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Abstract

In the present article we prove direct, simultaneous and converse approx-
imation theorems by trigonometric polynomials for functions f and (ψ, β)-
derivatives of f in weighted Lorentz spaces.

1 Introduction

In the 1980’s, the concept of (ψ, β) derivative was formed for a given function
f by a given sequence (ψk) and numbers β [23, 24, 25]. For r = 1, 2, ... the
r-th derivative of a periodic function f is a particular case of the (ψ, β)-derivative
for the sequence (ψk) = (k−r) and β = r. For (ψk) =

(

k−β
)

and β > 0, we

have the Weyl fractional derivative f (β) of f [28]. When we take the sequence
(ψk) =

(

k−β ln−α k
)

and β, α ∈ R
+, we obtain the power logarithmic-fractional

derivative f (β,α) of f [17]. In [26], some relations were established between the
sequences of best approximations of continuous 2π-periodic functions f (and
also f ∈ Lp) by trigonometric polynomials of order ≤ n and the properties of
their (ψ, β)-derivatives. Thus, they extended the well known results of Stechkin
and Konyushkov [16, 22] to the case of generalized (ψ, β)-derivatives. In [20, 21],
for Lebesgue spaces Lp, some estimates were obtained for the norms and mod-
uli of smoothness of transformed Fourier series which coincides up to notation
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with the Fourier series of the (ψ, β)-derivatives. Also there are some estimates of
best approximation and modulus of smoothness in Lebesgue spaces of periodic
functions with transformed Fourier series in [13]. Approximation properties of
functions having (ψ, β)-derivatives in variable exponent Lebesgue spaces which
is a generalization of Lebesgue spaces was investigated in the papers [1, 2, 7].

Lorentz spaces were first introduced by G. G. Lorentz in [18]. Since these
spaces are the generalization of the Lebesgue spaces, many mathematicians are
interested in the problems of these spaces. Also there are many results of the
approximation theory obtained in these spaces. Especially, approximation by
trigonometric polynomials in the weighted Lorentz spaces was considered in
the papers [3, 4, 15, 29, 30]. But these papers do not have results about the
approximation properties of (ψ, β)-derivatives. In this paper, we obtain some
results about approximation by trigonometric polynomials of functions having
(ψ, β)-derivatives in weighted Lorentz spaces.

2 Auxiliary Results

We start by giving some necessary definitions.
Let T := [−π, π] . A measurable 2π-periodic function ω : T → [0, ∞] is called

a weight function if the set ω−1({0, ∞}) has the Lebesgue measure zero. Given a
weight function ω and a measurable set e we put

ω(e) =
∫

e

ω(x)dx. (2.1)

We define the decreasing rearrangement f ∗ω(t) of f : T → R with respect to
the Borel measure (2.1) by

f ∗ω(t) = inf {τ ≥ 0 : ω (x ∈ T : | f (x)| > τ) ≤ t} .

The weighted Lorentz space L
pq
ω (T) is defined [10, p.20], [5, p.219] as

L
pq
ω (T) =











f ∈ M(T) : ‖ f‖pq,ω =





∫

T

( f ∗∗(t))q t
q
p

dt

t





1/q

< ∞, 1 < p, q < ∞











,

where M(T) is the set of 2π periodic integrable functions on T and

f ∗∗(t) =
1

t

t
∫

0

f ∗ω(u)du.

If p = q, L
pq
ω (T) turns into the weighted Lebesgue space L

p
ω(T) [10, p.20].

The generalized modulus of smoothness of a function f ∈ L
pq
ω (T) is defined

[11] as

Ωl ( f , δ)pq,ω = sup
0<hi<δ

∥

∥

∥

∥

l
Π

i=1

(

I − Ahi

)

f

∥

∥

∥

∥

pq,ω

, δ ≥ 0, l = 1, 2, ...
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where I is the identity operator and

(

Ahi
f
)

(x) :=
1

2hi

x+hi
∫

x−hi

f (u)du.

The modulus of smoothness Ωl ( f , δ)pq,ω, δ ≥ 0, l = 1, 2, ... has the following
properties:

(i) Ωl ( f , δ)pq,ω is a non-negative, non-decreasing function of δ ≥ 0 and

sub-additive in f ,
(ii) lim

δ→0
Ωl ( f , δ)pq,ω = 0,

(iii) Ωl ( f1 + f2, ·)pq,ω ≤ Ωl ( f1, ·)pq,ω + Ωl ( f2, ·)pq,ω .

