Improved direct and converse theorems in
weighted Lorentz spaces
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Abstract

In the present work we prove the equivalence of the fractional modulus
of smoothness to the realization functional and to the Peetre K-functional in
weighted Lorentz spaces. Using this equivalence we obtain an improvement
of the direct approximation theorem. Furthermore we prove the improved
converse theorem in this space.

1 Introduction and main results

In approximation theory improvements of direct and inverse theorems have been
investigated by several authors in different function spaces [1, 9, 12, 18, 20, 21]. In
this paper we deal with the improved direct and inverse approximation theorems
in the weighted Lorentz space L/ (T) with Muckenhoupt weights. To obtain the
improved direct theorem we need the realization and characterization theorem
in LI7(T). Therefore we will prove a realization result and an equivalence rela-
tion between the modulus of smoothness and the Peetre K-functional in L (T).
Furthermore, the realization result has a lot of applications [6]. In particular, it
is used to get Ul'yanov type inequalities [8]. First, we give some definitions and
properties.

Let T := [—m, ] and w : T — [0,00] be a weight function i.e., an almost
everywhere positive measurable function. We define the decreasing rearrange-
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ment f(t) [11] of f : T — R with respect to the Borel measure

w(e) = /a)(x)dx,
e
by
fot)=inf{t>0:w(xeT:|f(x)| >1) <t}.
The weighted Lorentz space L) (T) is defined [11] as

LE(T) = {f € M(T) : || fllpg = (/T(f**(t))qt%g)l/q

<o, 1< p,q< oo},

where M(T) is the set of 27 periodic integrable functions on T and

Fo = [ fawdn

If p = g, L}](T) turns into the weighted Lebesgue space L, (T) [11, p.20].
A weight function w : T — [0, o0] belongs to the Muckenhoupt class A, [17],
1<p<oo,if

1 1 1-p' p-1 N
supm/lw(x)dx(m[w P(x)dx)" " = Ca, < oo, pl= P

with a finite constant C4, independent of I, where the supremum is taken over
all intervals I with length < 277 and |I| denotes the length of I. The constant C4,
is called the Muckenhoupt constant of w.

By the proof of [14, Prop. 3.3], we know that LL(T) c LY(T). Let

S[f] == Z ckeikx 1)
k=—o0

be the Fourier series of a function f € L' (T). Assume that

/ f(x)dx = 0. )
T
For « € R, we define the a-th fractional integral of f as [22, v.2, p.134]

Iy (X,f) = Z Ck (ik)_lx eikx,

kezZ*

with
(ik)_“ = |k’ —& ,(=1/2)minsignk
as principal value.
We define the fractional derivative of a function f € L! (T), satisfying ( 2), as

(@) dlal+1
fY(x) = Wﬁw-[a](xzf)z



Improved direct and converse theorems in weighted Lorentz spaces 249

whenever the right hand side exists.
For a function f € LJ(T), 1 < p,g < o, w € Ap, Steklov’s mean operator is

defined as
1
onf(x) = f( u)du, x € T.

Whenever w € Ay, 1 < p,q < oo, the Hardy-Littlewood maximal function of

f € L(T) belongs to LY (T) [5, Theorem 3]. Therefore the operator oy, f belongs
to L} (T). Using this fact and putting x,t € T,r € R*, w € A, and f € LJ(T),
1< p, g < oo, we define

oif (x) = (I—0r)" f(x)
; <)éw/_t"'/_tf(x—l-m+---+uk)du1...duk,

where (;) are the binomial coefficients.

Since
o c
RIS

(see [19, p.14, (1.51)]), we have

and therefore
10t fllpgw < cll fllpge < oo, 3)

for f € LJ(T), 1< p,g <oo,w € A,.
For1 < p,q < oo, f € LIJ(T) and r € R*, we define the fractional modulus of
smoothness of index r as

[0 a1 oy | @

pq,w

O (f,0) pgw := sup
0<h;t<é"i=1

where [r] := max{n € N :n < r}. Since the operator ¢} is bounded in L) (T),
1< p,q <o, we Aywehave by (3) that

O (f,0) pgeo < cll fllpg
where the constant ¢ > 0 only dependsonr, p,gand Cy,.

