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Abstract

We study the property of asymptotic midpoint uniform convexity for
infinite direct sums of Banach spaces, where the norm of the sum is
defined by a Banach space E with a 1-unconditional basis. We show that
a sum (∑∞

n=1 Xn)E is asymptotically midpoint uniformly convex (AMUC) if
and only if the spaces Xn are uniformly AMUC and E is uniformly monotone.
We also show that Lp(X) is AMUC if and only if X is uniformly convex.

1 Introduction

Convexity properties have long had a central place in Banach space theory. The
nicest and simplest of these is uniform convexity. A Banach space (X, ‖ · ‖) is
uniformly convex (UC) if for all t ∈ (0, 2], there exists δ = δ(t) > 0 such that
‖(x + y)/2‖ ≤ 1 − δ for all x, y ∈ SX satisfying ‖x − y‖ ≥ t. It was shown
early on that every uniformly convex Banach space is reflexive. More generally, a
superreflexive space is one which admits an equivalent norm which is uniformly
convex. A detailed overview of classical convexity properties can be found in
[Meg98].

In 1987 S. Rolewicz [Rol86, Rol87] introduced what he termed property (β)
in connection to well-posedness of optimization problems. We say that a Banach
space (X, ‖ · ‖) has property (β) if, for every t > 0, there exists δ = δ(t) > 0 such
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that for all x ∈ X satisfying 1 < ‖x‖ < 1 + δ, the set conv(x ∪ BX) \ BX has
Kuratowski measure of noncompactness less than t (here conv(A) is the convex
hull of the set A). Recall that the Kuratowski measure of noncompactness of a set A is
the infimum of all values t > 0 such that A can be covered by finitely many sets
with diameter at most t.

A third convexity-type property is asymptotic uniform convexity. A Banach
space (X, ‖ · ‖) is asymptotically uniformly convex (AUC) if, for all t > 0, there
exists δ = δ(t) such that for all x ∈ SX, there exists a subspace Y ⊂ X of finite
codimension such that

inf
y∈SY

‖x + ty‖ > 1 + δ(t).

This property is originally due to V. D. Milman [Mil71], though the current termi-
nology was introduced in [JLPS02]. For a concrete norm, i.e. isometrically, uni-
form convexity implies property (β), which in turn implies AUC [Rol87]. Spaces
which have an equivalent norm with property (β) constitute an isomorphic class
that is strictly between superreflexive spaces and those with an equivalent AUC
norm, see e.g. [Kut90], [DKLR]. In view of Bourgain’s characterization of su-
perreflexivity and [BKL10], it is appropriate to call the (β)-renormable spaces
asymptotically superreflexive.

Several equivalent isometric definitions of uniform convexity can be expressed
in terms of diameters of given sets tending uniformly to zero, see [Rol86, Laa02,
TW05]. In most of these cases, if one replaces the diameter by the Kuratowski
measure of noncompactness, one obtains property (β) [Rol86, DKR+13]. How-
ever, an exception is a special type of lenses in [Laa02, TW05]. In this case one ob-
tains a new property, namely asymptotic midpoint uniform convexity [DKR+16].
A Banach space (X, ‖ · ‖) is asymptotically midpoint uniformly convex (AMUC) if for
all t ∈ (0, 1), there exists δ = δ(t) such that for all x ∈ SX , there exists a subspace
Y ⊂ X of finite codimension such that

inf
y∈SY

max{‖x + ty‖, ‖x − ty‖} ≥ 1 + δ(t).

Observe that δ can be chosen to be increasing as a function of t. In each of these
convexity properties, the function δ is called the modulus of the corresponding
property.

Since AUC implies AMUC, the new property is isomorphically weaker than
property (β). An example was given in [DKR+16] of a norm which is AMUC
but not AUC. However, it is not known if AMUC and AUC are isomorphically
equivalent (that is, whether any AMUC space admits an equivalent AUC norm).
It was shown in [DKR+16] that every AMUC space with an unconditional basis
can be renormed to be AUC.

