Weighted composition operators on algebras of differentiable functions

S. Amiri A. Golbaharan H. Mahyar

Abstract

Let X be a perfect compact plane set, $n \in \mathbb{N}$ and $D^n(X)$ be the algebra of complex-valued functions on X with continuous n-th derivative. In this paper we study weighted composition operators on algebras $D^n(X)$. We give a necessary and sufficient condition for these operators to be compact. As a consequence, we characterize power compact composition operators on these algebras. Then we determine the spectra of Riesz weighted composition operators on these algebras.

1 Introduction

A complex-valued function f defined on a perfect plane set X is called differentiable on X if at each point $z_0 \in X$ the limit

$$f'(z_0) = \lim_{\substack{z \to z_0 \ z \in X}} \frac{f(z) - f(z_0)}{z - z_0},$$

exists. We denote the n-th derivative of f by $f^{(n)}$ when it exists. The algebra of complex-valued functions f on a perfect compact plane set X with continuous n-th derivative is denoted by $D^n(X)$. This algebra with the norm

$$||f||_n = \sum_{r=0}^n \frac{||f^{(r)}||_X}{r!}$$
 $(f \in D^n(X)),$

Received by the editors in January 2016 - In revised form in June 2016.

Communicated by F. Bastin.

2010 Mathematics Subject Classification: 46J15, 47B38, 47B06.

Key words and phrases : Continuously differentiable function algebras, weighted composition operators, compact and Riesz operators, spectra.

is a normed function algebra on X which is not necessarily complete, where

$$||f||_X = \sup_{x \in X} |f(x)|.$$

For example, Bland and Feinstein showed that $D^1(X)$ is incomplete whenever X has infinitely many components [4, Theorem 2.3]. By standard methods one can show that if $D^1(X)$ is complete, then $D^n(X)$ is complete for each $n \in \mathbb{N}$, see [4, 15]. To provide a sufficient condition for the completeness of $D^1(X)$, let us recall the definition of pointwise regularity and uniform regularity for compact plane sets.

Definition 1.1. Let X be a rectifiably connected compact plane set and let $\delta(z, w)$ be the geodesic metric on X, the infimum of the lengths of the rectifiable path from z to w in X.

- (i) X is called pointwise regular if for each $z_0 \in X$ there exists a constant c_{z_0} such that for all $z \in X$, $\delta(z, z_0) \le c_{z_0}|z z_0|$.
- (ii) X is called uniformly regular if there exists a constant c such that for all $z, w \in X$, $\delta(z, w) \le c|z w|$.

Dales and Davie [8, Theorem 1.6] showed that $D^1(X)$ is complete whenever X is a finite union of uniformly regular sets. Indeed, they proved that for each z_0 in such set X, there exists a constant c_{z_0} such that for all $f \in D^1(X)$ and each $z \in X$,

$$|f(z) - f(z_0)| \le c_{z_0}|z - z_0|(||f||_X + ||f'||_X), \tag{1.1}$$

and using this inequality, they showed that $D^1(X)$ is complete. Later in [12], it was shown that the condition (1.1) is still valid when X is a finite union of pointwise regular sets, in fact, it is a necessary and sufficient condition for the completeness of $D^1(X)$ (see also [15]).

Let C(X) be the algebra of all continuous complex-valued functions on a compact Hausdorff space X. A unital subalgebra A of C(X) that separates the points of X is a *function algebra* on X. A function algebra A on X is said to be *natural* if every nonzero complex homomorphism (character) on A is an evaluation homomorphism at some point of X [7, Definition 4.1.3]. As it was proved in [8], the algebra $D^n(X)$ is natural when X is uniformly regular. However, as mentioned in [13], applying the same method used in it, one can show that the algebra $D^n(X)$ is natural for every perfect compact plane set X (see also [9, Theorem 4.1]).

Let A be a linear space of functions on a set X. Let u be a complex-valued function on X and φ be a self-map of X. A linear operator $T:=uC_{\varphi}$ defined by $uC_{\varphi}(f)=u\cdot (f\circ\varphi)$ is a weighted composition operator on A if $u\cdot (f\circ\varphi)\in A$ whenever $f\in A$. In the case where u=1, the operator uC_{φ} reduces to the composition operator C_{φ} . In [2], Behrouzi obtained some results on compactness of composition operators between algebras $D^n(X)$. In this paper, we study weighted composition operators acting on algebras $D^n(X)$ when perfect compact plane sets X satisfy the condition (1.1). Let $coz(u)=\{z\in X:u(z)\neq 0\}$. In Section 2, for $u,\varphi\in D^n(X)$ we show that if either φ is constant or $\varphi(coz(u))\subseteq int X$,

then uC_{φ} is compact on $D^n(X)$. We also show that these conditions are necessary for certain compact plane sets X. Using these results, we give a necessary and sufficient condition for a composition operator (endomorphism) on $D^n(X)$ to be power compact.

Let X be a compact plane set and A(X) be the uniform algebra of all continuous functions on X which are analytic on intX. Suppose A is a unital Banach subalgebra of A(X), containing the coordinate function z. In Section 3, we study the spectrum of a weighted composition operator on such algebras A. In [3], the spectrum of a compact composition operator C_{φ} on A was determined as

$$\sigma_A(C_{\varphi}) = \{ \varphi'(z_0)^k : k \text{ is a positive integer} \} \cup \{0, 1\},$$

when $\varphi(X) \subseteq \text{int} X$ and z_0 is a fixed point of φ . We show that the spectrum of a Riesz weighted composition operator uC_{φ} on A is

$$\sigma_A(uC_{\varphi}) = \{u(z_0)\varphi'(z_0)^k : k \text{ is a positive integer}\} \cup \{0, u(z_0)\},$$

when φ has a fixed point $z_0 \in \operatorname{int} X$. Then we conclude this result for the Banach algebra $D^n(X)$. In the case that φ has all its fixed points on boundary, we show that $\sigma(uC_{\varphi}) = \{0\}$ for a compact operator uC_{φ} on $D^n(\overline{\mathbb{D}})$ where \mathbb{D} is the open unit disc in the complex plane.