Remark 1.1. Letr € RT,1 < p,q < oo, w € Ay and f € LIJ(T). For 6 > 0, the
modulus of smoothness O, (f, 4) 5, has the following properties.

(i) O (f,9)pgw is sub-additive in f, and a non-negative, non-decreasing func-
tion of 6 > 0.
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By Eu(f)pq,w We denote the best approximation of f € L{(T) by polynomials in
Ty, the set of trigonometric polynomials of degree < n:

En(f)pq,w = Tifelf Hf - Tanq,w-

In this paper we will use the following notations:

A(x) =~ B(x) < dcy,c0>0:¢1B(x) < A(x) < B(x)
A(x) = B(x) < 3Jc>0:A(x) <cB(x).

Our main results are now the following.

Theorem 1.2. Ifr € RT, 1 < p,q < o0, w € Ay and f € L{J(T), then there exists a
constant ¢ > 0 depending only onr, p,q and Cy,, such that

1
E, (f)pq,w <c Qr( p n—+1> P ®)

holds for n +1 € IN.
The analogues of this direct approximation theorem were obtained in [10] for

reN, felLl(T),l<p<o,we Apandin 2] forr € N, f € LIJ(T),
1 <p,gq<o,we Ay with the modulus of smoothness

T

igl (I - Uhi) f

W, (f, l)LW = sup

pq’
n/ Ly 0<h;<1/n Ly

andin [1]forr € R*, f € LF(T),1 < p < oo, w € Ay with the fractional modulus
of smoothness (4).
For f € LIJ(T), t,r >0and 1 < p,q < oo, the Peetre K-functional is defined as

Ko(f, 6L, Wry ) = inf {11 — gllys + 118 -

SEWhgw

Here W/, , := { o(x) e LI+ ¢ ¢ Lﬁf’}.
We define the realization functional for f € L!J(T) by

* 1 *\ (7
Ro(£,1/m, L) = {11 = il + N80},

forr > 0,1 < p,qg < oo, n € IN. Here t;, denotes the best approximating trigono-
metric polynomial for f. The following theorem holds.

Theorem 1.3. If R, f € LI](T), 1 < p,q < coand w € Ay, then the equivalence

Q,(f,l) Ry (f,1/n, LE) ©6)

n/ pgw
holds for n =1, 2,3, ..... Furthermore, we have, for 6 > 0,
Qv (f,6) paw = Kor (f, 6; LIS, W ). (7)

Here the equivalence constants only depend on v, p,q and Cy,.
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Corollary 1.4. Letr € RT, f € LI)(T), 1 < p,q < o0, and w € A,. Then

QT’ (f’ Aé)pq,a) j (1 + [/\])27’ QT’ (f/é)pq,a) 4 5’/\ >0

and
Oy (f,0) pg 8 2 (f,01) 012, 0 <1 <6

An improvement of (5) is given by the following theorem.

Theorem 1.5. Ifr € RT, f € LI (T),1 < p,qg < coand w € Ap, then there exists a
constant ¢ > 0 depending on r, p,q and Cn,, such that forn =1,2,3,...

(HE qu> v <CQr(f 1) ®)

pq,w

Remark 1.6. The inequality (8) is never worse than the classical Jackson inequality.
Since Ey(f)pgw — 0 as n — oo we obtain that

Do (1‘[15 pq,w)”"gcgr(f,%)pq/w.

On the other hand, in some cases the inequality (8) gives better results than the
classical Jackson inequality. For example, if E,;(f)pw = 27", then the

classical Jackson inequality implies ), ( f, %) > ¢27" but inequality (8) yields
pq.w

O, (f/ %>pq,w > c27"/2,

An analogue of Theorem 1.5 for the space L™ was proved in [18]. In [2], the weak

converse of (5)
n

() o < o LRy o)

=0

forre N, f € Lz,q(T), w € Apand 1 < p,q < oo was obtained.