The AMUC property plays a role in the metric geometry of the space. For
example, one cannot embed infinitely branching diamond graphs in a space with
an equivalent AMUC norm [BCD+].

In the present paper we study the AMUC property in connection with infinite
sums of Banach spaces, giving necessary and sufficient conditions for the norm
to be AMUC. The norm of the sum is defined using an underlying Banach space
admitting a 1-unconditional basis. We give natural conditions which are neces-
sary and sufficient for this norm to be AMUC. For an overview of other results
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about when geometric properties of a Banach space can be lifted to a larger space,
see [Lin04, Sec. 3.4]. Our main result is the following.

Theorem 1. Let (E, ‖ · ‖E) be a Banach space with a 1-unconditional basis (en)
and let (Xn, ‖ · ‖n)∞

n=1 be a sequence of infinite-dimensional Banach spaces. Let
X = (∑∞

n=1 Xn)E, with norm given by ‖x‖ = ‖(‖xn‖n)∞
n=1‖E for x = (xn)∞

n=1,
xn ∈ Xn. Then X is AMUC if and only if (Xn)∞

n=1 are uniformly AMUC and E is
uniformly monotone.

Recall that a basis (ej) for a Banach space is 1-unconditional if it satisfies

∥∥∥∥∥
n

∑
k=0

ǫjαjej

∥∥∥∥∥ ≤

∥∥∥∥∥
n

∑
k=0

αjej

∥∥∥∥∥

for all coefficients αj ∈ R and ǫj ∈ {−1, 1}, j ∈ N. Also, for a Banach space
(E, ‖ · ‖) with a 1-unconditional basis (en), we say that the norm ‖ · ‖ on E is uni-
formly monotone if for every ǫ > 0 there exists M(ǫ) such that for every
a = ∑n anen satisfying an ≥ 0, ‖a‖ = 1, and every b = ∑n bnen satisfying bn ≥ 0,
‖b‖ ≥ ǫ, we have ‖a + b‖ ≥ 1 + M(ǫ).

Theorem 1 remains true with AMUC replaced by AUC. The same proof we
provide for Theorem 1 goes through for the AUC case with minor modifications.

A similar characterization for nearly uniform convexity (that is, AUC plus
reflexivity) was proved in [KL92]. On the other hand, for the continuous case,
the AMUC property of Lp(X) implies uniform convexity for X. This is similar
to the result in [Par83] about the uniformly Kadec-Klee property. More precisely,
we prove the following theorem.

Theorem 2. Let (X, ‖ · ‖) be a Banach space and let Lp(X) denote the set of
p-integrable functions f : [0, 1] → X, where 1 < p < ∞, with norm ‖ f‖p =

(
∫ 1

0 ‖ f (x)‖p dx)1/p. Then Lp(X) is AMUC if and only if X is UC.

2 Proofs of theorems

Proof of Theorem 1. (=⇒) Assume that X is AMUC, and let δ(ǫ) be its AMUC mod-
ulus. Since each Xn can be embedded with the same norm as a subspace of X, it
follows immediately that the spaces (Xn)∞

n=1 are uniformly AMUC.
Let 0 < ǫ < 1. Consider elements a = ∑

∞
n=1 anen with an ≥ 0 and ‖a‖E = 1,

and b = ∑
∞
n=1 bnen with bn ≥ 0, ‖b‖E ≥ ǫ. By approximating, we may assume

that a and b are supported on [(ei)
N
i=1] for some N.

