(H, G)-coincidence theorems for manifolds and a topological Tverberg type theorem for any natural number r

Denise de Mattos* Edivaldo L. dos Santos[†] Taciana O. Souza [‡]

Abstract

Let X be a paracompact space, let G be a finite group acting freely on X and let H a cyclic subgroup of G of prime order p. Let $f: X \to M$ be a continuous map where M is a connected m-manifold (orientable if p > 2) and $f^*(V_k) = 0$, for $k \ge 1$, where V_k are the Wu classes of M. Suppose that ind $X \ge n > (|G| - r)m$, where $r = \frac{|G|}{p}$. In this work, we estimate the cohomological dimension of the set A(f, H, G) of (H, G)-coincidence points of f. Also, we estimate the index of a (H, G)-coincidence set in the case that H is a p-torus subgroup of a particular group G and as application we prove a topological Tverberg type theorem for any natural number r. Such result is a weak version of the famous topological Tverberg conjecture, which was proved recently fail for all r that are not prime powers. Moreover, we obtain a generalized Van Kampen-Flores type theorem for any integer r.

1 Introduction

Let G be a finite group which acts freely on a space X and let $f: X \to Y$ be a continuous map from X into another space Y. If H is a subgroup of G, then H

Received by the editors in October 2016 - In revised form in January 2017.

Communicated by K. Dekimpe, D.L. Gonçalves and P. Wong.

2010 Mathematics Subject Classification: Primary 55M20, 52A35; Secondary 55M35, 55S35.

Key words and phrases: (H, G)-coincidence, G-action, topological Tverberg theorem.

^{*}The author was supported in part by FAPESP of Brazil Grant numbers 12/24454-8 and 2013/24845-0

[†]The author was supported in part by FAPESP of Brazil Grant numbers 12/24454-8

[‡]The author was supported by CAPES and CNPq

acts on the right on each orbit Gx of G as follows: if $y \in Gx$ and y = gx, with $g \in G$, then $h \cdot y = gh^{-1}x$. A point $x \in X$ is said to be a (H, G)- coincidence point of f (as introduced by Gonçalves and Pergher in [7]) if f sends every orbit of the action of H on the G-orbit of x to a single point. Of course, if H is the trivial subgroup, then every point of X is a (H,G)-coincidence. If H=G, this is the usual definition of G-coincidence, that is, f(x) = f(gx), for all $g \in G$. If $G = \mathbb{Z}_p$ with p prime, then a nontrivial (H, G)-coincidence point is a G-coincidence point. Let us denote by A(f, H, G) the set of all (H, G)-coincidence points. A kind of Borsuk-Ulam type theorems consists in estimating the cohomological dimension of the set A(f, H, G). Two main directions for this problem are either when the target space Y is a manifold or Y is a CW complex. In the first direction are the papers of Borsuk [4] (the classical theorem of Borsuk-Ulam, for $H = G = \mathbb{Z}_2$, $X = S^n$ and $Y = R^n$), Conner and Floyd [5] (for $H = G = \mathbb{Z}_2$, $X = S^n$ and Y a *n*-manifold), Munkholm [13] (for $H = G = \mathbb{Z}_p$, $X = S^n$ and $Y = R^m$), Nakaoka [14] (for $H = G = \mathbb{Z}_p$, X under certain (co)homological conditions and Y a m-manifold) and the following more general version proved by Volovikov [17] using the index of a free \mathbb{Z}_p -space X (ind X, see Definition 2.2):

Theorem A.[17, Theorem 1.2] Let X be a paracompact free \mathbb{Z}_p -space of ind $X \ge n$, and $f: X \to M$ a continuous mapping of X into an m-dimensional connected manifold M (orientable if p > 2). Assume that:

- (1) $f^*(V_i) = 0$ for $i \ge 1$, where the V_i are the Wu classes of M; and
- (2) n > m(p-1).

Then the ind $A(f) \ge n - m(p-1) > 0$.

In the second direction are the papers of Izydorek and Jaworowski [10] (for $H = G = \mathbb{Z}_2$, $X = S^n$ and Y a CW-complex), Gonçalves and Pergher [7] (for $H = G = \mathbb{Z}_p$, $X = S^n$ and Y a CW-complex) and for proper nontrivial subgroup H of G, Gonçalves, Jaworowski and Pergher [8] (for $H = \mathbb{Z}_p$ subgroup of a finite group G, X an homotopy sphere and Y a CW-complex) and Gonçalves, Jaworowski, Pergher and Volovikov [9](for $H = \mathbb{Z}_p$ subgroup of a finite group G, X under certain (co)homological assumptions and Y a CW-complex).

In this work, considering the target space Y = M a manifold and H a proper nontrivial subgroup of G, we prove the following formulation of the Borsuk-Ulam theorem for manifolds in terms of (H, G)-coincidence.

Theorem 1.1. Let X be a paracompact space of $indX \ge n$ and let G be a finite group acting freely on X and H a cyclic subgroup of G of prime order p. Let $f: X \to M$ be a continuous map where M is a connected m-manifold (orientable if p > 2) and $f^*(V_k) = 0$, for all $k \ge 1$, where V_k are the Wu classes of M. Suppose that $ind X \ge n > (|G| - r)m$ where $r = \frac{|G|}{p}$. Then $ind A(f, H, G) \ge n - (|G| - r)m$. Consequently,

cohom.dim
$$A(f, H, G) \ge n - (|G| - r)m > 0$$
.