2 Compactness

It is known that if $u, \varphi \in D^n(X)$, then uC_{φ} is a weighted composition operator on $D^n(X)$. Conversely, if uC_{φ} is a weighted composition operator on $D^n(X)$, then $u \in D^n(X)$ although φ does not necessarily belong to $D^n(X)$, even it may not be continuous on X. Here we give a necessary and sufficient condition on u and φ for uC_{φ} to be a weighted composition operator on $D^1(X)$.

Theorem 2.1. Let X be a perfect compact plane set. Let u be a complex-valued function on X and φ be a self-map of X not necessarily continuous. Then uC_{φ} is a weighted composition operator on $D^1(X)$ if and only if u and $u\varphi$ belong to $D^1(X)$.

Proof. Let uC_{φ} be a weighted composition operator on $D^1(X)$. Then $u, u\varphi \in D^1(X)$, since this algebra contains constant functions and the coordinate function z.

Conversely, let u and $u\varphi$ belong to $D^1(X)$. Then $\varphi = \frac{u\varphi}{u}$ is differentiable on $\cos(u)$ and $\varphi' = \frac{(u\varphi)' - u'\varphi}{u}$. If $z \in X$ with u(z) = 0 and $u'(z) \neq 0$, then u is nonzero on a punctured neighborhood of z and

$$\lim_{w\to z}\varphi(w)=\lim_{w\to z}\frac{\frac{u(w)\varphi(w)-u(z)\varphi(z)}{w-z}}{\frac{u(w)-u(z)}{w-z}}=\frac{(u\varphi)'(z)}{u'(z)}.$$

Hence, in this case, $\varphi_1(z) := \lim_{w\to z} \varphi(w)$ exists and belongs to X, so we can write $(u\varphi)'(z) = u'(z)\varphi_1(z)$. When u(z) = u'(z) = 0, we have $(u\varphi)'(z) = 0$, since φ is bounded. These relations along with the continuity of $(u\varphi)'$ imply that

$$\lim_{\substack{w \to z \\ w \in \cos(u)}} (u\varphi')(w) = 0, \tag{2.1}$$

whenever u(z) = 0 and z is in the closure of coz(u). Let $f \in D^1(X)$. Then

$$(u \cdot (f \circ \varphi))'(z) = \lim_{w \to z} \frac{u(w)f(\varphi(w))}{w - z} = \lim_{w \to z} \frac{u(w) - u(z)}{w - z} f(\varphi(w))$$
$$= \begin{cases} u'(z)f(\varphi_1(z)) & u'(z) \neq 0 \\ 0 & u'(z) = 0, \end{cases}$$

whenever u(z) = 0. Therefore, for each $z \in X$ we have

$$(u \cdot (f \circ \varphi))'(z) = \begin{cases} u'(z)f(\varphi(z)) + u(z)\varphi'(z)f'(\varphi(z)) & u(z) \neq 0 \\ u'(z)f(\varphi_1(z)) & u(z) = 0, u'(z) \neq 0 \\ 0 & u(z) = 0, u'(z) = 0. \end{cases}$$

We show that $(u \cdot (f \circ \varphi))'$ is continuous on X. Obviously, it is continuous on $\cos(u)$. Now let $z \in X$ with u(z) = 0 and (z_n) be a sequence in X such that $z_n \neq z$ and $\lim z_n = z$. Without loss of generality we can assume that either $(z_n) \subseteq \cos(u)$ or $u(z_n) = 0$ for all $n \in \mathbb{N}$. In the case that $(z_n) \subseteq \cos(u)$, by using (2.1), $\lim_n u(z_n) \varphi'(z_n) = 0$, hence

$$\lim_{n} (u \cdot (f \circ \varphi))'(z_{n}) = \lim_{n} [u'(z_{n})f(\varphi(z_{n})) + u(z_{n})\varphi'(z_{n})f'(\varphi(z_{n}))]$$

$$= \begin{cases} u'(z)f(\varphi_{1}(z)) & u'(z) \neq 0 \\ 0 & u'(z) = 0. \end{cases}$$

In the second case, $u(z_n)=0$ for all $n\in\mathbb{N}$, by the definition of derivative, u'(z)=0 and hence $\lim_n(u\cdot(f\circ\varphi))'(z_n)=0$. This argument shows that $(u\cdot(f\circ\varphi))'$ is continuous and the proof is complete.

To give a necessary and sufficient condition for compactness of uC_{φ} on $D^{n}(X)$ we need the following notations.

Let φ and f belong to $D^n(X)$ with $\varphi: X \to X$. The following equality for higher derivatives of composite functions is known as Faà di Bruno's formula [1, page 823],

$$(f \circ \varphi)^{(n)} = \sum_{j=1}^{n} (f^{(j)} \circ \varphi) \cdot \psi_{j,n},$$

where

$$\psi_{j,n} = \sum_{a} \left(\frac{n!}{a_1! a_2! \cdots a_n!} \prod_{i=1}^{n} \left(\frac{\varphi^{(i)}}{i!} \right)^{a_i} \right),$$

the sum \sum_a is taken over all non-negative integers a_1, a_2, \ldots, a_n satisfying $a_1 + a_2 + \cdots + a_n = j$ and $a_1 + 2a_2 + \cdots + na_n = n$. For example, $\psi_{1,n} = \varphi^{(n)}$ and $\psi_{n,n} = (\varphi')^n$. We also need the Leibniz's formula of products of functions. For $f, g \in D^n(X)$ we have

$$(fg)^{(n)} = \sum_{i=0}^{n} {n \choose i} f^{(i)} \cdot g^{(n-i)}.$$

In the case that *X* satisfies the condition (1.1), for each $z_0 \in X$ we define

$$p_{z_0}(f) := \sup_{\substack{z \in X \\ z \neq z_0}} \frac{|f(z) - f(z_0)|}{|z - z_0|} \qquad (f \in D^1(X)).$$

Then for each $z_0 \in X$ there exists a constant c_{z_0} such that

$$p_{z_0}(f) \le c_{z_0}(\|f\|_X + \|f'\|_X) \qquad (f \in D^1(X)).$$
 (2.2)

In general, for a constant self-map φ of X, the weighted composition operator uC_{φ} on a normed function algebra A on X is a rank one operator, so it is compact. We next give a sufficient condition for compactness of uC_{φ} on $D^n(X)$ for those φ which are not constant self-maps of X.