For every 1 ≤ n ≤ N, choose xn ∈ Xn so that ‖xn‖n = an. By the AMUC
property, there exists a subspace U ⊂ X of finite codimension corresponding to
the element in X of finite support x = (xn)N

n=1 and the given value of ǫ > 0.
Since the spaces Xn are infinite dimensional, we can choose for each 1 ≤ n ≤ N
a vector yn ∈ U, supported on Xn, so that max

±
‖xn ± yn‖n = an + bn. Indeed,

take a vn ∈ U, supported on Xn, so that ‖xn + vn‖n > ‖xn‖n and consider the
convex function hn(t) = max

±
‖xn ± tvn‖n. Take yn = tvn so that hn(t) = an + bn.
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Then we also have ‖yn‖n ≥ bn. Let θ = ±1 be such that max
θ=±

∥∥∥∑
N
n=1(xn + θyn)

∥∥∥

is achieved. The finitely supported element y = ∑
N
i=1 yn clearly belongs to U

and ‖y‖ ≥ ‖b‖E ≥ ǫ. Then by AMUC, for either θ = 1 or θ = −1 we have∥∥∥∑
N
n=1(xn + θyn)

∥∥∥ ≥ 1+ δ(ǫ). Let θn be such that ‖xn + θnyn‖n = max
±

‖xn ± yn‖n.

By 1-unconditionality,

‖a + b‖E =

∥∥∥∥∥
N

∑
n=1

‖xn + θnyn‖nen

∥∥∥∥∥
E

≥

∥∥∥∥∥
N

∑
n=1

‖xn + θyn‖nen

∥∥∥∥∥
E

=

∥∥∥∥∥
N

∑
n=1

(xn + θyn)

∥∥∥∥∥ ≥ 1 + δ(ǫ).

Hence E is uniformly monotone.
(⇐=) Assume that (Xn, ‖ · ‖n)∞

n=1 are uniformly AMUC and E is uniformly
monotone.

Consider x = (xn)N
n=1 of finite support in X, where N ≥ 1, with ‖x‖ = 1.

Let 0 < ǫ < 1. Choose subspaces Un ⊂ Xn, 1 ≤ n ≤ N, of finite codimension
satisfying the following two conditions:

(1) If yn ∈ Un, then ‖xn + yn‖n ≥ ‖xn‖n.

(2) If yn ∈ Un with ‖yn‖n ≥ ǫ
3‖xn‖n, then max

±
‖xn ± yn‖n ≥ ‖xn‖n(1 + δ( ǫ

3)).

The first condition can be achieved by assuming that Un is intersected with Vn =
{yn ∈ Xn : fn(yn) = 0}, where fn is chosen as ‖ fn‖X∗

n
= 1 and fn(xn) = ‖xn‖n.

Then

‖xn + yn‖n ≥ fn(xn + yn) = fn(xn) = ‖xn‖n.

Let U = {y = (yn)∞
n=1 : yn ∈ Un, 1 ≤ n ≤ N}. Then U is of finite codimen-

sion in X. Suppose y = (yn)
∞
n=1 ∈ U with ‖y‖ ≥ ǫ. Let A = {1 ≤ n ≤

N : ‖yn‖n <
ǫ
3‖xn‖n} and B = {1 ≤ n ≤ N : ‖yn‖n ≥ ǫ

3‖xn‖n}. Then
‖∑n∈A yn‖ ≤ ǫ

3 ‖∑n∈A xn‖ ≤ ǫ
3 .

We have ‖∑n∈A yn‖ + ‖∑n∈B yn‖ +
∥∥∑

∞
n=N+1 yn

∥∥ ≥ ‖y‖ ≥ ǫ. So either (i)∥∥∑
∞
n=N+1 yn

∥∥ ≥ ǫ
3 or (ii) ‖∑n∈B yn‖ ≥ ǫ

3 .
Suppose that (i) occurs. It follows from condition (1) that for both choices of

signs, ‖xn ± yn‖n ≥ ‖xn‖n, 1 ≤ n ≤ N. Then by 1-unconditionality of (en) and
uniform monotonicity, ‖x ± y‖ ≥

∥∥x ± ∑
∞
n=N+1 yn

∥∥ ≥ 1 + M(ǫ/3).
Suppose next that (ii) occurs.