Theorem 1.7. Let 1 < p < ocand1 < q < 20rp > 2and g > 2, w € Ay,
fe LP(T). Ifn € N, r € RT and v := min{2,q}, then there is a constant ¢ > 0
only depending onr, q, p and Cn, such that

o)

The analogues of this improved converse theorem were proven in [15] for r € IN,
feLll(T),1<p<o,wc Ap with the modulus of smoothness W; (f, n)

1/
- _nzr(zuz'ﬂ EY )pqw) . (10)

; in
Lr’
[]forr € RY, f € LI(T), 1 < p < oo, w € A, with the fractional modulus of
smoothness (4); in [14] forr e N, f € LZq(T), l<p<owandl<g<2orp>2

and g > 2, w € A, with W, (f,%) ;in [20] for r € R*, f € LP(T), 1 < p < oo

7
LE]
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and1 <qg<2orp>2andg > 2, w € A, with amodulus of smoothness defined
by Ky [16].

The inequality (10) is better than (9). Indeed, using the fact that x7 is convex for
v = min {2, p} we obtain that

(Vl/zr_lEy(f)pq,w>7 - ((1/ —1) V2r—1EV(f)pq/w>7
= (ilﬂzr_lEu(f)pq,wy — (Vii ‘uzr_lEH(f)pq,w>7.
= =

Taking the summation over v, we obtain that

n

Z {(1/1/2?_1]:"V(f)pq,w)7 — ((1/ —1) Vzr_lEy(f)pq,a)),Y}

v=1
< E{ (L B )~ (2 Bl r)
v= K=

],[:

hence we have the inequality

S 2qr-1py Vo = o1
{ZV Ey—l(f)}ﬂq,w} < 221/ Ev—l(f)pq,w-
v=1

v=1

We give the Marcinkiewicz multiplier and Littlewood-Paley theorems in L) (T)
which are used in the proofs of previous Theorems.

Theorem 1.8. Let Ag, Ay, - - - be a sequence of real numbers such that

2l 1
M| <Mand ) [Ay—Ayq| <M,

v=2I-1

forallv,l € N. If1 < p,g < oo, w € Apand f € LE](T) with Fourier series
Y2 o(ay (f) cosvx 4 by (f) sinvx), then there exists h € LI(T) such that the series
Yoo Mv(ay(f) cosvx + by (f) sinvx) is the Fourier series of h and

< CIfl (11)

||h||pq,w pq,w’

where C does not depend on f.

Theorem 1.9. Let v € N, 1 < p,q < o0, w € Ay and f € L] (T) with Fourier series

Yoro(ay(f) cosvx + by (f) sinvx), then there exist constants ¢y and cy independent of
f such that

qH(i !Ay]Z)l/szq,w < ||f||pq/w < czH <§|A"|z>1/2Hmw, 12)

p=v

where
211

Ay =0y (x,f):= Y (ay(f)cosvx + by, (f)sinvx).

y=21"1
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2 Proof of the main results

From [5, 14] we recall four important properties of the spaces L’} (T).

Lemma A ([5] or [13, prop. 5.1.2]) For 1 < p,q < oo, there exists a c > 0 such that
for every f € LEJ(T)

¢ Nl < sup| [ FIgG0()AX] < €] g0

<1

where the supremum is taken over all functions g for which || g||P/q, w S

Lemma B [14]. Let 1 < p < coand 1 < q < 2. Then for an arbitrary system of
functions {q)j(x)};”:1 , @; € L (T) we have

I(550) ], =Bt

e ]:1
with a constant ¢ independent of ¢; and m.

m

Lemma C [14]. Let 2 < p < oo and q > 2. For an arbitrary system {(pj(x)}jzl,

@j € LI (T), we have

I(E o)), <eEoh)”

with a constant ¢ independent of ¢; and m.

pq,w

Lemma D [14]. Let 1 < p,q < oo, f € LII(T) and w € Ap. If By,(x) =
ar(f) cos (k+ u%) x +b(f) sin (k + u%) x, where ay, by are the Fourier coefficients
of f, then

2i+1

H Z kyBk,MH SCzlﬂEzi(f)pq,wr
k=241 paw

where the constant c is independent of f and i.