Let us observe that if $H = G = \mathbb{Z}_p$, we have (|G| - r)m = (p - 1)m and therefore Theorem 1.1 generalizes Theorem A above of Volovikov. For the case n = (|G| - r)m, p an odd prime, if we consider X a $mod\ p$ homology n-sphere in

569

the Theorem 1.1 (in this case, the continuous map f can be arbitrary), we obtain a version for (H,G)-coincidence points of the \mathbb{Z}_p -result of Nakaoka [14, Theorem 8]. Further, it considerably improves the estimative of Gonçalves, Jaworowski and Pergher (of [8]), when CW-complexes are replaced by manifolds: if n > m(|G| - r) (which is better than n > m|G| and, depending on r, may be much better than n > m|G|), then ind $A(f;H;G) \ge n - m(|G| - r)$ (which again is better than ind $A(f;H;G) \ge n - m|G|$).

Also, we prove the following nonsymmetric theorem for (H, G)-coincidences which is a version for manifolds of the main theorem in [11].

Theorem 1.2. Let X be a compact Hausdorff space, let G be a finite group acting freely on S^n and let H be a cyclic subgroup of G of order prime p. Let $\varphi: X \to S^n$ be an essential map 1 and let $f: X \to M$ be a continuous map where M is a connected m-manifold (orientable if p > 2) and $f^*(V_k) = 0$, for all $k \ge 1$, where V_k are the Wu classes of M. Suppose that n > (|G| - r)m, then

cohom.dim
$$A_{\varphi}(f, H, G) \ge n - (|G| - r)m$$
,

where $r = \frac{|G|}{p}$ and $A_{\varphi}(f, H, G)$ denotes the (H, G)-coincidence points of f relative to an essential map $\varphi: X \to S^n$.

In Section 4, we give a similar estimate in the case that H is a p-torus subgroup of a particular group G and as application, we prove a topological Tverberg type theorem for any natural number, which is a weak version of the famous topological Tverberg conjecture. Moreover, we obtain a generalized Van Kampen-Flores type theorem for any integer r.

2 Preliminaries

We introduce the following concept.

2.1 The \mathbb{Z}_{v} -index

We suppose that the cyclic group \mathbb{Z}_p acts freely on a paracompact Hausdorff space X, where p is a prime number and we denote by $[X]^*$ the orbit space of X by the action of \mathbb{Z}_p . Then, $X \to [X]^*$ is a principal \mathbb{Z}_p -bundle and we can consider a classifying map $c : [X]^* \to B\mathbb{Z}_p$.

Remark 2.1. It is well known that if \hat{c} is another classifying map for the principal \mathbb{Z}_p -bundle $X \to X^*$, then there is a homotopy between c and \hat{c} .

Definition 2.2. We say that the \mathbb{Z}_p -index of X is greater than or equal to l if the homomorphism

$$c^*: H^l(B\mathbb{Z}_p; \mathbb{Z}_p) \to H^l([X]^*; \mathbb{Z}_p)$$

¹A map $\varphi: X \to S^n$ is said to be an essential map if φ induces nonzero homomorphism $\varphi^*: H^n(S^n; \mathbb{Z}_p) \to H^n(X; \mathbb{Z}_p)$.

is nontrivial. We say that the \mathbb{Z}_p -index of X is equal to l if it is greater or equal than l and, furthermore, $c^*: H^i(B\mathbb{Z}_p; \mathbb{Z}_p) \to H^i([X]^*; \mathbb{Z}_p)$ is zero, for all $i \geq l+1$.

We denote the \mathbb{Z}_p -index of X by ind X.

3 Proof of Theorem 1.1

To prove Theorem 1.1, we use the technique introduced in [8, Section 5], which had as a starting point the proof of the main theorem for $G = \mathbb{Z}_p$, made in [8, Section 3]: choose $a_1, a_2, ..., a_r$ a set of representatives of the left lateral classes of G/H, and define the map $F: X \to M^r$ of X to the r-fold product M^r by $F(x) = (f(a_1x), ..., f(a_rx))$.

In [8], it was used the case $G = \mathbb{Z}_p$ for F and the restriction of the action of G to $H \cong \mathbb{Z}_p$. In our case, the starting point is Theorem A. However, to follow the lines of [8], we need first to understand the Wu classes of a cartesian product of manifolds and the effect of F^* in such classes, which will be made through Lemmas 3.1 and 3.2 below. The *total Wu class* of a manifold M is defined as the formal sum

$$v(M) = 1 + v_1(M) + v_2(M) + \cdots + v_k(M) + \cdots$$

where $v_k(M)$ is the k-th Wu class of M, k = 1, 2, ... (see [12]). Let p > 2 be a prime. Using the *total reduced power*

$$P = P^0 + P^1 + P^2 + \dots + P^k + \dots$$

and the equation

$$\langle v_k(M) \smile x, [M] \rangle = \langle P^k(x), [M] \rangle$$

we obtain the formula

$$\langle v(M) \smile u, [M] \rangle = \langle P(u), [M] \rangle$$

for all $u \in H_c^*(M; \mathbb{Z}_p)$. For p = 2 we have a similar formula

$$\langle v(M) \smile u, [M] \rangle = \langle Sq(u), [M] \rangle$$

for all $u \in H_c^*(M; \mathbb{Z}_2)$, where

$$Sq = Sq^0 + Sq^1 + Sq^2 + \cdots + Sq^k + \cdots$$

is the *total Steenrod square*. Let W and M be connected manifolds, both orientables if p > 2.

