Phil. Soc.* **144** (2008), 85-96.
- [13] E. KANIUTH, A. T. LAU, AND J. PYM, On character amenability of Banach algebras, *J. Math. Anal. Appl.* **344** (2008), 942-955.
- [14] A. T. LAU, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, *Fund. Math.* 118 (1983), 161-175.
- [15] M. S. MONFARED, Extensions and isomorphisms for the generalized Fourier algebras of a locally compact group, J. Funct. Anal. 198 (2003), 413-444.
- [16] M. S. MONFARED, Character amenability of Banach algebras, Math. Proc. Camb. Phil. Soc. 144 (2008), 697-706.
- [17] H. S. MUSTAFAYEV, Segal algebra as an ideal in its second dual space, *Turk-ish J. Math.* 23 (1999), 323-332.
- [18] R. NASR-ISFAHANI, AND M. NEMATI, Character pseudo-amenability of Banach algebras, *Collog. Math.* **132** (2013), 177-193.
- [19] V. RUNDE, Lectures on amenability, Springer-Verlag, New York, 2002.

Department of Mathematics, Yazd University, P.O. Box: 89195-741, Yazd-Iran. E-mail: h.javanshiri@yazd.ac.ir.

Department of Mathematical Sciences, Isfahan University of Technology Isfahan 84156-83111, Iran E-mail: m.nemati@cc.iut.ac.ir.