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Abstract

Consider an abstract Banach lattice. Under some mild assumptions, it
can be identified with a Banach ideal of integrable functions with respect to a
(non necessarily σ-finite) vector measure on a δ-ring. Extending some nowa-
days well-known results for the Komlós property involving Cesaro sums,
we prove that the weak σ-Fatou property for a Banach lattice of integrable
functions E is equivalent to the existence for each norm bounded sequence
( fn) in E of a regular method of summability D such that the sequence ( f D

n )
converges.

1 Introduction

The relevant Komlós Theorem on the hereditary Cesaro summability of a sub-
sequence of any bounded sequence in L1[0, 1] is nowadays known to be also
true in Banach ideals of integrable functions whenever they satisfy the weak
σ-Fatou property. It was shown by Day and Lennard in 2010 [6]. These results
are however strongly dependent on the fact that the spaces are defined over an
integration structure that is constructed having a σ-finite measure as a starting
point. Although this situation covers a lot of spaces, there are still some relevant
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Banach lattices that cannot be described using this framework —for example
ℓp(I)-spaces for a non countable set of indexes I, 1 ≤ p ≤ ∞—. In [12], the
authors of the present paper showed how far this equivalence can be extended
when general Banach lattices are considered. The main tool for doing this was
the recently developed representation theory for abstract Banach lattices using
spaces of ν-integrable and weakly ν-integrable functions with respect to a vector
measure ν defined on a δ-ring (see [4, 7, 8]; see also [15, Ch.3] and the references
therein for the finite measure case). This allows, for instance, to include lattices
as the ℓp(I)-spaces mentioned above.

The aim of this note is to show that the main result that was proved in [12] can
be extended for giving this characterization by means of a Komlós type
property but changing the hereditary Cesaro summability of a subsequence
through hereditary summability by any other regular summability method. We
prove the following result, that in a sense closes the analysis of the equivalence
among regular summability properties of bounded sequences and the weak
σ-Fatou property, and establishes the limits for this to hold in terms of the mea-
sure space. Note that no σ-finiteness of the measure is needed, and that the result
can be applied to any Banach lattice which allows to be represented as a space of
integrable functions; for instance, under some mild requirements any order con-
tinuous Banach lattice can be written as such an space. Let ν be a vector measure
on a δ-ring R and write Rloc for the σ-algebra associated by R. Let L1(ν) be the
Banach lattice of all (classes of ν-a.e. equal) ν-integrable functions.

Theorem 1.1. Let E be a Banach lattice of classes of ν-a.e. equal Rloc-measurable func-
tions which is also an ideal of L1(ν). The following statements are equivalent.

(i) E has the weak σ-Fatou property.

(ii) E has the Komlós property.

(iii) For each norm bounded sequence ( fn)n ⊂ E there is a regular method of summa-
bility D such that ( f D

n )n converges ν-a.e. to a measurable function f D in E.

Here f D
n is written for the n-th sum resulting of the application of D to the

sequence ( fn)n. Let us introduce some concepts and notation regarding summa-
bility. Let D = (dn,m) be an infinite matrix of scalars and let (xn)n be a convergent
sequence in a Banach space X. We will say that D defines a regular method of
summability, if for each n ∈ N, the sequence xD

n = ∑
∞
m=1 dn,mxm exists and is

convergent to the same limit as (xn)n. The following result will be crucial for us
(see [9], Theorem 1). A scalar infinite matrix D = (dn,m) is a regular method of
summability if and only if it satisfies the following three conditions that do not
depend on the Banach space X.

1. ∑
∞
m=1 |dn,m| ≤ M for some M > 0 and for all n ∈ N.

2. limn dn,m = 0 for all m ∈ N.

3. limn ∑
∞
m=1 dn,m = 1.



Regular methods of summability and the weak σ-Fatou property 547

Notice that if we drop an infinite (or finite) number of rows or if we add an infinite
(or finite) number of columns of zeroes in a regular method of summability, we
still have a regular method of summability.