The weight functions ω used in the paper belong to the Muckenhoupt class
Ap(T) [19] which is defined by

sup
1

|I|

∫

I

ω(x)dx





1

|I|

∫

I

ω1−p′(x)dx





p−1

< ∞, p′ =
p

p − 1
, 1 < p < ∞

where the supremum is taken with respect to all the intervals I with length ≤ 2π
and |I| denotes the length of I.

The function ω(x) = |x|α can be given as an example of the weight functions,
where ω(x) ∈ Ap if and only if −n < α < n(p − 1), 1 < p < ∞. More examples
can be found in [9].

If ω ∈ Ap(T), 1 < p, s < ∞, then the Hardy-Littlewood maximal function of

f ∈ L
pq
ω (T) is bounded in L

pq
ω (T) ([8, Theorem 3]). Therefore the average Ahi

f

belongs to L
pq
ω (T). Thus Ωl( f , δ)pq,ω makes sense for ω ∈ Ap(T).

We know that the relation L
pq
ω (T) ⊂ L1 (T) holds (see [15, the proof of

Prop. 3.3]). For f ∈ L
pq
ω (T) we have the Fourier series

f (x) ∼
a0

2
+

∞

∑
k=1

(ak cos kx + bk sin kx) (2.2)

and the conjugate Fourier series

f̃ (x) ∼
∞

∑
k=1

(ak sin kx − bk cos kx).

It is said that a function f ∈ L
pq
ω (T), 1 < p, q < ∞, ω ∈ Ap, has a (ψ, β)−deri-

vative f
β
ψ if the series

∞

∑
k=1

(ψk)
−1
(

ak cos k

(

x +
βπ

2k

)

+ bk sin k

(

x +
βπ

2k

))

(2.3)

is the Fourier series of the function f
β
ψ for given a sequence (ψk) , and a number

β ∈ R.
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Definition 1. A sequence of real numbers (ψk) is said to be convex downwards if

ψk − 2ψk+1 + ψk+2 ≥ 0.

We denote by Ψ the set of convex downwards sequences (ψk) for which

lim
k→∞

ψk = 0.

Let ψ ∈ Ψ. Then we denote by η(t) = η(ψ; t) the function connected with ψ
by the equality η(t) = ψ−1 (ψ (t) /2) , t ≥ 1. The function µ(t) is defined by the
equality µ(t) = t/ (η(t)− t) . We set

Ψ0 := {ψ ∈ Ψ : 0 < µ(t) ≤ K, t ≥ 1 } ,

where K is a certain positive constant independent of the quantities which are
parameters in the case under investigation. These classes were intensively
studied in [25, 26].

By En( f )L
pq
ω

we denote the best approximation of f ∈ L
pq
ω (T) by trigonometric

polynomials of degree ≤ n, i.e.,

En( f )L
pq
ω
= inf

Tn∈Tn

‖ f − Tn‖L
pq
ω

,

where Tn is the class of trigonometric polynomials of degree not greater than n.
Now we give the multiplier theorem for the weighted Lorentz spaces.

Lemma 1. Let λ0, λ1, ... be a sequence of real numbers such that

|λl | ≤ M,
2l−1

∑
ν=2l−1

|λν − λν+1| ≤ M

for all l ∈ N. If 1 < p, q < ∞, ω ∈ Ap and f ∈ L
pq
ω (T) with the Fourier series

∞

∑
ν=0

(aν cos νx + bν sin νx) ,

then there is a function h ∈ L
pq
ω (T) such that the series

∞

∑
ν=0

λν (aν cos νx + bν sin νx)

is Fourier series for h and
‖h‖pq,ω ≤ C ‖ f‖pq,ω (2.4)

where C does not depend on f .

Proof. We define a linear operator

T f (x) :=
∞

∑
ν=0

λν (aν cos νx + bν sin νx)

for f ∈ L
pq
ω (T) which is bounded (in particular is of weak type (p, p)) in Lp (T, ω)

for every p > 1 by [6, Th. 4.4]. Therefore the hypothesis of the interpolation
theorem for Lorentz spaces [5, Th. 4.13] fulfills. Applying this theorem we get
the desired result (2.4).