Theorem 2.2. Let X be a perfect compact plane set satisfying the condition (1.1). Let $u, \varphi \in D^n(X)$. If $\varphi(\cos(u)) \subseteq \operatorname{int} X$, then the weighted composition operator uC_{φ} is compact on $D^n(X)$.

Proof. Let $\{f_k\}$ be a bounded sequence in $D^n(X)$ with $\|f_k\|_n = \sum_{r=0}^n \frac{\|f_k^{(r)}\|_X}{r!} \le 1$. Using the condition (1.1), the uniformly bounded sequences $\{f_k^{(r)}\}$, $r=0,\ldots,n-1$ are equicontinuous at each point of X. Then by Arzela-Ascoli Theorem, $\{f_k\}$ has a subsequence $\{f_{k_j}\}$, say it $\{f_k\}$ again, such that each $\{f_k^{(r)}\}$, $0 \le r \le n-1$ is uniformly convergent and hence is uniformly Cauchy on X. Moreover, using Leibniz's and Faà di Bruno's formulas we have

$$(uC_{\varphi}(f))^{(r)} = \sum_{j=0}^{r} {r \choose j} u^{(r-j)} (f \circ \varphi)^{(j)}$$
$$= u^{(r)} (f \circ \varphi) + \sum_{j=1}^{r} {r \choose j} u^{(r-j)} \sum_{i=1}^{j} (f^{(i)} \circ \varphi) \psi_{i,j},$$

for any $f \in D^n(X)$ and for each $0 \le r \le n$. Using this relation for the differences $f_k - f_\ell$ we get

$$\|(uC_{\varphi}(f_k - f_{\ell}))^{(r)}\|_{X} \le \|u^{(r)}\|_{X} \|f_k - f_{\ell}\|_{X}$$

$$+ \sum_{j=1}^{r} {r \choose j} \|u^{(r-j)}\|_{X} \sum_{i=1}^{j} \|f_k^{(i)} - f_{\ell}^{(i)}\|_{X} \|\psi_{i,j}\|_{X},$$

for each $0 \le r \le n-1$ and

$$\|(uC_{\varphi}(f_{k}-f_{\ell}))^{(n)}\|_{X} \leq \|u^{(n)}\|_{X}\|f_{k}-f_{\ell}\|_{X}$$

$$+ \sum_{j=1}^{n-1} {n \choose j} \|u^{(n-j)}\|_{X} \sum_{i=1}^{j} \|f_{k}^{(i)}-f_{\ell}^{(i)}\|_{X} \|\psi_{i,j}\|_{X}$$

$$+ \|u\|_{X} \sum_{i=1}^{n-1} \|f_{k}^{(i)}-f_{\ell}^{(i)}\|_{X} \|\psi_{i,n}\|_{X}$$

$$+ \|u(\varphi')^{n} ((f_{k}^{(n)}-f_{\ell}^{(n)}) \circ \varphi)\|_{X}.$$

Therefore, to show that $\{uC_{\varphi}(f_k)\}$ is a Cauchy and hence a convergent sequence in $D^n(X)$, it is enough to show that $\{u(\varphi')^n(f_k^{(n)}\circ\varphi)\}$ is uniformly Cauchy on X.

As we know, each $f_k \in D^n(X)$ is analytic in int X, thus the sequence $\{f_k^{(n)}\}$ is uniformly convergent on every compact subset of int X, [6, VII, Theorem 2.1]. Let $\varepsilon > 0$ and $K = \{z \in X : |u(z)| \ge \varepsilon\}$. Then K is a compact subset of $\cos(u)$ and $\varphi(K)$ is a compact subset of $\varphi(\cos(u)) \subseteq \text{int } X$. Hence $\{f_k^{(n)}\}$ is uniformly Cauchy on $\varphi(K)$, so $\|f_k^{(n)} - f_\ell^{(n)}\|_{\varphi(K)} < \varepsilon$, for large enough k, ℓ .

Let $z \in X$, we consider two cases. First, let $z \in K$. In this case $\varphi(z) \in \varphi(K)$ and

$$|u(z)(\varphi')^{n}(z)(f_{k}^{(n)}(\varphi(z)) - f_{\ell}^{(n)}(\varphi(z)))| \leq ||u||_{X} ||\varphi'||_{X}^{n} ||f_{k}^{(n)} - f_{\ell}^{(n)}||_{\varphi(K)} < \varepsilon ||u||_{X} ||\varphi'||_{X}^{n},$$

for large enough k, ℓ . Next, let $z \notin K$. In this case,

$$|u(z)(\varphi')^{n}(z)(f_{k}^{(n)}(\varphi(z)) - f_{\ell}^{(n)}(\varphi(z)))| \leq |u(z)| \|\varphi'\|_{X}^{n} (\|f_{k}^{(n)}\|_{X} + \|f_{\ell}^{(n)}\|_{X})$$

$$< 2n! \varepsilon \|\varphi'\|_{X}^{n}.$$

Therefore,

$$\|u(\varphi')^n(f_k^{(n)}\circ\varphi-f_\ell^{(n)}\circ\varphi)\|_X<\varepsilon\|\varphi'\|_X^n(2n!+\|u\|_X),$$

for large enough k, ℓ .

We now show that the above conditions are also necessary for compactness of weighted composition operators uC_{φ} on algebras $D^{n}(X)$ for certain compact plane sets X. For this we introduce the type of plane sets which we shall consider.

Definition 2.3. A plane set X has an *internal circular tangent* at $\zeta \in \partial X$ if there exists an open disc U such that $\zeta \in \partial U$ and $\overline{U} \setminus \{\zeta\} \subseteq \text{int} X$. A plane set X is *strongly accessible from the interior* if it has an internal circular tangent at each point of its boundary.

A compact plane set X is said to have a *peak boundary with respect to* $B \subseteq C(X)$ if for each $\zeta \in \partial X$ there exists a non-constant function $h \in B$ such that $||h||_X = h(\zeta) = 1$.