A relevant result regarding regular methods of summability is due to Erdös
and Magidor (see p.2 in [11]). It establishes that for a given bounded sequence of
a Banach space, there is a subsequence such that two mutually exclusive options
are given: either it has a subsequence such that each subsequence of it converges
with respect to D (same limit), or there are no subsequences that converge respect
to D. This fact will be implicitly used in our arguments for proving Theorem 1.1.

A particular method of summability is the one related to the Cesaro sums
which involves the so called Komlós property of a Banach function space X(µ), as
follows. Let ( fn)n be a bounded sequence in X(µ), then there exists a subsequence
( fnk

)k and a function f ∈ X(µ) such that for any further subsequence (hj)j of

( fnk
)k, the series 1

n ∑
n
j=1 hj converges µ-a.e. to f .

To finish this section, let us introduce some definitions and basic results that
are needed on Banach lattices and spaces of integrable functions with respect to
a vector measure on a δ-ring.

Let E be a Banach lattice with norm ‖ · ‖ and order ≤. An ideal of E is a sub-
space F in E such that y ∈ F whenever y ∈ E with |y| ≤ |x| for some x ∈ F. An
ideal F in E is said to be order dense in E if for every 0 ≤ x ∈ E there exists an
upwards directed system (xτ)τ ⊂ F such that 0 ≤ xτ ↑ x = sup xτ. The Banach
lattice E is said to have σ-order continuous norm, or briefly, to be σ-order con-
tinuous if for every order decreasing sequence (xn)n ↓ 0 it follows that ‖xn‖ ↓ 0.
If this property holds by means of downwards directed systems, E is said to be
order continuous. We denote by Ean the order continuous part of E, that is, the
largest order continuous ideal in E. The Banach lattice E satisfies the σ-Fatou
property if for every norm bounded and increasing sequence (xn)n of positive
elements in E we have that x = sup xn exists (in E) and ‖xn‖ ↑ ‖x‖. The space is
said to have the weak σ-Fatou property if the last condition on the norms is not
required. Again, if we consider upwards directed systems in the last definitions,
we will have the Fatou and the weak Fatou properties, respectively. Finally, every
bijective operator T ∈ L(E, F) between Banach lattices which preserves the lattice
operations (that is, T(x ∨ y) = Tx ∨ Ty and T(x ∧ y) = Tx ∧ Ty for all x, y ∈ E)
is called an order isomorphism. We refer the reader to [1, 14, 19, 20] for issues
related to Banach lattices.
Recall now the basis of the theory on spaces of integrable functions with respect
to vector measures on a δ-ring. Throughout this paper, R will be a δ-ring of
subsets of a set Ω, that is, a ring of sets closed under countable intersections.
We consider Rloc the associated σ-algebra to R defined by Rloc = {B ⊂ Ω :
B ∩ A ∈ R for every A ∈ R} and denote by M(Rloc) the space of measurable
real functions on (Ω,Rloc). Also, we use S(R) for the set of simple functions
with support in Rloc. Let ν : R → X be a Banach valued countably additive vec-
tor measure on the δ-ring R, that is, ν(∪∞

n=1An) = ∑n ν(An) in the norm topology
of X for every sequence (An)n of pairwise disjoint sets in R with ∪An ∈ R. For
each element x′ ∈ X′ the formula νx′(A) := 〈ν, x′〉(A), A ∈ R, defines a scalar
measure (see [7, Preliminaries]), where X′ denotes, as usual, the topological dual
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of X. We write |νx′ | for its variation, that is, for every A ∈ Rloc,

|νx′ |(A) := sup{∑ |νx′(Ai)| : (Ai)i finite disjoint sequence in R∩ 2A},

and define the semivariation of ν by ‖ν‖(A) := sup{〈ν, x′〉(A), x′ ∈ X′,
‖x′‖ = 1}, A ∈ Rloc. It is monotone, increasing, subadditive, finite on R and
satisfies that