Generalized derivatives and approximation in weighted Lorentz spaces 357

We prove a generalized Bernstein inequality in L
pq
ω (T) .

Lemma 2. Let 1 < p, q < ∞, ω ∈ Ap, f ∈ L
pq
ω (T) and

sup
q

2q+1

∑
k=2q

∣

∣

∣(ψk+1 (n))
−1 − (ψk (n))

−1
∣

∣

∣
≤ C (ψn)

−1 ,

where

(ψk (n))
−1 =







(ψk)
−1 , 1 ≤ k ≤ n,

0, k > n

.

Then for Tn ∈ Tn
∥

∥

∥(Tn)
β
ψ

∥

∥

∥

L
pq
ω

≤ c (ψn)
−1 ‖Tn‖L

pq
ω

,

where the constant c is independent of n.

Proof. We have

(Tn)
β
ψ =

n

∑
k=1

(ψk)
−1
(

ak cos k

(

x +
βπ

2k

)

+ bk sin k

(

x +
βπ

2k

))

=
n

∑
k=1

(ψk)
−1 Bk

(

Tn, x +
βπ

2k

)

=
n

∑
k=1

(ψk)
−1
(

cos
βπ

2
Bk (Tn, x)− sin

βπ

2
Bk

(

T̃n, x
)

)

.

If we define the multipliers

µk =







(ψk)
−1 cos

βπ
2 , 1 ≤ k ≤ n,

0, k > n, k = 0

µ̃k =







(ψk)
−1 sin

βπ
2 , 1 ≤ k ≤ n,

0, k > n, k = 0,

and the operators

(BTn) (x) =
n

∑
k=1

(ψk)
−1 cos

βπ

2
Bk (Tn, x) ,

(

B̃T̃n

)

(x) =
n

∑
k=1

(ψk)
−1 sin

βπ

2
Bk

(

T̃n, x
)

,

then we have
(Tn)

β
ψ (·) = (BTn) (·)−

(

B̃T̃n

)

(·) .

Using the hypothesis we get

sup
k

|µk| ≤ (ψn)
−1 , sup

k

|µ̃k| ≤ (ψn)
−1 ,
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sup
q

2q+1

∑
k=2q

|µk+1 − µk| ≤ C (ψn)
−1 ,

sup
q

2q+1

∑
k=2q

|µ̃k+1 − µ̃k| ≤ C (ψn)
−1 .

If we apply the multiplier theorem for the weighted Lorentz spaces we get

∥

∥

∥(Tn)
β
ψ

∥

∥

∥

L
pq
ω

=
∥

∥(BTn)−
(

B̃T̃n

)∥

∥

L
pq
ω
≤ ‖BTn‖L

pq
ω
+
∥

∥B̃T̃n

∥

∥

L
pq
ω

≤ C (ψn)
−1





∥

∥

∥

∥

∥

n

∑
k=1

Bk (Tn, x)

∥

∥

∥

∥

∥

L
pq
ω

+

∥

∥

∥

∥

∥

n

∑
k=1

Bk

(

T̃n, x
)

∥

∥

∥

∥

∥

L
pq
ω



 .

The boundedness of the conjugate operator [15] implies the required inequality

∥

∥

∥(Tn)
β
ψ

∥

∥

∥

L
pq
ω

≤ C (ψn)
−1

∥

∥

∥

∥

∥

n

∑
k=1

Bk (Tn, x)

∥

∥

∥

∥

∥

L
pq
ω

= C (ψn)
−1 ‖Tn‖L

pq
ω

.

Remark 1. In this Lemma, one can assume that the parameter β equals zero because of
the boundedness of the conjugate operator.

Remark 2. The condition on (ψn)
−1 is similar to so-called general monotonicity, see

[27].

3 Main Results

Theorem 1. Let 1 < p, q < ∞, ω ∈ Ap(T), and f , f
β
ψ ∈ L

pq
ω (T) . If (ψk) is an

arbitrary sequence such that for every k ∈ N, ψk ≥ 0, ψk+1 ≤ ψk and (ψk) → 0 as
k → ∞, then for n = 0, 1, 2, ... the inequality

‖ f − Sn( f )‖L
pq
w
≤ cψn+1

∥

∥

∥
f

β
ψ − Sn

(

·, f
β
ψ

)∥

∥

∥

L
pq
w

, n ∈ N

holds with a constant c > 0 independent of n, where Sn( f ) denotes the n−th partial sum
of the Fourier series (2.2) of f .