Lemma 3.1. The total Wu class of $W \times M$, is given by:

$$v(W) \otimes v(M) \tag{3.1}$$

where v(W) and v(M) are the total Wu classes of W and M respectively.

571

Proof. Let p > 2 be a prime number. Let $z = w \otimes u$ an element of $H_c^*(W \times M; \mathbb{Z}_p)$ then

$$\langle v(W) \otimes v(M) \smile z, [W \times M] \rangle = \langle v(W) \smile w \otimes v(M) \smile u, [W \times M] \rangle$$

$$= \langle P(w) \otimes P(u), [W \times M] \rangle$$

$$= \langle P(w \otimes u), [W \times M] \rangle$$

$$= \langle P(z), [W \times M] \rangle$$

$$= \langle v(W \times M) \smile z, [W \times M] \rangle$$

Therefore by uniqueness of the Wu class we conclude that the total Wu class of $W \times M$ is given by $v(W \times M) = v(W) \otimes v(M)$. By a similar argument the total Wu classes are obtained for p = 2; in this case are used the total Steenrod square.

Lemma 3.2. If $f^*(v_k(M)) = 0$, for all $k \ge 1$, where $v_k(M)$ are the Wu classes of M, then $F^*(v_k(M^r)) = 0$, for all $k \ge 1$, where $v_k(M^r)$ are the Wu classes of M^r .

Proof. Since $F = (f_1 \times ... \times f_r) \circ D$, where $D : X \to X^r$ is the diagonal map and $f_i : X \to X$ is given by $f_i(x) = f(a_i x)$, i = 1...r, it suffices to show that $(f_1 \times ... \times f_r)^*(v_k(M^r)) = 0$, for $k \ge 1$. If r = 1, then $F = f_1$ and $f_1^*(v_k(M)) = g_1^* \circ f^*(v_k(M)) = 0$.

Let us denote by

$$p_1: M^{r-1} \times M \to M^{r-1}, \ p_2: M^{r-1} \times M \to M$$

 $q_1: X^{r-1} \times X \to X^{r-1}, \ q_2: X^{r-1} \times X \to X$

the natural projections. If $r \ge 2$, we have

$$(f_1 \times \ldots \times f_{r-1}) \circ q_1 = p_1 \circ (f_1 \times \ldots \times f_r)$$

 $f_r \circ q_2 = p_2 \circ (f_1 \times \ldots \times f_r).$

Since, by Lemma 3.1, $v_k(M^{r-1} \times M) = \sum_{s=0}^k v_s(M^{r-1}) \times v_{k-s}(M)$ and assuming inductively that $(f_1 \times \ldots \times f_{r-1})^* (v_s(M^{r-1})) = 0$, for $s \ge 1$, we conclude that

$$(f_{1} \times ... \times f_{r})^{*}(v_{k}(M^{r-1} \times M)) =$$

$$= (f_{1} \times ... \times f_{r})^{*} \left(\sum_{s=0}^{k} v_{s}(M^{r-1}) \times v_{k-s}(M) \right)$$

$$= \sum_{s=0}^{k} (f_{1} \times ... \times f_{r})^{*}(p_{1}^{*}(v_{s}(M^{r-1}))) \smile (f_{1} \times ... \times f_{r})^{*}(p_{2}^{*}(v_{k-s}(M)))$$

$$= \sum_{s=0}^{k} q_{1}^{*} \circ (f_{1} \times ... \times f_{r-1})^{*}(v_{s}(M^{r-1})) \smile q_{2}^{*} \circ g_{r}^{*} \circ f^{*}(v_{k-s}(M))$$

$$= 0.$$

Proof. Now we return to the proof of Theorem 1.1. We have

$$A(f,H,G)\supset A_F=\{x\in X:F(x)=F(hx),\forall h\in H\}.$$

In fact, let x be a point in the set A_F , then

$$(f(a_1x),\ldots,f(a_rx))=(f(a_1hx),\ldots,f(a_rhx)),$$

for all $h \in H$. Thus, $f(a_ix) = f(a_ihx)$, for all $h \in H$ and i = 1, ..., r. According to the definition of the action of H on the orbit Gx, $h^{-1} \cdot a_ix := a_i(h^{-1})^{-1}x = a_ihx \in a_iHx$, for i = 1, ..., r. Thus, f collapses each orbit a_iHx determined by the action of H on a_ix , for i = 1, ..., r, therefore $x \in A(f, H, G)$.

Now we observe that $H \cong \mathbb{Z}_p$ acts freely on X by restriction and by hypothesis ind $X \ge n > n - (p-1)rm$. By Lemma 3.2, $F^*(v_k) = 0$, for all $k \ge 1$, where v_k are the Wu classes of M^r . Thus, according to Theorem A,

ind
$$A_F \ge n - (p-1)rm = n - (|G| - r)m$$
.