‖ν‖(A)

2
≤ sup{‖ν(B)‖ : B ∈ R∩ 2A} ≤ ‖ν‖(A),

for all A ∈ Rloc. We say that a set B ∈ Rloc is ν-null if ‖ν‖(B) = 0 and that a
property holds ν-almost everywhere (briefly ν-a.e.) if it holds except on a ν-null
set. From [3, Theorem 3.2], there always exists a measure λ : R → [0, ∞] with
the same null sets as ν. We will refer to such kind of measure as a local control
measure of ν.

A function f ∈ M(Rloc) is integrable with respect to ν (or ν-integrable) if it is
integrable for each scalar measure |νx′ | and moreover for every A ∈ Rloc there is a
vector in X denoted by

∫

A f dν such that for every x′ ∈ X′, 〈
∫

A f dν, x′〉 =
∫

A f dνx′ .

The space L1(ν) of ν-a.e. equal ν-integrable functions is an order continuous
Banach lattice when endowed with the norm ‖ f‖ν := supx′∈BX′

∫

| f |d|〈ν, x′〉|,

f ∈ L1(ν) and the ν-a.e. order, containing S(R) as a dense subset both in order
and in norm (see [13, Theorem 3.3]). Here BX′ denotes the unit ball of X′. Further-
more, the space L1(ν) is also an ideal of measurable functions, that is, if | f | ≤ |g|
ν-a.e with f ∈ M(Rloc) and g ∈ L1(ν), then f ∈ L1(ν).

We say that a function f ∈ M(Rloc) is weakly ν-integrable if it is integrable
with respect to |νx′ | for all x′ ∈ X′. We denote by L1

w(ν) the space of functions
in M(Rloc) where functions which are equal ν-a.e. are identified. This space
is a Banach lattice when endowed with the norm ‖ · ‖ν and the ν-a.e. order in
which convergence in norm of a sequence implies ν-a.e. convergence of some
subsequence (see Lemma 3.13 in [17] or Theorem 100.6 in [20]). The space L1

w(ν)
has always the σ-Fatou property and L1(ν) is a closed ideal of L1

w(ν). Moreover,
following Theorems 3.2 and 4.2 in [4] the order continuous part of L1

w(ν) is actu-
ally L1(ν) ((L1

w(ν))an = L1(ν)) and L1(ν) is order dense in L1
w(ν). Again L1

w(ν) is
an ideal of measurable functions.

Finally, let us recall the representation theorems of abstract Banach lattices
involving spaces of integrable functions. Every order continuous Banach lattice
can always be represented by means of an order isomorphism which is also an
isometry by a space L1(ν) of ν-integrable functions with respect to a vector mea-
sure on a δ-ring (see [5, pp.22-23], [8, Theorem 5]). Also, every Banach lattice
E with the Fatou property and having its order continuous part Ean as an or-
der dense subset is order isomorphic and isometric to a space L1

w(ν) of weakly
ν-integrable functions for a certain vector measure ν defined on a δ-ring (see
Theorem 10 in [8]).

For these and other issues related to spaces of integrable functions with
respect to vector measures over a δ-ring, see for instance [4, 7, 13, 16, 17, 18].
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2 Spaces of vector measure integrable functions and regular

methods of summability

Let ν : R → X be a vector measure on the δ-ring R that takes values in a
Banach space X. We start by considering ideals of the space of integrable func-
tions L1(ν). The equivalence between the weak σ-Fatou property, the Komlós
property (redefined in the context of L1(ν) with the ν-a.e. order) and the exis-
tence of summable subsequences with respect to regular methods of summability
is showed in Theorem 1.1. Let us present the proof.