Corollary 1. Under the conditions of Theorem 1, there is a constant c > 0 independent
of n such that the inequality

En ( f )L
pq
ω
≤ cψn+1En

(

f
β
ψ

)

L
pq
ω

holds.

Using corollary 1 and Theorem 2 of [3] we get the following Jackson type
direct Theorem.
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Theorem 2. Let 1 < p, q < ∞, ω ∈ Ap, and f , f
ψ
α ∈ L

pq
ω (T). If (ψk) is an arbitrary

sequence such that for every k ∈ N, ψk ≥ 0, ψk+1 ≤ ψk and (ψk) → 0 as k → ∞, then
for every n = 1, 2, 3, . . . there is a constant c > 0 independent of n such that

En ( f )L
pq
ω
≤ cψn+1Ωr

(

f
β
ψ ,

1

n

)

L
pq
ω

.

Theorem 3. Let 1 < p, q < ∞, ω ∈ Ap, f ∈ L
pq
ω (T) , ψ ∈ Ψ0. Assume that

∞

∑
k=1

(kψk)
−1 Ek( f )L

pq
ω
< ∞ ,

then f
β
ψ ∈ L

pq
ω (T) and for n = 0, 1, 2, ... the estimate

En( f
β
ψ)L

pq
ω
≤ c

{

(ψn)
−1 En( f )L

pq
ω
+

∞

∑
k=n+1

(kψk)
−1 Ek( f )L

pq
ω

}

holds with a constant c > 0 independent of n and f .

Corollary 2. Under the conditions of Theorem 3 if r ∈ N and

∞

∑
ν=1

(νψ (v))−1 Eν ( f )L
pq
ω
< ∞,

there are the constants c1, c2 > 0 independent of n and f such that the inequality

Ωr

(

f
β
ψ ,

1

n

)

L
pq
ω

≤
c1

n2r

n

∑
ν=0

ν2r−1 (ψν)
−1 Eν ( f )L

pq
ω
+ c2

∞

∑
ν=n+1

(νψν)
−1 Eν ( f )L

pq
ω

holds.

Theorem 4. Let 1 < p, q < ∞, ω ∈ Ap, f , f
ψ
α ∈ L

pq
ω (T) , β ∈ [0, ∞) and ψ ∈ Ψ0.

Assume that (ψk) is an arbitrary non-increasing sequence of nonnegative numbers that
(ψk) → 0 as k → ∞. Then there is a T ∈ Tn, n = 1, 2, 3, . . . and a constant C > 0
independent of n and f such that

∥

∥

∥
f

ψ
β − T

ψ
β

∥

∥

∥

L
pq
ω

≤ CEn

(

f
ψ
β

)

L
pq
ω

.

Particularly, in the case ψk = k−β ln−α k, k = 1, 2, ..., β, α ∈ R
+, we get the

following new results for the power logarithmic-fractional derivatives f (β,α) of f .

Theorem 5. Let 1 < p, q < ∞, ω ∈ Ap(T), α, β ∈ R and f , f (β,α) ∈ L
pq
ω (T) .Then

for every n = 1, 2, 3, . . . there is a constant c > 0 independent of n such that the estimate

‖ f − Sn( f )‖L
pq
w
≤

c

nβ lnα (n + 1)

∥

∥

∥
f (β,α) − Sn

(

·, f (β,α)
)∥

∥

∥

L
pq
w

, n ∈ N

holds.



360 R. Akgün – Y. E. Yildirir

Corollary 3. Under the conditions of Theorem 5 we have the inequality

En ( f )L
pq
ω
≤

c

nβ lnα (n + 1)
En

(

f (β,α)
)

L
pq
ω

with a constant c > 0 independent of n.

Theorem 6. Let 1 < p, q < ∞, ω ∈ Ap, α, β ∈ R and f , f (β,α) ∈ L
pq
ω (T) . Then for

every n = 1, 2, 3, . . . and r ∈ N, there is a constant c > 0 independent of n such that

En ( f )L
pq
ω
≤

c

nβ lnα (n + 1)
Ωr

(

f (β,α),
1

n

)

L
pq
ω

.