Such sets include the closed unit disc $\overline{\mathbb{D}}$ and $\overline{\Delta}(z_0,r)\setminus \bigcup_{k=1}^n \Delta(z_k,r_k)$ where closed discs $\overline{\Delta}(z_k,r_k)$ are mutually disjoint in $\Delta(z_0,r)=\{z\in\mathbb{C}:|z-z_0|< r\}$. Moreover, if X is a compact plane set such that $\mathbb{C}\setminus X$ is strongly accessible from the interior, then X has peak boundary with respect to $R_0(X)$, the algebra of rational functions with poles off X, and hence with respect to $D^n(X)$, since $R_0(X)\subseteq D^n(X)$. For this, suppose $\zeta\in\partial X$, then there exists a disc $U=\Delta(z_0,r)$ such that $\zeta\in\partial U$ and $\overline{U}\setminus\{\zeta\}\subseteq\mathbb{C}\setminus X$. The function $h(z)=\frac{r}{z-z_0}$ satisfies the definition of peak boundary, (see [3, 16]).

We shall also require the following lemma due to Julia [5, Chapter I of Part Six].

Lemma 2.4. Let $\overline{\mathbb{D}}$ be the closed unit disc in \mathbb{C} and let h be a continuously differentiable function on $\overline{\mathbb{D}}$. If $h(\zeta) = \|h\|_{\overline{\mathbb{D}}}$ for some $\zeta \in \overline{\mathbb{D}}$, then either h is constant or $h'(\zeta) \neq 0$.

Theorem 2.5. Let X be a perfect compact plane set with connected interior satisfy the condition (1.1), be strongly accessible from the interior and have a peak boundary with respect to $D^n(X)$. Let a complex function u and a self-map φ of X be in $D^n(X)$. If the weighted composition operator uC_{φ} on $D^n(X)$ is compact, then either φ is constant or $\varphi(\cos(u)) \subseteq \operatorname{int} X$.

Proof. Let uC_{φ} be compact on $D^n(X)$ and suppose $u(\zeta) \neq 0$ and $\varphi(\zeta) \in \partial X$ for some $\zeta \in X$. Then by open mapping theorem for analytic functions, $\zeta \in \partial X$. Since X has a peak boundary with respect to $D^n(X)$, there exists a non-constant function $h \in D^n(X)$ such that $h(\varphi(\zeta)) = \|h\|_X = 1$. Also, the plane set X is strongly accessible from the interior, hence there exists an open disc U such that $\zeta \in \partial U$ and $\overline{U} \setminus \{\zeta\} \subseteq \operatorname{int} X$. Thus, $(h \circ \varphi)(\zeta) = \|h \circ \varphi\|_{\overline{U}} = \|h\|_X = 1$. Define

$$f_k(z) = \frac{h^k(z)}{k(k-1)\cdots(k-n+1)} \qquad (z \in X, k \ge n).$$

It is not hard to show that $\{f_k\}$ is a bounded sequence in $D^n(X)$ and $f_k^{(r)} \to 0$ uniformly on X for each $r=0,1,2,\ldots,n-1$. Also by (2.2), $p_\zeta(f_k^{(r)}) \to 0$ and $p_{\varphi(\zeta)}(f_k^{(r)}) \to 0$ for each $r=0,1,2,\ldots,n-2$. Using Faà di Bruno's formulas, one can conclude that

$$\|(f_k \circ \varphi)^{(r)}\|_X \to 0 \quad \text{as} \quad k \to \infty \quad (r = 0, 1, 2, \dots, n - 1),$$
 (2.3)

hence by (2.2),

$$p_{\zeta}((f_k \circ \varphi)^{(r)}) \to 0 \text{ as } k \to \infty \quad (r = 0, 1, 2, \dots, n - 2).$$
 (2.4)

By compactness of uC_{φ} , there exists a subsequence of $\{f_k\}$ which is denoted by $\{f_k\}$ again, such that $\{uC_{\varphi}(f_k)\}$ converges in $D^n(X)$. Since $\|f_k\|_X \to 0$, $uC_{\varphi}(f_k) \to 0$ in $D^n(X)$. Hence, $\|(uC_{\varphi}(f_k))^{(r)}\|_X \to 0$, as $k \to \infty$ for each $r, 0 \le r \le n$. These limits along with the relation (2.2) imply that

$$p_{\zeta}((uC_{\varphi}(f_k))^{(n-1)}) = p_{\zeta}((u \cdot (f_k \circ \varphi))^{(n-1)}) \to 0, \text{ as } k \to \infty.$$
 (2.5)

Using Leibniz's formula, we have

$$p_{\zeta}(u \cdot (f_{k} \circ \varphi)^{(n-1)}) \leq p_{\zeta}((u \cdot (f_{k} \circ \varphi))^{(n-1)}) + \sum_{j=1}^{n-1} {n-1 \choose j} p_{\zeta}(u^{(j)}) \| (f_{k} \circ \varphi)^{(n-1-j)} \|_{X}$$
$$+ \sum_{j=1}^{n-1} {n-1 \choose j} \| u^{(j)} \|_{X} p_{\zeta}((f_{k} \circ \varphi)^{(n-1-j)}).$$

This inequality, along with limits (2.3), (2.4) and (2.5) gives

$$p_{\zeta}(u \cdot (f_k \circ \varphi)^{(n-1)}) \to 0 \quad \text{as} \quad k \to \infty.$$
 (2.6)

Using Faà di Bruno's formula,

$$p_{\zeta}(u(\varphi')^{n-1} \cdot (f_{k}^{(n-1)} \circ \varphi)) \leq p_{\zeta}(u \cdot (f_{k} \circ \varphi)^{(n-1)}) + \sum_{j=1}^{n-2} p_{\zeta}((f_{k}^{(j)} \circ \varphi) \cdot u\psi_{j,n-1})$$

$$\leq p_{\zeta}(u \cdot (f_{k} \circ \varphi)^{(n-1)}) + \sum_{j=1}^{n-2} \|f_{k}^{(j)} \circ \varphi\|_{X} p_{\zeta}(u\psi_{j,n-1})$$

$$+ \sum_{j=1}^{n-2} p_{\zeta}(f_{k}^{(j)} \circ \varphi) \|u\psi_{j,n-1}\|_{X}$$

$$\leq p_{\zeta}(u \cdot (f_{k} \circ \varphi)^{(n-1)}) + \sum_{j=1}^{n-2} \|f_{k}^{(j)}\|_{X} p_{\zeta}(u\psi_{j,n-1})$$

$$+ \sum_{j=1}^{n-2} p_{\varphi(\zeta)}(f_{k}^{(j)}) p_{\zeta}(\varphi) \|u\psi_{j,n-1}\|_{X}.$$