Proof of Theorem 1.8. We define a linear operator

Tf(x) := é/\v (ay(f) cosvx + by (f)sinvx)

for f € LI (T) which is bounded (in particular is of weak type (p, p)) in L}, (T)
for every p > 1 by [4, Th. 4.4]. Therefore the hypothesis of the interpolation
theorem for Lorentz spaces [3, Th. 4.13] is fulfilled. Applying this theorem we
get the desired result (11). [ |

Proof of Theorem 1.9. Let us define a quasilinear operator

(e e]

17 = (1 [ e n)P)

H=v
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This operator is bounded in L}, (T) for every p > 1by [4, Th. 4.5]. Therefore the
left hand side of the required result (12) is derived by means of the interpolation
theorem for Lorentz spaces [3, Th. 4.13].

Using Holder’s inequality for f € L] (T)NL2/(T), g € qu/ (T)N L2(T) and the
left hand side of (12) we obtain

|1 @3] wlx)dr =

< /T ;|Ay<x,f>Ay<x,g>|w<x>dx

(%, f)Bpu(x,8) | w(x)dx

< LLE 0] L o]t
H= U=
o0 1/2 o 211/2

< [ ]ancen) H Ll el ]

< o[E 18] 7] el

u=1
where p' = p/ (p —1), 9 = q/(q —1). Taking the supremum in the last inequal-

ity over all functions g € qu/ (T) satisfying ||g||
Lemma A that

pow < 1, we find, applying

2\1/2
Ay‘ ) .
pq,.w

The density of LIJ(T) N L2(T) in L!} (T) yields the last inequality for any

£llpg0 < ] @

fe L (m). n
Lemma2l. I[f0<a < B, w € Ay, 1<p,q<coand f € L{](T) then

Q,B (f/')pq,a) <cy (f/')pq,a)' (13)
Proof. The proof of Lemma 2.1 is similar to the proof of [1, Lemma 1]. n

Lemma22. Letr e RY, 1< p,g<oo,w€ Apand T, € Tyforn=1,2,---. Then

1 1 )
Q (Tn’ )pqw = an "

T(

pq.w

holds with some constant only depending onr,p,qand Cy,.

Proof. For all x > 0, we have that

where

(1_sinx) o 1—51% if x > 0;
x ), o if x =0.
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ForO0 < tand h; < %, we have that

[
_ oyl
HE (=) (1= |

L sinvhy sinvhy, sinvt) !
E{;(l_ vhy )*...<1_ vhyy *(1_ vt )*
AV(Tn,x)Hpqw

(B o (1 ) 1
(

St ()’ vt

(WD A (T, )|

pq.w
 sinvhy _ sinvhm . r—[r]

< oy M#... <1 iy )1/2 (1_%”>
= 2 2 2

=1 (Vhl) (th> (Vt)

Vz(r—[r])Av(Tn, x) Hpq .

__sinviy 1— sinvhy, i r—Ir]

e SR -

= (vhy) (th) (vt) pg,w

Applying Theorem 1.8 we obtain that

<n?

pq.w

Hf{ (=) (1= 11T,

n
Y. very(Tn,x)H :
v=1 paw

Forv=1,2,3,... we have
A]/(Tn,x) — A]/(Tn,x + %) COSV7T—|— Ay(Tn,x + %) Sll’l1’7T,

where T, is the Fourier conjugate of T;. Therefore

[r]
HH(I - Uhi)(l - O't)r_[r] Tn

=1 pa.