Theorem 7. Let 1 < p, q < ∞, ω ∈ Ap, f ∈ L
pq
ω (T) , β ∈ R and

∞

∑
ν=1

νβ−1 lnα νEν ( f )L
pq
ω
< ∞.

Then f (β,α) ∈ L
pq
ω (T) and we have

En

(

f (β,α)
)

L
pq
ω

≤ c

(

nβ lnα nEn ( f )L
pq
ω
+

∞

∑
ν=n+1

νβ−1 lnα νEν ( f )L
pq
ω

)

,

where the constant c > 0 independent of n and f .

Corollary 4. Under the conditions of Theorem 7 if r ∈ N and

∞

∑
ν=1

νβ−1 lnα νEν ( f )L
pq
ω
< ∞,

there are the constants c1, c2 > 0 independent of n and f such that

Ωr

(

f (β,α),
1

n

)

L
pq
ω

≤
c1

nr

n

∑
ν=1

νr+β−1 lnα νEν ( f )L
pq
ω
+ c2

∞

∑
ν=n+1

νβ−1 lnα νEν ( f )L
pq
ω

.

Theorem 8. Let 1 < p, q < ∞, ω ∈ Ap, f , f
ψ
α ∈ L

pq
ω (T) and β ∈ [0, ∞). Then there

is a T ∈ Tn, n = 1, 2, 3, . . . and a constant c > 0 independent of n and f such that
∥

∥

∥
f (β,α) − T(β,α)

∥

∥

∥

L
pq
ω

≤ cEn

(

f (β,α)
)

L
pq
ω

.

Theorem 7 and Corollary 4 were proved in Lp (ω ≡ 1, constant p ∈ (1, ∞)) in
[21].

Proof of Theorem 1. Let

Ak ( f , x) := ak ( f ) cos kx + bk ( f ) sin kx,

where ak ( f ) , bk ( f ), k = 1, 2, ... are Fourier coefficients of f . We know that the
relation L

pq
ω (T) ⊂ L1 (T) holds [15]. Let Sn( f ) be the n.th partial sum of Fourier

series of f . The inequalities

‖Sn( f )‖L
pq
w
. ‖ f‖L

pq
w

,
∥

∥ f̃
∥

∥

L
pq
w
. ‖ f‖L

pq
w

, (3.1)
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hold (see [14, Theorem 6.6.2], [15]). By [25, p. 120] we have

f (x)− Sn (x, f ) =
∞

∑
k=n+1

ψk

π

∫

T

(

f
β
ψ (t)− Sn

(

t, f
β
ψ

))

cos

(

k (x − t)−
βπ

2

)

dt.

Then

f (·)− Sn (·, f ) = cos
βπ

2

∞

∑
k=n+1

ψk Ak

(

f
β
ψ − Sn

(

f
β
ψ

)

, ·
)

+

sin
βπ

2

∞

∑
k=n+1

ψk Ak

(

f̃
β
ψ − Sn

(

f̃
β
ψ

)

, ·
)

.

By (3.1) and the equalities

∞

∑
k=n+1

ψkAk

(

f
β
ψ − Sn

(

f
β
ψ

)

, ·
)

=
∞

∑
k=n+1

(ψk − ψk+1) Sk

(

·, f
β
ψ − Sn

(

f
β
ψ

))

− ψn+1Sn

(

·, f
β
ψ − Sn

(

f
β
ψ

))

,

∞

∑
k=n+1

ψk Ak

(

f̃
β
ψ − Sn

(

f̃
β
ψ

)

, ·
)

=
∞

∑
k=n+1

(ψk − ψk+1) Sk

(

·, f̃
β
ψ − Sn

(

f̃
β
ψ

))

− ψn+1Sn

(

·, f̃
β
ψ − Sn

(

f̃
β
ψ

))