This inequality, along with the limit (2.6) and the properties of $\{f_k\}$ which mentioned after its definition implies that

$$p_{\zeta}(u(\varphi')^{n-1} \cdot (f_k^{(n-1)} \circ \varphi)) \to 0 \quad \text{as} \quad k \to \infty.$$
 (2.7)

By the definition of $f_k^{(n-1)}$,

$$\frac{1}{k-n+1} p_{\zeta}(u \cdot ((h \circ \varphi)')^{n-1} \cdot (h^{k-n+1} \circ \varphi)) \leq p_{\zeta}(u \cdot (\varphi')^{n-1} \cdot (f_{k}^{(n-1)} \circ \varphi)) + \frac{P(k)}{k(k-1) \cdot \cdot \cdot (k-n+1)} p_{\zeta}(\psi), \tag{2.8}$$

where the function ψ is a combination of u, φ , h and the derivatives of h, and P(k) is a polynomial in terms of k with degree less than n. Hence $\frac{P(k)}{k(k-1)\cdots(k-n+1)} \to 0$ as $k \to \infty$. Using this limit together with the limit (2.7) and the inequality (2.8), we obtain

$$\frac{1}{k-n+1}p_{\zeta}(u\cdot((h\circ\varphi)')^{n-1}\cdot(h^{k-n+1}\circ\varphi))\to 0 \quad \text{as} \quad k\to\infty.$$
 (2.9)

On the other hand, we have

$$\begin{split} \sup_{\substack{z \in \overline{U} \\ z \neq \zeta}} |u(z)| |(h \circ \varphi)'(z)|^{n-1} & \frac{|h^{k-n+1}(\varphi(z)) - h^{k-n+1}(\varphi(\zeta))|}{(k-n+1)|z - \zeta|} \\ & \leq \frac{1}{k-n+1} \{ p_{\zeta}(u \cdot ((h \circ \varphi)')^{n-1} \cdot (h^{k-n+1} \circ \varphi)) + p_{\zeta}(u \cdot ((h \circ \varphi)')^{n-1}) \|h\|_{X}^{k-n+1} \}. \end{split}$$

Using (2.9) and the fact that $||h||_X = 1$, one can conclude from the above inequality that

$$\sup_{\substack{z \in \overline{U} \\ z \neq \zeta}} |u(z)| |(h \circ \varphi)'(z)|^{n-1} \frac{|h^{k-n+1}(\varphi(z)) - h^{k-n+1}(\varphi(\zeta))|}{(k-n+1)|z - \zeta|} \to 0, \quad \text{as} \quad k \to \infty.$$

Let $\varepsilon > 0$. Then

$$|u(z)||(h\circ\varphi)'(z)|^{n-1}\frac{|h^{k-n+1}(\varphi(z))-h^{k-n+1}(\varphi(\zeta))|}{(k-n+1)|z-\zeta|}<\varepsilon,$$

for some positive integer k > n and for all $z \in \overline{U}$ with $z \neq \zeta$. Taking limit as $z \to \zeta$, we get $|u(\zeta)||(h \circ \varphi)'(\zeta)|^n \le \varepsilon$, for each $\varepsilon > 0$, since $h(\varphi(\zeta)) = 1$. Consequently, $|u(\zeta)||(h \circ \varphi)'(\zeta)|^n = 0$, and since $u(\zeta) \neq 0$, $(h \circ \varphi)'(\zeta) = 0$. By Julia's Lemma 2.4, $h \circ \varphi$ is constant on \overline{U} . Using the identity Theorem [6, IV, Theorem 3.7], the analytic function $h \circ \varphi$ is constant on connected set int X. The hypothesis, X is strongly accessible from the interior, implies that X has dense interior, so $h \circ \varphi$ is constant on X. But h is not constant, thus φ must be constant.

In the case u = 1, we have the following corollary for composition operators on $D^n(X)$.

Corollary 2.6. Let X be a perfect compact plane set satisfying the condition (1.1). Let a self-map φ of X be in $D^n(X)$.

- (i) If either φ is constant or $\varphi(X) \subseteq \operatorname{int} X$, Then C_{φ} is compact on $D^n(X)$.
- (ii) Let X be strongly accessible from the interior, have a peak boundary with respect to $D^n(X)$ and let intX be connected. If C_{φ} is compact on $D^n(X)$, then either φ is constant or $\varphi(X) \subseteq \text{int} X$.

Using this corollary we can get some results about quasicompactness and power compactness of C_{φ} on $D^n(X)$. First we state their definitions. If E is an infinite dimensional Banach space, we denote by $\mathcal{B}(E)$ and $\mathcal{K}(E)$ the Banach algebra of all bounded linear operators and compact linear operators on E, respectively. The essential spectral radius $r_e(T)$ of $T \in \mathcal{B}(E)$ is the spectral radius of $T + \mathcal{K}(E)$ in the Calkin algebra $\mathcal{B}(E)/\mathcal{K}(E)$, that is

$$r_e(T) = \lim_{n \to \infty} ||T^n + \mathcal{K}(E)||^{\frac{1}{n}}.$$

The operator $T \in \mathcal{B}(E)$ is called *quasicompact* if $r_e(T) < 1$ and it is called *Riesz* if $r_e(T) = 0$. Also, we say T is *power compact* if T^N is compact for some positive integer N. Clearly every power compact operator is Riesz.

It was shown in [11, Theorem 1.2 (iii)] that if φ induces a quasicompact endomorphism of a unital commutative semi-simple Banach algebra B with connected maximal ideal (character) space X, then $\bigcap \varphi_n(X) = \{x_0\}$ for some $x_0 \in X$, where φ_n denotes the n-th iterate of φ . By using this relation and the obtained condition for compactness of composition operators on algebras $D^n(X)$, we get the following results.