Proof. (Proof of Theorem 1.1)
The equivalence of (i) and (ii) is done by Theorem 3.2 in [12].
Let us show now (ii) ⇒ (iii). For this aim, take a norm bounded sequence

( fn)n ⊂ E. Clearly, by the Komlós property, there exists a subsequence ( fnk
)k

of ( fn)n and a function f ∈ E such that ( 1
n ∑

n
k=1 fnk

)n converges ν-a.e. to f .

Write 1
n ∑

n
k=1 fnk

= ∑
n
k=1

1
n fnk

= ∑
n
k=1 cn,nk

fnk
and for each n, define c′n,m =

cn,nk
= 1

n if m = nk, k = 1, ..., n, and 0 otherwise. Note that, fixing n ∈ N,

∑
∞
m=1 c′n,m = ∑

n
k=1 c′n,nk

= ∑
n
k=1

1
n = 1. Then there is a regular method of summa-

bility

C′ = (c′n,m) such that ( f C′

n )n converges ν-a.e. to f = f C′
in E.

Finally, we prove (iii) ⇒ (i). Suppose that E does not have the weak σ-Fatou
property. Then, there exists an increasing positive sequence 0 ≤ fn ↑ supn fn =

f ∈ M(Rloc) (that is ν-a.e.) with supn ‖ fn‖ν < +∞ such that f /∈ E. Taking into

account that for every n, fn is also in L1(ν), there exists a sequence (ϕn,k)k ⊂ S(R)
so that ϕn,k ↑ fn, that is, for every n, (ϕn,k)k converges ν-a.e. to fn.

Consider the set union
⋃

n supp( fn) of the supports of the functions involved
and notice that supp( fn) ⊂

⋃

k supp(ϕn,k) for every n, then
⋃

n supp( fn) can be
covered ν-a.e. by a sequence (Am)m ⊂ R. Denote U :=

⋃

m Am and note that we
can write U as a disjoint union of countably many sets of R of positive semivari-
ation just taking the sets Bk := Ak \

⋃∞
n=k+1(An ∩ Ak), k = 1, 2, · · · and dropping

the empty sets. Clearly, the ν-a.e. convergence of ( fn)n can be considered in U by
rejecting the corresponding ν-null set. Moreover, following 2.1 in [12], the projec-
tion band PL1

w(ν)
(U) defined on L1

w(ν) by the characteristic function χU and the

space L1
w(ν|U) are isometric and order isomorphic, where νU := νR∩U and so,

the same occurs with the projection band PL1
w(ν)

(U) in E (that will be denoted by

PE(U)). Consequently, ν-a.e. convergence is equivalent to νU-a.e. convergence
for ( fn)n. Then, we actually have a sequence ( fn)n ⊂ PE(U) converging to f
νU-a.e. and so that supn ‖ fn‖ν < +∞ where f /∈ PE(U). Remark that

f ∈ PL1
w(ν)

(U) due to the σ-Fatou property of L1
w(ν).

Take now the δ-ring R ∩ U ⊂ R (for the proof of this fact just take into ac-
count that for every B ∈ R, B ∩ U = B ∩ (

⋃

n B \ Bn) = B \ (
⋂

n B \ Bn) ∈ R).
Since the vector measure νU is σ-finite over R ∩ U, it is possible to construct
a bounded (local) control measure for νU as follows (see a similar construction
in Theorem 3.3 in [7]). For every n, consider ν|R∩Bn which is a vector measure
defined on a σ-algebra. Then take a Rybakov control measure µn = νx′ |R∩Bn

for
ν|R∩Bn

(see Chapter 9.2 in [10] for the existence of such a measure) and define
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µU : R ∩ U → [0,+∞[ by µU(A) := ∑n
µn(A∩Bn)

2n max{1,µn(Bn)}
. Clearly µU is a finite

countably additive measure on the δ-ring (and also a semi-ring) R ∩ U which is
equivalent to νU.