Let us consider the inclusion $i:A_F\to A(f,H,G)$, which is an equivariant map, and so it induces $\bar{i}:[A_F]^*\to [A(f,H,G)]^*$ a map between the orbit spaces. Therefore, if $c:[A(f,H,G)]^*\to B\mathbb{Z}_p$ is any classifying map, we have that $c\circ\bar{i}:[A_F]^*\to B\mathbb{Z}_p$ is a classifying map. Thus,

ind
$$A(f, H, G) \ge \text{ind } A_F \ge n - (|G| - r)m$$
.

Corollary 3.3. Let X be a paracompact space and let G be a finite group acting freely on X. Let M be a orientable m-manifold, and p a prime number that divide |G|. Suppose that $indX \ge n > (|G| - r)m$, where $r = \frac{|G|}{p}$. Then, for a continuous map $f: X \to M$ such that $f^*(V_k) = 0$, for all $k \ge 1$, where V_k are the Wu classes of M, there exists a non-trivial subgroup H of G, such that

cohom.dim
$$A(f, H, G) \ge n - (|G| - r)m$$
.

Proof. Let p be a prime number such that divide |G|. By Cauchy Theorem, there is a cyclic of order p subgroup H of G. Then, we apply Theorem 1.1.

Remark 3.4. Let us observe that, if $f^*: H^i(M; \mathbb{Z}_p) \to H^i(X; \mathbb{Z}_p)$ is trivial, for $i \geq 1$, and p is the smallest prime number dividing |G|, then $r = \frac{|G|}{p} \geq \frac{|G|}{q}$, where q can be any other prime number dividing |G|. Thus, $n > (|G| - \frac{|G|}{q})m$, therefore for each prime number q dividing |G|, there exists a cyclic subgroup of order q, H_q of G such that ind $A(f, H_q, G) \geq n - (|G| - r)m$.

The following theorem is a version for manifolds of the main result in [8].

Theorem 3.5. Let G be a finite group which acts freely on n-sphere S^n and let H be a cyclic subgroup of G of prime order p. Let $f: S^n \to M$ be a continuous map where M be a m-manifold (orientable if p > 2). If n > (|G| - r)m where $r = \frac{|G|}{p}$, then

$$cohom.dim(A(f,H,G)) \ge n - (|G| - r)m.$$

Proof. Since $n > (|G| - r)m \ge m$, $f^*(V_k) = 0$, for all $k \ge 1$. Moreover, ind $S^n = n$ and thus we apply the Theorem 1.1.

3.1 Proof of Theorem 1.2

Now, let us consider X a compact Hausdorff space and an essential map $\varphi: X \to S^n$. Suppose G be a finite group de order S which acts freely on S^n and S be a subgroup of order S of S. Let S be a fixed enumeration of elements of S, where S is the identity of S. A nonempty space S can be associated with the essential map S as follows:

$$X_{\varphi} = \{(x_1, ..., x_s) \in X^s : g_i \varphi(x_1) = \varphi(x_i), i = 1, ..., s\},\$$

where X^s denotes the *s*-fold cartesian product of X. The set X_{φ} is a closed subset of X^s and so it is compact. We define a G-action on X_{φ} as follows: for each $g_i \in G$ and for each $(x_1, ..., x_s) \in X_{\varphi}$,

$$g_i(x_1,...,x_s)=(x_{\sigma_{g_i}(1)},...,x_{\sigma_{g_i}(s)}),$$

where the permutation σ_{g_i} , is defined by $\sigma_{g_i}(k) = j$, $g_k g_i = g_j$. We observe that if $x = (x_1, ..., x_s) \in X_{\varphi}$ then $x_i \neq x_j$, for any $i \neq j$ and therefore G acts freely on X_{φ} . Let us consider a continuous map $f: X \to M$, where M is a topological space and $\tilde{f}: X_{\varphi} \to M$ given by $\tilde{f}(x_1, ..., x_s) = f(x_1)$,

Definition 3.6. The set $A_{\varphi}(f, H, G)$ of (H, G)-coincidence points of f relative to φ is defined by

$$A_{\varphi}(f,H,G) = A(\widetilde{f},H,G).$$

Proof of Theorem 1.2. Let $\widetilde{f}: X_{\varphi} \to M$ given by $\widetilde{f}(x_1,...,x_r) = f(x_1)$, that is, $\widetilde{f} = f \circ \pi_1$, where π_1 is the natural projection on the 1-th coordinate. By hypothesis, $f^*(V_k) = 0$, for all $k \geq 1$, where V_k are the Wu classes of M, then we have $\widetilde{f}^*(V_k) = 0$, for all $k \geq 1$. Moreover, the \mathbb{Z}_p -index of X_{φ} is equal to n by [11] Theorem 3.1. In this way, X_{φ} and \widetilde{f} satisfy the hypothesis of Theorem 1.1 which implies that the \mathbb{Z}_p -index of the set $A(\widetilde{f}, H, G)$ is greater than or equal to n - (|G| - r)m. By definition, $A_{\varphi}(f, H, G) = A(\widetilde{f}, H, G)$, and then

cohom.dim
$$A_{\varphi}(f, H, G) \ge n - (|G| - r)m$$
.