Theorem 2.7. Let X be a perfect compact plane set satisfying the condition (1.1). Let a self-map φ of X be in $D^n(X)$.

- (i) If $\cap \varphi_n(X) = \{z_0\}$ for some $z_0 \in \text{int} X$, then C_{φ} is power compact on $D^n(X)$.
- (ii) Let X be strongly accessible from the interior, have a peak boundary with respect to $D^n(X)$ and let intX be connected. If φ is non-constant and C_{φ} is power compact on $D^n(X)$, then $\bigcap \varphi_n(X) = \{z_0\}$ for some $z_0 \in \text{int} X$.

Proof. (i) Since $z_0 \in \text{int} X$ and $\bigcap \varphi_n(X) = \{z_0\}$, there is a positive integer N such that $\varphi_N(X) \subseteq \text{int} X$. Hence, by Corollary 2.6, $(C_{\varphi})^N = C_{\varphi_N}$ is compact and hence C_{φ} is power compact.

(ii) suppose C_{φ} is power compact, then C_{φ} is quasicompact and using [11, Theorem 1.2 (iii)], $\bigcap \varphi_n(X) = \{z_0\}$ for some $z_0 \in X$. Also, by power compactness of C_{φ} , there is a positive integer N such that $(C_{\varphi})^N = C_{\varphi_N}$ is compact. Next by connectedness of X, φ_N is non-constant. Thus by Corollary 2.6, $\varphi_N(X) \subseteq \text{int} X$. Consequently, $z_0 \in \text{int} X$.

Using the same argument as in the proof of [11, Lemma 2.1], one can show that for a connected perfect compact plane set X and a self-map φ with fixed point x_0 , if C_{φ} is a quasicompact composition operator on $D^n(X)$, then $|\varphi'(x_0)| < 1$.

It was also shown in [11, Theorem 3.2] that if $T = C_{\varphi}$ acts on $C^1[0,1]$, the Banach algebra of continuously differentiable functions on [0,1], and $\bigcap \varphi_n([0,1]) = \{x_0\}$ for some $x_0 \in [0,1]$, then $r_e(T) = |\varphi'(x_0)|$. Giving the following example we show that this is not true for $D^1(X)$, in general.

Example 2.8. Let $\varphi(z) = \frac{1-z}{2}$ for every $z \in \overline{\mathbb{D}}$. Then $z_0 = \frac{1}{3}$ is the fixed point of φ in \mathbb{D} and $|\varphi'(z_0)| = \frac{1}{2}$. On the other hand, $\varphi(-1) = 1$, so $\varphi(\overline{\mathbb{D}}) \nsubseteq \mathbb{D}$ and the composition operator C_{φ} on $D^1(X)$ is not compact. However, $|\varphi_2(z)| \leq \frac{1}{2} < 1$ for all $z \in \overline{\mathbb{D}}$. Hence, C_{φ} is power compact on $D^1(X)$ and then $r_e(C_{\varphi}) = 0$.

Also if C_{φ} is a quasicompact composition operator on $D^n(X)$, then by [11, Theorem 1.2] the induced function φ has a fixed point in X. As the following example which is similar to [17, Example 3.1], shows the fixed point of φ does not necessarily belong to intX and consequently there is a quasicompact operator on $D^n(X)$ which is not necessarily power compact.

Example 2.9. Let c>1 and $\varphi(z)=\frac{z+(c-1)}{c}$ for every $z\in\overline{\mathbb{D}}$. Then $T:=C_{\varphi}$ is a composition operator on $D^n(\overline{\mathbb{D}})$ and $\varphi_m(z)=\frac{z+(c^m-1)}{c^m}$ for each positive integer m and every $z\in\overline{\mathbb{D}}$. To show that T is a quasicompact operator on $D^n(\overline{\mathbb{D}})$, let $S(f)=f(1)\cdot 1$ for every $f\in D^n(\overline{\mathbb{D}})$, then S is a (rank one) compact operator on $D^n(\overline{\mathbb{D}})$ and for each $f\in D^n(\overline{\mathbb{D}})$ we have

$$|f(\varphi_m(z)) - f(1)| \le ||f'||_{\overline{\mathbb{D}}} |\varphi_m(z) - 1| \le \frac{2}{c^m} ||f'||_{\overline{\mathbb{D}}},$$

for every $z \in \overline{\mathbb{D}}$. Thus

$$||T^m f - Sf||_{\overline{\mathbb{D}}} \le \frac{2}{c^m} ||f'||_{\overline{\mathbb{D}}}. \tag{2.10}$$

Also,

$$(T^m f - Sf)^{(k)} = \frac{1}{c^{mk}} f^{(k)} \circ \varphi_m \qquad k = 1, \dots, n.$$

Hence

$$\|(T^m f - Sf)^{(k)}\|_{\overline{\mathbb{D}}} \le \frac{1}{c^{mk}} \|f^{(k)}\|_{\overline{\mathbb{D}}} \le \frac{1}{c^m} \|f^{(k)}\|_{\overline{\mathbb{D}}} \qquad k = 1, \dots, n.$$

This and (2.10) imply that

$$||T^{m}f - Sf||_{n} = \sum_{k=0}^{n} \frac{||(T^{m}f - Sf)^{(k)}||_{\overline{\mathbb{D}}}}{k!}$$

$$\leq \frac{2}{c^{m}} ||f'||_{\overline{\mathbb{D}}} + \sum_{k=1}^{n} \frac{||f^{(k)}||_{\overline{\mathbb{D}}}}{c^{m}k!}$$

$$\leq \frac{3}{c^{m}} ||f||_{n}.$$

Therefore, $||T^m - S|| \leq \frac{3}{c^m}$ and hence $||T^m + \mathcal{K}|| \leq \frac{3}{c^m}$ where $\mathcal{K} = \mathcal{K}(D^n(\overline{\mathbb{D}}))$. This implies that

$$r_e(T) = \lim_{m \to \infty} \|T^m + \mathcal{K}\|^{\frac{1}{m}} \le \frac{1}{c} < 1.$$

Consequently, T is a quasicompact operator on $D^n(X)$. On the other hand $\bigcap \varphi_m(\overline{\mathbb{D}}) = \{1\}$, hence by Theorem 2.7 (ii), T is not power compact.