we obtain

‖ f (·)− Sn (·, f )‖L
pq
ω

≤
∞

∑
k=n+1

(ψk − ψk+1)
∥

∥

∥
Sk

(

·, f
β
ψ − Sn

(

f
β
ψ

))∥

∥

∥
+ ψn+1

∥

∥

∥
Sn

(

·, f
β
ψ − Sn

(

f
β
ψ

))∥

∥

∥

+
∞

∑
k=n+1

(ψk − ψk+1)
∥

∥

∥
Sk

(

·, f̃
β
ψ − Sn

(

f̃
β
ψ

))∥

∥

∥
+ ψn+1

∥

∥

∥
Sn

(

·, f̃
β
ψ − Sn

(

f̃
β
ψ

))∥

∥

∥

�
∞

∑
k=n+1

(ψk − ψk+1)
∥

∥

∥
f

β
ψ − Sn

(

f
β
ψ

)∥

∥

∥
+ ψn+1

∥

∥

∥
f

β
ψ − Sn

(

f
β
ψ

)∥

∥

∥
+

+
∞

∑
k=n+1

(ψk − ψk+1)
∥

∥

∥
f̃

β
ψ − Sn

(

f̃
β
ψ

)∥

∥

∥
+ ψn+1

∥

∥

∥
f̃

β
ψ − Sn

(

f̃
β
ψ

)∥

∥

∥

�
∞

∑
k=n+1

((ψk − ψk+1) + ψn+1)
(∥

∥

∥
f

β
ψ − Sn

(

f
β
ψ

)∥

∥

∥
+
∥

∥

∥
f̃

β
ψ − Sn

(

f̃
β
ψ

)∥

∥

∥

)

� ψn+1

∥

∥

∥
f

β
ψ − Sn

(

f
β
ψ

)∥

∥

∥
.

Theorem 1 is proved.
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Proof of Theorem 3. Let Tn be the best approximating polynomial for f ∈ L
pq
ω .

We set n0 = n, n1 := [η (n)] + 1, . . . , nk := [η (nk−1)] + 1, . . ., here [η (n)] denotes
the integer part of the nonnegative real number η (n) . In this case the series

Tn0 (·) +
∞

∑
k=1

(

Tnk
(·)− Tnk−1

(·)
)

converges to f in norm in L
pq
ω . We consider the series

(Tn0 (·))
β
ψ +

∞

∑
k=1

(

Tnk
(·)− Tnk−1

(·)
)β

ψ
. (3.2)

Applying generalized Bernstein inequality for the difference uk (·) := Tnk
(·) −

Tnk−1
(·) we get

∥

∥

∥(uk)
β
ψ

∥

∥

∥

L
pq
ω

≤ cEnk−1+1 ( f )L
pq
ω
(ψ (nk))

−1 .

Hence

∞

∑
k=1

∥

∥

∥(uk)
β
ψ

∥

∥

∥

L
pq
ω

≤ c

(

En+1 ( f )L
pq
ω
(ψ (n))−1 +

∞

∑
k=1

Enk+1 ( f )L
pq
ω
(ψ (nk))

−1

)

.

Since ψ ∈ Ψ0, we have ψ (τ) ≥ ψ (η (t)) = ψ (τ) /2 for any τ ∈ [t, η (t)] ,
τ ≥ η (1) . Without loss of generality one can assume η (t) − t > 1. In this case
we get

Enk+1 ( f )L
pq
ω

ψ (nk)
≤

nk−1

∑
v=nk−1

Ev+1 ( f )L
pq
ω

vψ (v)
.

Therefore

∞

∑
k=1

∥

∥

∥(uk)
β
ψ

∥

∥

∥

L
pq
ω

≤ c

(

En+1 ( f )L
pq
ω
(ψ (n))−1 +

∞

∑
v=n+1

Ev ( f )L
pq
ω
(vψ (v))−1

)

.

Right hand side of last inequality converges and hence the series (3.2) is converges
in norm to some function g (·) from L

pq
ω . It is easily seen that the Fourier series of

g is of the form (2.3). This means that the function f has a (ψ, β)-derivative f
β
ψ of

class L
pq
ω and

f
β
ψ = (Tn)

β
ψ +

∞

∑
k=1

(uk)
β
ψ (3.3)

holds in norm in L
p(·)
ω . Therefore from (3.3)

En

(

f
β
ψ

)

L
pq
ω

≤ c

(

(ψ (n))−1 En ( f )L
pq
ω
+

∞

∑
ν=n+1

(νψ (v))−1 Eν ( f )L
pq
ω

)

.
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Proof of Corollary 2. We note that the sharp inverse inequality to the Jackson-
Stechkin type inequality was proved in [15, Th. 1]. In the sequel we use a weak
version of inverse estimate: Let 1 < p, q < ∞ and let ω ∈ Ap(T). Then there exists
a positive constant c such that