By a similar argument to that used in the proof of Corollary 3.3 we have the following corollary of Theorem 1.2

Corollary 3.7. Let X be a compact Hausdorff space and let G be a finite group acting freely on S^n . Let M be a orientable m-manifold and p a prime number dividing |G|. Suppose that n > (|G| - r)m, where $r = \frac{|G|}{p}$. Then, for a continuous map $f: X \to M$, with $f^*(V_k) = 0$, for all $k \ge 1$, where V_k are the Wu classes of M, there exists a non-trivial subgroup H of G, such that

cohom.dim
$$A_{\varphi}(f, H, G) \ge n - (|G| - r)m$$
.

4 Topological Tverberg type theorem

The history of Tverberg theorem begins with a Birch's paper (see [2]) which contained the following conjecture

"Any (r-1)(d+1) + 1 points in \mathbb{R}^d can be partitioned in N subsets whose convex hulls have a common point".

The Birch's conjecture was proved by Helge Tverberg (see [16]) and since then is known as Tverberg theorem.

We note that the convex hull of l+1 points in \mathbb{R}^d is the image of the linear map $\Delta_l \to \mathbb{R}^d$ that maps the l+1 vertices of Δ_l to these l+1 points. Thus the Tverberg theorem can be reformulated as follows:

Tverberg Theorem. Let f be a linear map from the N-dimensional simplex Δ_N to \mathbb{R}^d . If N = (d+1)(r-1) then there are r disjoint faces of Δ_N whose images have a common point.

The following conjecture is a generalization of Tverberg Theorem to arbitrary continuous maps.

The topological Tverberg conjecture. Let f be a continuous map from the N-dimensional simplex Δ_N to \mathbb{R}^d . If N=(d+1)(r-1) then there are r disjoint faces of Δ_N whose images have a common point.

The topological Tverberg conjecture was considered a central unsolved problem of topological combinatorics. For a prime number r the conjecture was proved by Bárány, Shlosman and Szűcs ([1]) and it was extended for a prime power r by Özaydin (unpublished) ([15]) and Volovikov ([19]). This result is known as the *topological Tverberg theorem*. Recently, in [6], Frick presents surprising counterexamples to the topological Tverberg conjecture for any r that is not a power of a prime and dimensions $d \geq 3r+1$ (see also [3]). Although, the conjecture is not true for an integer $r \geq 6$ that is not a prime power, it is possible to prove a weak version of the topological Tverberg conjecture, more precisely, in this paper we show that if r is a natural number with prime factorization $r = p_1^{n_1} \cdots p_k^{n_k}$ then there is, for each $j = 1, \ldots, k$, a set with r closed sides mutually disjoint of Δ_N which can be divided into $\frac{r}{p_j^n}$ subsets, each one having $p_j^{n_j}$ elements, whose

images have a common point. Specifically, we prove the following *Topological Tverberg type theorem for manifolds and for any integer number r.*

Theorem 4.1. Let $d \ge 1$ a natural number. Consider a natural number r with prime factorization $r = p_1^{n_1} \cdots p_k^{n_k}$ and set N = (r-1)(d+1). Let $f : \partial \Delta_N \to M$ be a continuous map into a compact d-dimensional topological manifold. If r = 2, suppose additionally that the modulo 2 degree of the map $f : \partial \Delta_{d+1} \to M$ is equal to zero. Then, for each $j = 1, \ldots, k$, among the sides of Δ_N there are $r = q_j r_j$, where $r_j = p_j^{n_j}$, and $q_j = \frac{r}{r_j}$, mutually disjoint closed sides $\sigma_{1_1}, \ldots, \sigma_{1_{r_j}}, \ldots; \sigma_{i_1}, \ldots, \sigma_{i_{r_j}}, \ldots; \sigma_{q_{j_1}}, \ldots, \sigma_{q_{j_{r_j}}}$, such that

$$f(\sigma_{i_1}) \cap \cdots \cap f(\sigma_{i_{r_i}}) \neq \emptyset$$
, for each $i = 1, \ldots, q_j$.

575

Definition 4.2 (Index). Let p be a prime. We suppose the p-torus $H = \mathbb{Z}_p^k = \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ (k factors) acting freely on a paracompact space X. The covering $X \to X/H$ is induced from the universal covering $EH \to BH$ by means of a classifying map $c: X/H \to BH$, defined uniquely up to homotopy. We say that the **index** of X is greater than or equal to N (abbreviated by ind $X \ge N$) if $c^*: H^N(BH; \mathbb{Z}_p) \to H^N(X/H; \mathbb{Z}_p)$ is a monomorphism.

Consider $G = \mathbb{Z}_{p_1}^{n_1} \times ... \times \mathbb{Z}_{p_k}^{n_k}$, where $\mathbb{Z}_{p_j}^{n_j} = \mathbb{Z}_{p_j} \times ... \times \mathbb{Z}_{p_j}$ (n_j factors), j = 1,...,k. We suppose that G acts freely on a paracompact space X.