A question which may be asked here is whether every Riesz operator on $D^n(X)$ is necessarily power compact. Feinstein and Kamowitz showed that this is no longer true by giving a Riesz operator on $C^1[0,1]$ which is not power compact [11, Corollary 3.3].

3 Spectrum

Suppose A is a Banach space of functions on a plane set X which contains constant functions and coordinate function z. If $\varphi: X \to X$ is a constant function, $\varphi(z) = z_0$ for all $z \in X$, and uC_{φ} is a weighted composition operator on A, then uC_{φ} is a rank one operator on A and $\sigma(uC_{\varphi}) = \{0, u(z_0)\}$. Thus in what follows we assume that φ is a non-constant self-map of X and U is a non-zero complex-valued function on X.

Kamowitz proved two interesting and useful lemmas [14, Lemmas 2.3 and 2.4] and by using them determined the spectrum of a compact weighted composition operator uC_{φ} on disc algebra $A(\overline{\mathbb{D}})$, when φ has a fixed point in \mathbb{D} . These lemmas still valid for general case as follows.

Lemma 3.1. Let X be a compact plane set with nonempty interior. Suppose A is a unital subalgebra of A(X) containing the coordinate function z. If u is a complex-valued function on X and φ is a self-map of X which is analytic on intX and $\varphi(z_0) = z_0$ for some $z_0 \in \text{int} X$. Then for the weighted composition operator uC_{φ} on A, we have

$$\{u(z_0)\varphi'(z_0)^k: k \text{ is a positive integer}\} \cup \{u(z_0)\} \subseteq \sigma(uC_\varphi).$$

Proof. Since $u(z_0)f - uC_{\varphi}f \neq 1$ for all $f \in A$, $u(z_0) - uC_{\varphi}$ is not surjective and so invertible. Thus $u(z_0) \in \sigma(uC_{\varphi})$.

If $u(z_0)=0$, then the same as the above argument uC_{φ} is not surjective. When $\varphi'(z_0)=0$, the operator uC_{φ} is not surjective too. Since otherwise, we must have $uC_{\varphi}f=1$ for some $f\in A$. In particular, $u(z_0)f(\varphi(z_0))=1$. This implies that $f(z_0)\neq 0$. Moreover, for such function f we have $u'(f\circ\varphi)+u\varphi'(f'\circ\varphi)=0$ on

int X and hence $u'(z_0)f(z_0) + u(z_0)\varphi'(z_0)f'(z_0) = 0$, which implies $u'(z_0) = 0$, since $\varphi'(z_0) = 0$ and $f(z_0) \neq 0$. Therefore, when $\varphi'(z_0) = 0$, the surjectivity of uC_{φ} implies that $u'(z_0) = 0$ which lead to $(uC_{\varphi}g)'(z_0) = 0$ for all $g \in A$, in particular, for a function $g \in A$ with $uC_{\varphi}g = z$ which is impossible. Therefore, if $u(z_0)\varphi'(z_0) = 0$, the operator uC_{φ} is not (surjective) invertible and consequently $u(z_0)\varphi'(z_0)^k = 0 \in \sigma(uC_{\varphi})$ for every positive integer k.

Suppose now $u(z_0)\varphi'(z_0) \neq 0$. Let k be a positive integer such that $\varphi'(z_0)^j \neq 1$ for each j $(1 \leq j \leq k)$ and

$$u(z_0)\varphi'(z_0)^k f(z) - u(z)f(\varphi(z)) = (z - z_0)^k \qquad (z \in X), \tag{3.1}$$

for some $f \in A$. Choose r > 0 such that $\Delta_r = \{z \in \mathbb{C} : |z - z_0| < r\} \subseteq \text{int}X$. Thus the elements of A are analytic on Δ_r and by (3.1), f is not the zero function on Δ_r . Now by replacing \mathbb{D} and Δ_r and applying the same argument as in the proof of [14, Lemma 2.3], the relation (3.1) leads to a contradiction. Consequently, $(z - z_0)^k$ is not in the range of $u(z_0)\varphi'(z_0)^k - uC_{\varphi}$. Therefore this operator is not invertible and hence $u(z_0)\varphi'(z_0)^k \in \sigma(uC_{\varphi})$.

Lemma 3.2. Let X be a compact plane set with connected and dense interior. Let A be a subspace of A(X) containing constant functions and the coordinate function z. Suppose u is a non-zero complex-valued function on X, $\varphi \in A(X)$ is a non-constant self-map of X with $\varphi(z_0) = z_0$ for some $z_0 \in \text{int} X$ and uC_{φ} is a weighted composition operator on A. If $\lambda \neq 0$ is an eigenvalue of uC_{φ} , then

$$\lambda \in \{u(z_0)\varphi'(z_0)^k : k \text{ is a positive integer}\} \cup \{u(z_0)\}.$$

Proof. By the property of z_0 , $\Delta_r = \{z \in \mathbb{C} : |z - z_0| < r\} \subseteq \text{int}X$ for some r. Now by replacing \mathbb{D} and Δ_r , and the same argument as in the proof of [14, Lemma 2.4], the result concludes.

It is known that if T is a Riesz operator, then every non-zero number in $\sigma(T)$ is an eigenvalue of T [10, Theorem 3.14]. Thus we have the following theorem.

Theorem 3.3. Let X be a compact plane set with connected and dense interior. Let A be a unital Banach subalgebra of A(X) containing the coordinate function z. Suppose u is a non-zero complex-valued function on X, $\varphi \in A(X)$ is a non-constant self-map of X with $\varphi(z_0) = z_0$ for some $z_0 \in \text{int} X$ and uC_{φ} is a Riesz weighted composition operator on A, then

$$\sigma(uC_{\varphi}) = \{u(z_0)\varphi'(z_0)^k : k \text{ is a positive integer}\} \cup \{0, u(z_0)\}.$$

Corollary 3.4. Let X be a perfect compact plane set with connected and dense interior and satisfy the condition (1.1). Suppose u is a non-zero complex-valued function on X and $\varphi \in A(X)$ is a non-constant self-map of X with $\varphi(z_0) = z_0$ for some $z_0 \in \text{int} X$. If uC_{φ} is a Riesz weighted composition operator on $D^n(X)$, then

$$\sigma(uC_{\varphi}) = \{u(z_0)\varphi'(z_0)^k : k \text{ is a positive integer}\} \cup \{0, u(z_0)\}.$$

Using Theorem 2.7, as an immediate consequence of the above corollary we get the following result for the spectrum of a quasicompact composition operator.