Classical arguments allows us to extend µU to Rloc ∩ U = (R ∩ U)loc. Let us
show this fact in detail. First, remark that Rloc ∩ U = (R ∩ U)loc as σ-algebras
of subsets of U. For the inclusion Rloc ∩ U ⊂ (R ∩ U)loc, fix A ∈ Rloc with
A ⊂ U and B = C∩U ∈ R∩U, then A∩ B = A∩C ∩U ∈ R∩U due to the defi-
nition of Rloc and the inclusion is proved. For the converse, fix
A ∈ (R ∩ U)loc with A ⊂ U and C ∈ R. Hence A ∪ C ∈ R ∩ U due to the
definition of (R ∩ U)loc. The relation R ∩ U ⊂ R gives the converse inclusion.
On the other hand, using the Carathéodory extension procedure (see for example
Section 10 in [2]), we get that µU can be extended to the σ-algebra ∑µU

of mea-
surable sets with respect to the outer measure defined by µ∗

U. Consequently, it

suffices to show that each set in (R ∩ U)loc is actually in ∑µU
. For this aim and

following for instance Lemma 9.26 in [2], we have to prove that for a fixed set
B ∈ (R∩ U)loc, µU(A) = µ∗

U(A ∩ B) + µ∗
U(A ∩ BC) for each A ∈ R∩ U. Clearly,

A ∩ B and A ∩ BC are members of R ∩ U due to the definition of Rloc, and so
µ∗

U(A ∩ B) = µU(A ∩ B) and µ∗
U(A ∩ BC) = µU(A ∩ BC). Hence, we really have

to check that

∑
n

µn(A ∩ Bn)

2n max{1, µn(Bn)}
= ∑

n

µn(A ∩ B ∩ Bn)

2n max{1, µn(Bn)}
+∑

n

µn(A ∩ BC ∩ Bn)

2n max{1, µn(Bn)}
,

for every A ∈ R ∩ U. The identity µn(A ∩ Bn) = µn(A ∩ B ∩ Bn) +
µn(A ∩ BC ∩ Bn) gives the result.

We use again µU for the extension. We claim now that f ∈ L1(µU). In fact,

∫

f dµU = ∑
n

1

2n

∫

Bn

f
dµn

max{1, µn(Bn)}
≤ sup

n

∫

Bn

f
dµn

max{1, µn(Bn)}

= sup
n

1

max{1, µn(Bn)}

∫

Bn

f dµn = sup
n

1

max{1, µn(Bn)}

∫

Bn

f d νx′ |R∩Bn

≤ sup
n

1

max{1, µn(Bn)}
‖ f‖L1

w(νU) = sup
n

1

max{1, µn(Bn)}
‖ f‖ν < +∞,

where the last equality is due to the isometry between L1
w(ν) and PL1

w(ν)
(U). Con-

sequently we also have that fn ∈ L1(µU) for every n, since L1(µU) is an ideal
of measurable functions with fn ↑ f µU-a.e. and f ∈ L1(µU). The dominated
convergence theorem gives now that ( fn)n actually converges to f in the norm of
L1(µU).

On the other hand, following (iii), there is a regular method of summability
D such that ( f D

n )n converges ν-a.e. to f D ∈ E. However, by the definition of
regular method of summability, ( f D

n )n also converges to f in L1(µU), so there
is a subsequence ( f D

nk
)k ⊂ ( f D

n )n converging µU-a.e. to f (see Theorem 100.6 in
[20]) and so νU-a.e. Hence, since ν-a.e. convergence and νU-a.e. convergence are
equivalent in E, we obtain that f D = f in E which gives a contradiction.
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Theorem 1.1 can be established for ideals of L1
w(ν) by requiring an extra con-

dition on the vector measure ν: the so-called locally σ-finiteness of the measure
(see [4, 8] and the references therein). Let R be a δ-ring of subsets of Ω, X a
Banach space and ν : R → X a vector measure. We say that ν is locally σ-finite
(with respect to R) if given B ∈ Rloc with ‖ν‖(B) < +∞, it is possible to write B
as B =

(

⋃

n An

)

∪ N, where (An)n ⊂ R and N ∈ Rloc is a ν-null set. Let us show
an easy example of such property.