Case 1. In the first case, assume that ‖∑n∈B xn‖ < min
(

1
2 , M(ǫ/6)

4

)
. Note that

max
±

‖xn ± yn‖n ≥ ‖yn‖n for all n. Indeed, gn(t) = ‖txn + yn‖n, t ∈ R, is a

convex function, thus gn(0) ≤ max(gn(−1), gn(1)). Hence, if we choose
θn = ±1 so that ‖xn + θnyn‖n = max ‖xn ± yn‖n, we obtain by 1-unconditionality
‖∑n∈B xn + θnyn‖ ≥ ‖∑n∈B yn‖ .
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Set B+ = {n ∈ B : θn = 1} and B− = {n ∈ B : θn = −1}. Then
‖∑n∈B(xn + θnyn)‖ ≤

∥∥∑n∈B+
(xn + yn)

∥∥+
∥∥∑n∈B−

(xn − yn)
∥∥. So either for θ = 1

or θ = −1 we have by 1-unconditionality ‖∑n∈B xn + θyn‖ ≥ 1
2 ‖∑n∈B yn‖ ≥ ǫ

6 .

In case 1, ‖∑n∈A xn‖ ≥ 1
2 , so by 1-unconditionality and scaling in uniform

monotonicity,

∥∥∥∥∥
∞

∑
n=1

(xn + θyn)

∥∥∥∥∥ ≥

∥∥∥∥∥∑
n∈A

(xn + θyn) + ∑
n∈B

(xn + θyn)

∥∥∥∥∥

≥

∥∥∥∥∥∑
n∈A

xn + ∑
n∈B

(xn + θyn)

∥∥∥∥∥

=

∥∥∥∥∥∑
n∈A

xn

∥∥∥∥
(

∑n∈A xn

‖∑n∈A xn‖
+

∑n∈B(xn + θyn)

‖∑n∈A xn‖

)∥∥∥∥

∥∥∥∥∥

≥

∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥+
1

2
M
(ǫ

6

)
≥

∥∥∥∥∥
N

∑
n=1

xn

∥∥∥∥∥+
1

2
M
(ǫ

6

)
−

1

4
M
(ǫ

6

)

= 1 +
1

4
M
(ǫ

6

)
.

Case 2. ‖∑n∈B xn‖ ≥ min
(

1
2 , 1

4 M
(

ǫ
6

))
.

For n ∈ B, ‖yn‖n ≥ ǫ
3‖xn‖n, so by uniform AMUC, ‖xn + θnyn‖n =

max
±

‖xn ± yn‖n ≥ ‖xn‖n

(
1 + δ

(
ǫ
3

))
.

So for n ∈ B+, ‖xn + yn‖n − ‖xn‖n ≥ ‖xn‖nδ
(

ǫ
3

)
, while for 1 ≤ n ≤ N,

n /∈ B+, ‖xn + θnyn‖n − ‖xn‖n ≥ 0. Then by 1-unconditionality and uniform
monotonicity

∥∥∥∥∥
N

∑
n=1

(xn + yn)

∥∥∥∥∥ =

∥∥∥∥∥
N

∑
n=1

‖xn‖en +
N

∑
n=1

(‖xn + yn‖n − ‖xn‖n) en

∥∥∥∥∥
E

≥

∥∥∥∥∥
N

∑
n=1

‖xn‖en + ∑
n∈B+

‖xn‖nδ
(ǫ

3

)
en

∥∥∥∥∥
E

≥ 1 + M

(
δ
(ǫ

3

) ∥∥∥∥∥ ∑
n∈B+

‖xn‖nen

∥∥∥∥∥
E

)

= 1 + M

(
δ
(ǫ

3

) ∥∥∥∥∥ ∑
n∈B+

xn

∥∥∥∥∥

)
.

Similarly,
∥∥∥∑

N
n=1(xn − yn)

∥∥∥ ≥ 1 + M
(
δ
(

ǫ
3

) ∥∥∑n∈B−
xn

∥∥).