Ωl( f , δ)L
pq
ω
≤

c

n2l

n

∑
k=1

k2l−1Ek−1( f )L
pq
ω

for an arbitrary f ∈ L
pq
ω (T) and every natural n [15, Prop. 4.1]. Using Theorem 3 we

have

Ωr

(

f
β
ψ ,

1

n

)

L
pq
ω

≤
c

n2r

n

∑
ν=1

ν2r−1Eν

(

f
β
ψ

)

L
pq
ω

≤
c

n2r

{

n

∑
ν=1

ν2r−1 (ψ (v))−1 Ev ( f )L
pq
ω
+

n

∑
ν=1

ν2r−1
∞

∑
m=v+1

(mψ (m))−1 Em ( f )L
pq
ω

}

≤
c

n2r

n

∑
ν=0

ν2r−1 (ψ (v))−1 Eν ( f )L
pq
ω
+ C

∞

∑
ν=n+1

(νψ (v))−1 Eν ( f )L
pq
ω

.

Proof of Theorem 4. We define Wn( f ) := Wn(·, f ) := 1
n+1

2n

∑
ν=n

Sν(·, f ) for

n = 0, 1, 2, . . .. Since

Wn(·, f
β
ψ ) = (Wn(·, f ))

β
ψ

we obtain that
∥

∥

∥
f

β
ψ(·)− (Sn(·, f ))

β
ψ

∥

∥

∥

L
pq
ω

≤
∥

∥

∥
f

β
ψ(·)− Wn(·, f

β
ψ )
∥

∥

∥

L
pq
ω

+
∥

∥

∥(Sn(·, Wn( f )))
β
ψ − (Sn(·, f ))

β
ψ

∥

∥

∥

L
pq
ω

+
∥

∥

∥(Wn(·, f ))
β
ψ − (Sn(·, Wn( f )))

β
ψ

∥

∥

∥

L
pq
ω

= I1 + I2 + I3.

In this case, the boundedness of the operator Sn in L
pq
ω implies the boundedness

of operator Wn in L
pq
ω and we get

I1 ≤
∥

∥

∥
f

β
ψ(·)− Sn(·, f

β
ψ)
∥

∥

∥

L
pq
ω

+
∥

∥

∥
Sn(·, f

β
ψ )− Wn(·, f

β
ψ )
∥

∥

∥

L
pq
ω

≤ cEn

(

f
β
ψ

)

L
pq
ω

+
∥

∥

∥
Wn(·, Sn( f

β
ψ )− f

β
ψ)
∥

∥

∥

L
pq
ω

≤ cEn

(

f
β
ψ

)

L
pq
ω

.

Using Lemma 2 we obtain

I2 ≤ c (ψ (n))−1 ‖Sn(·, Wn( f )) − Sn(·, f )‖L
pq
ω

and

I3 ≤ c (ψ (n))−1 ‖Wn(·, f )− Sn(·, Wn( f ))‖L
pq
ω
≤ c (ψ (n))−1 En (Wn( f ))L

pq
ω

.
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Now we have

‖Sn(·, Wn( f ))− Sn(·, f )‖L
pq
ω

≤ ‖Sn(·, Wn( f ))− Wn(·, f )‖L
pq
ω
+ ‖Wn(·, f )− f (·)‖L

pq
ω
+ ‖ f (·)− Sn(·, f )‖L

pq
ω

≤ cEn (Wn( f ))L
pq
ω
+ cEn ( f )L

pq
ω
+ cEn ( f )L

pq
ω

.

Since
En (Wn( f ))L

pq
ω
≤ cEn ( f )L

pq
ω

we obtain
∥

∥

∥
f

β
ψ(·)− (Sn(·, f ))

β
ψ

∥

∥

∥

L
pq
ω

≤ cEn

(

f
β
ψ

)

L
pq
ω

+ c (ψ (n))−1 En (Wn( f ))L
pq
ω
+ cEn ( f )L

pq
ω

≤ cEn

(

f
β
ψ

)

L
pq
ω

+ c (ψ (n))−1 En ( f )L
pq
ω

.

Since by Theorem 1

En ( f )L
pq
ω
≤ cψ (n + 1) En

(

f
β
ψ

)

L
pq
ω

we get
∥

∥

∥
f

β
ψ(·)− (Sn(·, f ))

β
ψ

∥

∥

∥

L
pq
ω

≤ cEn

(

f
β
ψ

)

L
pq
ω

and the proof is completed.
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