Lemma 4.3. Let $f: X \to M$ be a continuous map into a compact d-dimensional topological manifold (orientable for $p_j > 2$). Suppose that the homomorphism $f^*: H^i(M; \mathbb{Z}_{p_j}) \to H^i(X; \mathbb{Z}_{p_j})$ is trivial for $i \geq 1$ and ind $X \geq N \geq d(r-q_j)$, where $q_j = r/p_j^{n_j}$. Then

$$\operatorname{ind} A\left(f, \mathbb{Z}_{p_j}^{n_j}, G\right) \geq N - d(r - q_j).$$

Proof. We denote by a_1, \ldots, a_{q_j} a set of representatives of the left lateral classes of $G/\mathbb{Z}_{p_i}^{n_j}$. Consider the map $F: X \to M^{q_j}$ defined by

$$F = (f_1 \times \ldots \times f_{q_i}) \circ D,$$

where $D: X \to X^{q_j}$ is the diagonal map and $f_i: X \to X$ is given by $f_i(x) = f(a_i x)$, $i = 1, ..., q_j$.

We have $F^*: H^i(M^{q_j}; \mathbb{Z}_{p_j}) \to H^i(X; \mathbb{Z}_{p_j})$ trivial for $i \geq 1$, therefore the index of $A(F) = \{x \in X : F(x) = F(gx) \, \forall g \in \mathbb{Z}_{p_j}^{n_j} \}$ is greater than or equal to $N - q_j d\left(p_j^{n_j} - 1\right)$ (see [18, Theorem 1]). Since $A(F) \subset A\left(f, \mathbb{Z}_{p_j}^{n_j}, G\right)$ and the inclusion $A(F) \hookrightarrow A\left(f, \mathbb{Z}_{p_j}^{n_j}, G\right)$ is an equivariant map we have ind $A\left(f, \mathbb{Z}_{p_j}^{n_j}, G\right) \geq A(F)$. Then

ind
$$A\left(f,\mathbb{Z}_{p_j}^{n_j},G\right)\geq N-d(r-q_j).$$

Proof of Theorem 4.1. We consider the CW-complex $Y_{N,r}$ that consists of points (y_1, \ldots, y_r) , y_i in the boundary $\partial \Delta_N$ of the simplex Δ_N , that have mutually disjoint closed faces. It is known that for all natural numbers r and N, where $N \geq r+1$, $Y_{N,r}$ is (N-r)-connected (see [1]). Let $G = \{g_1, \ldots, g_r\}$ be a fixed enumeration of elements of G. We define a G-action on $Y_{N,r} \subset (\Delta_N)^r$ as follows: for each $g_i \in G$ and for each $(y_1, \ldots, y_r) \in Y_{N,r}$

$$g_i(y_1,...,y_r) = (y_{\phi_{g_i}(1)},...,y_{\phi_{g_i}(r)}),$$

where the permutation ϕ_{g_i} , is defined by $\phi_{g_i}(k) = j$, $g_k g_i = g_j$. Then G acts freely on $Y_{N,r}$, since $Y_{N,r}$ consists of points (y_1, \ldots, y_r) , $y_i \in \partial \Delta_N$ that have mutually disjoint closed faces.

Let $\tilde{f}: Y_{N,r} \to M$ given by $\tilde{f}(y_1, \dots, y_r) = f(y_1)$, that is, $\tilde{f} = f \circ \pi_1$ where $\pi_1: Y_{N,r} \to \partial \Delta^N$ is the projection on the 1-th coordinate. Since N = (r-1)(d+1)

and $Y_{N,r}$ is (N-r)-connected, it follows that $\tilde{f}^*: H^i(M; \mathbb{Z}_{p_j}) \to H^i(Y_{N,r}; \mathbb{Z}_{p_j})$ is trivial for $i \geq 1$ and $\operatorname{ind} Y_{N,r} \geq (N-r)+1 = d(r-1) > d(r-q_j)$ (if M is non-orientable, we consider the lifting of the map $f: \partial \Delta_N \to M$ to the universal covering space). Then, according to Lemma 4.3, the set $A\left(\tilde{f}, \mathbb{Z}_{p_j}^{n_j}, G\right)$ is not empty, for $j=1,\ldots,k$.

Let $H = \mathbb{Z}_{p_j}^{n_j} = \{h_1, \dots, h_{r_j}\}$ be a fixed enumeration of elements of $H = \mathbb{Z}_{p_j}^{n_j} \subset G$. We denote by a_1, \dots, a_{q_j} a set of representatives of the left lateral classes of $G/\mathbb{Z}_{p_j}^{n_j}$. Then, for each $i = 1, \dots, q_j$, $a_i h_1^{-1} = g_{i_1}, \dots, a_i h_{r_j}^{-1} = g_{i_{r_j}}$ are elements of G. Thus, if $y = (y_1, \dots, y_r) \in A\left(\tilde{f}, \mathbb{Z}_{p_j}^{n_j}, G\right)$,

$$\tilde{f}(g_{i_1}\cdot(y_1,\ldots,y_r))=\cdots=\tilde{f}(g_{i_{r_i}}\cdot(y_1,\ldots,y_r)),$$

that is,

$$f(y_{\phi_{g_{i_1}}(1)}) = \cdots = f(y_{\phi_{g_{i_{r_i}}}(1)}).$$

Therefore, for each $j=1,\ldots,k$, among the sides of Δ_N there are $r=q_jr_j$ mutually disjoint closed sides $\{\sigma_{i_1},...,\sigma_{i_{r_i}}\}_{i=1}^{q_j}$, such that

$$f(\sigma_{i_1}) \cap \cdots \cap f(\sigma_{i_{r_i}}) \neq \emptyset,$$

for each $i = 1, \ldots, q_j$.