Now
∥∥∑n∈B+

xn

∥∥+
∥∥∑n∈B−

xn

∥∥ ≥ ‖∑n∈B xn‖ ≥ min
(

1
2 , 1

4 M
(

ǫ
6

))
. This gives

max
±

∥∥∥∥∥ ∑
n∈B±

xn

∥∥∥∥∥ ≥ min

(
1

4
,

1

8
M
(ǫ

6

))
.
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Thus, by 1-unconditionality,

max
θ=±1

∥∥∥∥∥
∞

∑
n=1

(xn + θyn)

∥∥∥∥∥ ≥ max
θ=±1

∥∥∥∥∥
N

∑
n=1

(xn + θyn)

∥∥∥∥∥

≥ 1 + M

(
δ
(ǫ

3

)
max
±

∥∥∥∥∥ ∑
n∈B±

xn

∥∥∥∥∥

)

≥ 1 + M

(
δ
(ǫ

3

)
min

(
1

4
,

1

8
M
(ǫ

6

)))
.

For a general x ∈ SX , we can approximate x by (xn)∞
n=1 for some N. Since our

estimates for ‖x + θy‖ do not depend on N, we get the result.

Proof of Theorem 2. This proof is based on arguments of Partington [Par83, Thm. 2]
and Smith and Turett [ST80, Thm. 8]. First suppose that Lp(X) is AMUC. To show
X is UC, fix ǫ ∈ (0, 1) and let x, y ∈ SX such that ‖x − y‖ = ǫ. If ‖x + y‖ ≤ 1,
there is nothing to prove, so assume without loss of generality that ‖x + y‖ > 1.
Let rn : [0, 1] → {−1, 1} be the n-th Rademacher function, and let
fn = (x + y)χ[0,1]/2 + (x − y)rn/2 ∈ Lp(X). Observe that 1 = ‖ fn‖p, and that

fn = ‖(x + y)/2‖(x̃ + tỹn) for x̃ = (x + y)χ[0,1]/‖x + y‖, t = ‖x − y‖/‖x + y‖,

and ỹn = (x − y)rn/‖x − y‖. Observe that ǫ
2 ≤ t < ǫ and that ỹn converges

weakly to zero. Let Y ⊂ Lp(X) be a subspace of finite codimension satisfying the
AMUC property for x̃. It is well-known that we can find a sequence (wn) ⊂ Y
approximating (ỹn). That is, given ǫ′ > 0, for all sufficiently large n it holds that
‖ỹn − wn‖p < ǫ′. Hence for sufficiently large n we have

1 =

∥∥∥∥
x + y

2

∥∥∥∥ ‖x̃ + tỹn‖p ≥

∥∥∥∥
x + y

2

∥∥∥∥
(
‖x̃ + twn‖p − t‖wn − ỹn‖p

)
. (1)

Observe that ‖x̃ + tỹn‖p = ‖x̃ − tỹn‖p, which implies in particular that

∣∣‖x̃ + twn‖p − ‖x̃ − twn‖p

∣∣ ≤ 2ǫ′ǫ.

Moreover ‖wn‖ ≥ ‖ỹn‖ − ǫ′ ≥ 1
2 . Thus max

±
‖x̃ ± twn‖p ≥ 1+ δ( t

2) by the AMUC

property for Lp(X). From (1) we obtain

1 ≥

∥∥∥∥
x + y

2

∥∥∥∥
(

max
±

‖x̃ ± twn‖p − 2ǫ′ǫ − t‖ỹn − wn‖p

)

≥

∥∥∥∥
x + y

2

∥∥∥∥
(

1 + δ

(
t

2

)
− 3ǫ′ǫ

)
≥

∥∥∥∥
x + y

2

∥∥∥∥
(

1 + δ
(ǫ

4

)
− 3ǫ′ǫ

)
.

Letting ǫ′ → 0 we obtain

∥∥∥∥
x + y

2

∥∥∥∥ ≤
1

1 + δ( ǫ
4)

≤ min

{
1

2
, 1 −

1

2
δ
(ǫ

4

)}
.

For the converse, a result of Day [Day41] states that Lp(X) is UC (and hence
AMUC) whenever X is UC.
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