Example 2.1. Take a non countable set of indexes I and consider the δ-ring RI of all the
finite subsets of I. In this case, Rloc

I is given by all the subsets of I. Let 1 ≤ p ≤ ∞. The
map νp : RI → ℓp(I) given by νp(A) := ∑i∈A ei is a vector measure, where ei is written
for the i-th canonical unit vector, i ∈ I. If 1 ≤ p < ∞, we clearly have that the only
subsets B ∈ Rloc

I satisfying the condition ‖νp‖(B) < +∞ are the ones in RI , and so the
measure is trivially locally σ-finite. However, it is not σ-finite. Note also that for p = ∞,
the measure is not locally σ-finite, since all the sets of Rloc

I satisfy that ‖ν∞‖(B) < +∞

and the non countable ones cannot be covered by a countable family of finite sets (note
that ‖ν‖(B) = 0 if and only if B = ∅).

The same arguments allow to extend this example to the case of non atomic measures
having values in non countable ℓp(I)-sums as ⊕ℓp(I)L

1(µi), where µi is a non atomic
probability measure for each i ∈ I (see Example 3.4 in [12]).

Although a lot of usual situations are covered by Theorem 1.1, the next
Theorem 2.3 is relevant because it can be applied directly to spaces with the Fatou
property, since they can be represented as spaces L1

w(ν) of vector measures (see
Theorem 10 in [8]). In general, it is not the case that we have a natural identifica-
tion of a particular Banach lattice with the Fatou property as an ideal of a space
L1(ν). For showing this, discrete vector measures are enough. Let us show an
example.

Example 2.2. Consider the countable version of the example above —i.e. I = N—
for the case p = ∞. Obviously, in this case the measure ν∞ is σ-finite (and so locally
σ-finite). It can be easily checked that the space L1(ν∞) for the measure ν∞ contains c0.
However, it does not contain ℓ∞ but a direct argument just using the definition of weakly
integrable function shows that ℓ∞ is contained in L1

w(ν∞).

Thus, Theorem 1.1 cannot be applied to the ideal ℓ∞. The following one can
do the work in this case.

Theorem 2.3. Let ν be a Banach space valued locally σ-finite measure. Let E be a Banach
lattice of classes of ν-a.e. equal Rloc-measurable functions which is also an ideal of L1

w(ν).
The following statements are equivalent.

(i) E has the weak σ-Fatou property.

(ii) E has the Komlós property.

(iii) For each norm bounded sequence ( fn)n ⊂ E there is a regular method of summa-
bility D such that ( f D

n )n converges ν-a.e. to a measurable function f D in E.
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Proof. Suppose that ν is locally σ-finite. Theorem 4.2 in [12] gives (i) ⇔ (ii).
A quick look to the proof of (ii) ⇒ (iii) in 1.1 shows that it works also in this
context. Finally, Theorem 4.8 in [4] assures the existence of a sequence of
R-simple functions which converges ν-a.e. to f for each f in L1

w(ν). Conse-
quently, the arguments in the proof of (iii) ⇒ (i) of Theorem 1.1 prove this
implication again.

To finish this note, let us answer a question that appears in a natural way: is
it true that all the Banach lattices of measurable functions with the weak σ-Fatou
property satisfy the statements (ii) and (iii) of Theorem 2.3? Example 4.6 in [12]
shows that this is not the case. If we consider the measure ν∞ in Example 2.1,
we have that L1

w(ν∞) = ℓ∞(I) (see Example 4.4 in [12]). This space is a Banach
lattice with the weak σ-Fatou property. However, it is shown in Example 4.6 of
[12] that this space has not the Komlós property, so without the local σ-finiteness
assumption on the measure the equivalences given in Theorem 2.3 are not longer
true.
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