Let us observe that since the d-dimensional Euclidean space \mathbb{R}^d is homeomorphic to the interior of the closed d-dimensional ball, Theorem 4.1 holds also for maps into \mathbb{R}^d , and we have the following weak version of the topological Tverberg conjecture or topological Tverberg type theorem for any integer r.

Theorem 4.4 (Topological Tverberg type theorem for any integer r). Let $r \geq 2$, $d \geq 1$ be integers and N = (r-1)(d+1). Consider $r = r_1 \dots r_k$ the prime factorization of r and denote $q_j = r/r_j$, $j = 1, \dots, k$. Then for any continuous map $f : \Delta_N \to \mathbb{R}^d$, for each $j = 1, \dots, k$, there are $r = q_j r_j$ pairwise disjoint faces $\{\sigma_{i_1}, \dots, \sigma_{i_{r_i}}\}_{i=1}^{q_j}$ such that

$$f(\sigma_{i_1}) \cap \cdots \cap f(\sigma_{i_{r_i}}) \neq \emptyset$$
, for each $i = 1, \ldots, q_j$.

Let us note that if we consider *r* a prime power in Theorem 4.4, we obtain the topological Tverberg theorem for prime powers.

Now, by Theorem 4.4 and using similar method as in [3], we have the following *Generalized Van Kampen-Flores type theorem for any integer r* or *a weak version of the Generalized Van Kampen-Flores theorem*. In [3, Theorem 4.2], Blagojevic, Frick and Ziegler proved that the Generalized Van Kampen-Flores theorem does not hold in general.

Theorem 4.5 (Generalized Van Kampen-Flores type theorem for any r). Let $d \ge 1$ a natural number. Consider a natural number r with prime factorization $r = r_1 \cdots r_k$,

 $r_1 < \cdots < r_k$, set N = (r-1)(d+2) and let $l \ge [\frac{r-1}{r_k}d + \frac{2(r-r_k)}{r_k}]$. Let $f: \Delta_N \to \mathbb{R}^d$ be a continuous mapping. Then, there are $r = q_k r_k$ pairwise disjoint faces $\{\sigma_{i_1}, ..., \sigma_{i_{r_k}}\}_{i=1}^{q_k}$ of the l-th skeleton $\Delta_N^{(l)}$, such that

$$f(\sigma_{i_1}) \cap \cdots \cap f(\sigma_{i_{r_k}}) \neq \emptyset$$
, for each $i = 1, \ldots, q_k$.

Proof. Let $g:\Delta_N\to\mathbb{R}^{d+1}$ be a continuous function defined by $g(x)=(f(x),\operatorname{dist}(x,\Delta_N^{(l)}))$. Then, we can apply Theorem 4.4 to function g which results in a collection of points

$$x_{1_1},...,x_{1_{r_k}};...;x_{i_1},...,x_{i_{r_k}};...;x_{q_{k_1}},...,x_{q_{k_{r_k}}},$$

such that $\{x_{i_1},...,x_{i_{r_k}}\}_{i=1}^{q_k}$ are points in the pairwise disjoint faces $\{\sigma_{i_1},...,\sigma_{i_{r_j}}\}_{i=1}^{q_k}$ with $f(x_{i_1})=\cdots=f(x_{i_{r_k}})$ and $\operatorname{dist}(x_{i_1},\Delta_N^{(l)})=\cdots=\operatorname{dist}(x_{i_{r_k}},\Delta_N^{(l)})$, for each $i=1,\ldots,q_k$. We can suppose that all σ_{i_s} 's are inclusion-minimal with the property that $x_{i_s}\in\sigma_{i_s}$, that is, σ_{i_s} is the unique face with x_{i_s} in its relative interior.

Now, for each $i=1,\ldots,q_k$ fixed, suppose that one of the faces $\sigma_{i_1},\ldots,\sigma_{i_{r_k}}$ is in $\Delta_N^{(l)}$, e.g. σ_{i_1} . Then $\mathrm{dist}(x_{i_1},\Delta_N^{(l)})=0$, which implies that $\mathrm{dist}(x_{i_1},\Delta_N^{(l)})=\cdots=\mathrm{dist}(x_{i_{r_k}},\Delta_N^{(l)})=0$, and consequently, all faces $\sigma_{i_1},\ldots,\sigma_{i_{r_k}}$ are in $\Delta_N^{(l)}$.