_< n—2r

n
Y. v (Ay(Ty, x + E) cos 17t + Ay (Ty, x + Z) sinr7) H
v=1 v v pq.w

n n ~ T
’ Y VA Ty, x + )H + | Y v A (T x + —)> ||pq,w)'
v=1 pa.w v=1 v

r7t

j n—Zr(
v

Since ) -
AT, x) = 17 Ay(To, x + =),
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forv=1,2,3,---,we find

1
QY(TTZ/_>
n’ pgw
n n
= (|| T 20| AT D)
= n ;V v(nx‘i‘U)pq,w‘i‘ 1;11/ v(nx‘i‘v)pq/w
(2r> ~(2r> (2r>
<o (] ) 2
pq.w pq.w pq,w

Lemma23. Letr € Ry, 1 <p,g<oo,w€Ayand T, € T,. Forn=1,2,--

have that
<o (nh

with some constant depending only on'r, p, q and Cy,,.

1
— | T

1y -

Proof.

n—Zr

T(Zr)

n

r7t
2 Ay (T, x + —)H
pg.w =1 v o lipgw

n
Y v¥ (Ay(Ty, x) cosrrt + Ay (T, x) sinrr) H

v=1

n
Y. v A, (Ty, x) cos 1/71”
v=1

n—Zr

pq.w

n—Zr

IN

pq.w
n ~
+n Y. v Ay (T, x) sin 1/71“
v=1 pa.w
n (1/)2 ' sin AN
) cosrm n (1 — T”) AV(Tn,x)H
v=1 1

NV
sin

n pq.w

v
n

Applying Theorem 1.8 and the linearity of the conjugate operator we get

n
2 || 72 < | (1 _sing ) Av(Tn/x)H
pa.w =1 i pa.w
n z r ~
IE: (125 )
= m pg,w
n

- f<1—su_1 )rAV(Tn,x)H

v=1

pq,w

*H(;( = Avm,x)) "

( W )(1)A<T>H

., we
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From the boundedness of the conjugate operator [14] we have

n—Zr T(Zr)

n

pq.w

L (-

sm

) ama|, 5 (-5 A

pa.w v=1 n

[r]

pq,w

= =)l =, e, JTO- ) 0],
1
< 0O (Tn, n)pq,w' [
Proof of Theorem 1.2. From Lemma 2.1 and [2, Th. 1.1] we have
Enlflpgw < €O (f’ nLJrl>pq,w = o (f’ %—H)Pq,w
for n +1 € IN and the assertion (5) follows. ]

Lemma 24. Let 1 < p,q < oo, w € Ay, f € LLJ(T) and v > 0. Then for any
0<t<2,

% (Ftha 217,

Proof. There issomen =1,2,3,...such that (1/n) <t < (2/n).From Lemma 2.2
we get

Qy (£ 1) pgeo = Qg (f = T ) pg.0 + Oy (T £) g0 = En(fpgwo + £ HT’(’MH

On the other hand applying [20, (3.9) and Th. 1.3] and Theorem 1.2 we have

pq.w

1 1 1
En(f)W,w = ﬁEn(f(27))Pqiw = nTyg’Y <f(27)’ _) P, = t2”/ Hf(m)”pq,w'

n

Using Theorem 1.2 and [20, Th. 1.3] the proof is completed. n

Proof of Theorem 1.3. We have to show that (6) holds. Let T, be the near best
approximating trigonometric polynomial to f. From Theorem 1.2

1
1f = Tallpgeo = En(f)pge < ¢ Oy (f’n—-|-1>mw'

Applying Lemma 2.3, we find that

L <), sanrd), ),
on,, c0fed), <o),
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and
1

2
1f = Tallpgo + =5 | T8

n

pq,w =0 (fl %>P6],W‘

On the other hand using Lemma 2.2

o (f, %)W < O(f-Tw %)W +0,(T,, %)W
= Hf — T po,w % Tr(zzr) pa,w = Ror (fr %/LZJ[]>'

This completes the proof of (6). Using Lemma 2.4, properties of the modulus of
smoothness and of the K—functional (7) are proven.