Corollary 3.5. Let X be a perfect compact plane set with connected and dense interior and satisfy the condition (1.1). Let C_{φ} be a quasicompact composition operator on $D^n(X)$. If $\varphi(z_0) = z_0$ for some $z_0 \in \text{int} X$, then C_{φ} is power compact and

$$\sigma(C_{\varphi}) = \{ \varphi'(z_0)^k : k \text{ is a positive integer} \} \cup \{0\}.$$

In the case that $X = \overline{\mathbb{D}}$ and all fixed points of φ are on the unit circle, we have the following theorem, due to Kamowitz, for disc algebra $A(\overline{\mathbb{D}})$.

Theorem 3.6. [14, Theorem 2.2] Suppose $u, \varphi \in A(\overline{\mathbb{D}}), \|\varphi\|_{\overline{\mathbb{D}}} = 1$, φ is not a constant function and φ has all its fixed points on the unit circle. If uC_{φ} is a compact operator on $A(\overline{\mathbb{D}})$, then $\sigma_{A(\overline{\mathbb{D}})}(uC_{\varphi}) = \{0\}$.

Using this theorem, we give a similar result for algebras $D^n(\overline{\mathbb{D}})$ as follows.

Corollary 3.7. Suppose $u, \varphi \in D^n(\overline{\mathbb{D}})$ and φ is a non-constant self-map of $\overline{\mathbb{D}}$ whose all fixed points lie on the unit circle. If uC_{φ} is a compact operator on $D^n(\overline{\mathbb{D}})$, then $\sigma(uC_{\varphi}) = \{0\}$.

Proof. It is clear that $D^n(\overline{\mathbb{D}}) \subseteq A(\overline{\mathbb{D}})$ and uC_{φ} is also a weighted composition operator on $A(\overline{\mathbb{D}})$. By Theorem 2.5, the compactness of uC_{φ} on $D^n(\overline{\mathbb{D}})$ implies that $\varphi(\operatorname{coz}(u)) \subseteq \mathbb{D}$. Thus, by [14, Theorem 1.2], uC_{φ} is also a compact operator on $A(\overline{\mathbb{D}})$. Moreover, every eigenvalue of compact operator uC_{φ} on $D^n(\overline{\mathbb{D}})$ is also an eigenvalue of compact operator uC_{φ} on $A(\overline{\mathbb{D}})$. Hence, by Theorem 3.6, $\sigma_{D^n(\overline{\mathbb{D}})}(uC_{\varphi}) = \{0\}$.

Acknowledgement. The authors would like to thank the referee for valuable and useful comments.

References

- [1] M. Abramowitz and I. A. Stegun, *Handbook of mathematical functions with formulas, graphs, and mathematical tables*, U.S. Department of Commerce, Washington, D.C., 1964.
- [2] F. Behrouzi, Homomorphisms of certain Banach function algebras, *Proc. Indian Acad. Sci. Math. Sci.* 112 (2002) 331-336.
- [3] F. Behrouzi and H. Mahyar, Compact endomorphisms of certain analytic Lipschitz algebras, *Bull. Belg. Math. Soc. Simon Stevin* 12 (2005) 301-312.
- [4] W. J. Bland and J. F. Feinstein, Completions of normed algebras of differentiable functions, *Studia Math.* 170 (2005) 89-111.
- [5] C. Caratheodory, *Theory of Functions of a Complex Variable*, Vol. II, Chelsea, New york, 1960.
- [6] J. B. Conway, Functions of One Complex Variable, Springer-Verlag New York, 1978.

- [7] H. G. Dales, *Banach algebras and automatic continuity*, London Math. Soc. Monographs 24, The Clarendon Press, Oxford, 2000.
- [8] H. G. Dales and A. M. Davie, Quasianalytic Banach function algebras, *J. Funct. Anal.* 13 (1973) 28-50.
- [9] H. G. Dales and J. F. Feinstein, Normed algebras of differentiable functions on compact plane sets, *Indian J. Pure Appl. Math.* 41 (2010) 153-187.
- [10] H. R. Dowson, *Spectral theory of linear operators*, Academic Press INC. London LTD 1978.
- [11] J. F. Feinstein and H. Kamowitz, Quasicompact and Riesz endomorphisms of Banach algebras, J. Funct. Anal. 225 (2005) 427-438.
- [12] T. G. Honary and H. Mahyar, Approximation in Lipschitz algebras of infinitely differentiable functions, *Bull. Korean Math. Soc.* 36 (1999) 629-636.
- [13] K. Jarosz, Lip_{Hol}(X, α), Proc. American Math. Soc. 125 (1997) 3129-3130.
- [14] H. Kamowitz, Compact operators of the form uC_{φ} , Pacific J. Math. 80 (1979) 205-211.
- [15] H. Mahyar, *Approximation in Lipschitz algebras and their maximal ideal space*, Ph.D. Thesis, University For Teacher Education, Tehran Iran, 1994.
- [16] H. Mahyar and A. H. Sanatpour, Compact and quasicompact homomorphisms between differentiable Lipschitz algebras, *Bull. Belg. Math. Soc. Simon-Stevin* 17 (2010) 485-497.
- [17] H. Mahyar and A. H. Sanatpour, Quasicompact endomorphisms of Lipschitz algebras of analytic functions, *Publ. Math. Debrecen* 76/1-2 (2010) 135-145.

Department of Mathematics, Kharazmi University, 50, Taleghani Ave., 15618, Tehran IRAN.

email: sasanamiri60@gmail.com, golbaharan@khu.ac.ir and mahyar@khu.ac.ir