Let us suppose the contrary, that no σ_{i_s} is in $\Delta_N^{(l)}$, i.e., $\dim \sigma_{i_1} \geq l+1,\ldots$, $\dim \sigma_{i_{r_k}} \geq l+1$. Since the faces $\sigma_{i_1},\ldots,\sigma_{i_{r_k}}$ are pairwise disjoint we have

$$N+1 = |\Delta_N| \ge |\sigma_{i_1}| + \dots + |\sigma_{i_{r_k}}|$$

$$\ge r_k(l+2)$$

$$\ge r_k(\left[\frac{r-1}{r_k}d + \frac{2(r-r_k)}{r_k}\right] + 2) \ge (r-1)(d+2) + 2 = N+2,$$

which is a contradiction and thus one of the faces $\sigma_{i_1}, \ldots, \sigma_{i_{r_k}}$ is in $\Delta_N^{(l)}$ and consequently all faces $\sigma_{i_1}, \ldots, \sigma_{i_{r_k}}$ are in $\Delta_N^{(l)}$.

Remark 4.6. Let us observe that if we consider *r* a prime power in Theorem 4.5, we obtain the Generalized Van Kampen-Flores theorem for prime powers proved by Blagojevic, Frick and Ziegler in [3, Theorem 3.2].

Acknowledgement. We would like to express our gratitude to the referee for a careful reading and valuable suggestions which have considerably improved the paper.

References

- [1] Bárány, I.; Shlosman, S. B.; Szűcz, A., On a Topological generalization of a theorem of Tverberg, J. London Math. Soc. 23 (1981), 158–164.
- [2] Birch, B. J., On 3N points in a plane, Math. Proc. Cambridge Phil. Soc. 55 (1959), 289–293.
- [3] Blagojević, P., Frick, F., Ziegler, G. Barycenters of Polytope Skeleta and Counterexamples to the Topological Tverberg Conjecture, via Constraints eprint arXiv:1510.07984. To appear in J. European Math. Soc..
- [4] Borsuk, K., *Drei Sätze über die n-dimensionale euklidische Sphäre*, Fund. Math. **20** 177–190, 1933.
- [5] Conner, P.E.; Floyd E.E. *Differentiable Periodic Maps*. Ergebnisse der Math. Springer-Verlag Berlin **33**, 1964.
- [6] Frick, F., Counterexamples to the topological Tverberg conjecture, Preprint, 3 pages, arXiv:1502.00947, February 2015; to appear in Oberwolfach Reports, (1)11, 2015.
- [7] Gonçalves, D.L.; Pergher, Pedro L.Q., \mathbb{Z}_p -coincidence for maps of spheres into CW-complexes, Kobe J. Math. **15**, (1998), 191–195.
- [8] Gonçalves, D.L.; Jaworowski, J.; Pergher, Pedro L.Q., *Measuring the size of the coincidence set*, Topology Appl. **125** (2002), 465–470.
- [9] Gonçalves, D.L.; Jaworowski, J.; Pergher, Pedro L.Q., A.Yu. Volovikov, *Coincidences for maps of spaces with finite group actions*. Topology Appl. 145 (2004), no. 1-3, 61–68.
- [10] Izydorek, M.,; Jaworowski, J., Antipodal coincidence for maps of spheres into complexes, Proc. Amer. Math. Soc. 123 (6) (1995) 1947-1950.
- [11] De Mattos, Denise; Dos Santos, Edivaldo L., *On nonsymmetric theorems for* (*H*, *G*)-coincidences. Topological Methods in Nonlinear Analysis, v. 33, (2009) 105-120.
- [12] Milnor, J. W.; Stasheff, J. D., *Characteristic classes*, Princeton Univ. Press, Princeton, N.J. (1974).
- [13] Munkholm, H.J., Borsuk-Ulam theorem for proper \mathbb{Z}_p -actions on (mod p homology) n-spheres. Math. Scan. **24** (1969) 167-185.
- [14] Nakaoka, M., Generalization of Borsuk-Ulam theorem. Osaka J. Math. 7 (1970) 423-441.
- [15] Özaydin, M., Equivariant maps for the symmetric group, unpublished, 17 pages, available on line at http://minds.wisconsin.edu/handle/1793/63829 (1987).

- [16] Tverberg, H., A generalization of Radon's Theorem, J. London Math. Soc. 41 (1966), 123-128.
- [17] Volovikov, A. Yu., Mappings of free \mathbb{Z}_p -spaces into manifolds, Izv. Akad. Nauk SSRR Ser. Math., (46) n.1, (1992) 36–55.
- [18] Volovikov, A. Yu., A Bourgin-Yang-type theorem for \mathbb{Z}_p^n -action. (Russian) Mat. Sb. 183 (1992), no. 7, 115–144; translation in Russian Acad. Sci. Sb. Math. 76 (1993), no. 2, 361-387.
- [19] Volovikov, A. Yu., On a topological generalization of Tverberg's theorem, Mat. Zametki, (59) n.3 (1996), 454-456.

Universidade de São Paulo-USP-ICMC, Departamento de Matemática, Caixa Postal 668, 13560-970, São Carlos-SP, Brazil E-mail address: deniseml@icmc.usp.br

Departamento de Matemática, Universidade Federal de São Carlos, Centro de Ciências Exatas e Tecnologia, CP 676, CEP 13565-905, São Carlos - SP, Brazil. E-mail address: edivaldo@dm.ufscar.br

Faculdade de Matemática, Universidade Federal de Uberlândia, Campus Santa Mônica - Bloco 1F - Sala 1F120, Av. João Naves de Avila, 2121, Uberlândia, MG, CEP: 38.408-100, Brazil E-mail address: tacioli@ufu.br