Proof of Theorem 1.5. By Corollary 1.4 we have forv < n

O, (f,1/0),. ., < (14+n/0)" O, (f,1/n)

pq,w pq,.w

and
n

zf[l QO (f,1/9) 0 < [T (L4 1/0)" (Q (f,1/n)W)".

v=1

For every n we have

ﬁ(1+n/v)2r§ (nZn )2r.

n!

Using Stirling’s formula
n! =< v2mnn"e ") with |0 (n)] < 1/ (12n)

we get
n

H (1 + n/U)Zr S 221’641’.

v=1

Thus y
(HQT (fll/v>pq,w> SCQ” (f’l/n)pq,a)'

From (5) and the property E;;(f)pq,0 — 0asn — oo we find

1/n

" 1/n "
(F[lEv(f)pq,w> S(]—[lﬁr(le/v)pq,w> <cQr (f,1/1) g

Proof of Theorem 1.7. For 1 < p,q < oo, w € Ap, let f € LI (T) be such that

027[ f(x)dx = 0. We assume that f has Fourier series (1). We choose m € IN such

that 2™ < n < 2™*1 Letus denote S, (x) := Sy (x, f) := Y4y Ax(f, x), forx € T,
where Ai(f, x) = ax(f) coskx + by (f) sinkx. By [14, Prop. 3.4], we have that

If = S”“pq,w < CEn(f)pg - (14)
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4
(I—op,) (I— 01)" 1"l £ has Fourier series

It is well-known that atr,hl,hz,...,h[r] fi= 1

1

atrhl,hz,...,h[ ]f(')
s sinvt)” 1" sin vhy sinvhy,
Eﬁ< )* (1_ vhy )* (1_ vh *Av(f'x)'

Moreover

‘Ttr,hl,hz,...,hmf(')
= Uzhl,hz,...,h[r] (f () - 52’”—1 (’f)) + 0{,}’11,]’12,...,]1[,,] 52’”—1 (’f) °

From (14) and E; (f)pw — 0 we have

H‘Tfr/hlrhz---rh[r] (f () =S (.’f))HPq,w
< cllf () = Sam1 (o )l pgreo < Bt (f)pgao

1/
29r—1
nZ?’{ZV,w E'7 )pa)} :
On the other hand, it follows from (12) that

H‘Ttr,hl,hz,...,h[,]sszl ('zf)” < CH{ i W’Z}UZH

pa.w =1 pa.w
where
211 : r—1r] : invh
sin vt sinvhy SIN VA,
5y i— (1_ ) (1_ ) 1= SN 4 (F ).
# v_gl vt vhy vhpy, v(f
By Lemmas B and C

(o}, = {5l

By Abel’s transformation we obtain

197llpg.co
202 [] 3 h
< V_;_l (1 sm1/t>7 r (1 5121;[/1h1>. '(1 B Slz}zr][r»

(- ) O

sm(v + 1>h[r

(=5, L 2 4w,

12;41
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+‘ (1 _ sin(2¥ — 1)t)7—[r] (1 _ sin(2" — 1)h1)

(24 =1)t (2" =1
sin(2F — 1)k, 21
: Al(f,x)
(-3 By o
and by Lemma D
H Z Al(f,x H < cEp-14(f)pw
1=2n-1 L
and
2K —
H Z Al f X H < CE2P"1—1 (f)pq,w'
]=21-1
Since x" (1 — Si¥) " is non decreasing for positive x we have

Héi" Hpq,w < szyrtZ(r_[r])h%h% cee h%r] EZV_l—l(f)PEIrW
and hence

‘ U;hl,hz,...,h[r] Szm_l (" f) H

pq.w

< ctz(r_[roh%h% hfd{izvazy_l_l(f)pq,w}l/v
=

< 0D e}

+ ct2<r_[r]>h%h% h[zr}{ f‘;yl_i VZWr—lEz_l(f)pqw}l/v
H=2y=2H"

< Uit (T e )
v=1

Therefore we find

Qr(f 1) < %{ivzw_lEZ—l (f)pq,w}

pq,w

finishing the proof of Theorem 1.7. m
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