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Abstract

Let Ω be a Carathéodory domain in the complex plane C, A−∞(Ω) the
space of functions that are holomorphic in Ω with polynomial growth near
the boundary ∂Ω, and A∞(∁Ω) the space of holomorphic functions in the
interior of ∁Ω := C \ Ω, vanishing at infinity and being in C∞(∁Ω). We
prove that the Cauchy transformation of analytic functionals establishes a
mutual duality between spaces A−∞(Ω) and A∞(∁Ω). This result, together
with those of [3], gives a solution to duality problem for the space A−∞(Ω)
in both one and several complex variables.

1 Introduction

In the recent years the space A−∞(Ω) of holomorphic functions in a domain
Ω ⊂ Cn (n ≥ 1), with a polynomial growth near the boundary ∂Ω, attracts a great
attention of mathematicians. Among the considered topics, the duality problem
has been extensively investigated for both one and several variables. Barret [5],
Bell [6], Straube [18], Kiselman [11] studied whether the standard scalar product

〈 f , g〉 =
∫

Ω
f ḡdλ (λ is the Lebesgue measure in R

2n)
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establishes the duality between A−∞(Ω) and A∞(Ω̄), the space of all holomor-
phic functions in Ω that are in C∞(Ω̄), or not. In particular, they proved that this
is true for all smooth strictly pseudoconvex domains in Cn and gave some exam-
ples of domains for which this duality fails (for instance, that is so for domains
which boundaries have degenerate corners).

In our recent papers [1, 2] we proved that, for a bounded convex domain
Ω in Cn, the Laplace transformation of functionals establishes a mutual dual-
ity between A−∞(Ω) and some weighted space of entire functions A−∞

Ω
and in

[3] that, for a bounded lineally convex domain Ω in Cn (n ≥ 2), the Cauchy-
Fantappiè transformation of functionals gives a mutual duality between A−∞(Ω)

and A∞(Ω̃), where Ω̃ is the conjugate compact set for Ω.
In case of one variable it is natural to consider a duality, via the Cauchy trans-

formation of functionals, between A−∞(Ω) and A∞(∁Ω), the space of all func-
tions holomorphic in the interior of the complement ∁Ω, vanishing at infinity
and C∞ on ∁Ω. In this direction, Varziev and Melikhov [19] proved that if Ω is
a bounded domain in C, which is moreover strictly starlike with respect to the
origin and has a piecewise smooth boundary, then the Cauchy transformation is

a topological isomorphism between the strong dual
(

A−∞(Ω)
)′

b
and A∞(∁Ω).

It should be noted that the result in [19] was obtained under rather stringent
conditions on Ω. Indeed, there are convex domains in C whose boundaries are
not piecewise smooth; also there are lineally convex domains which are not star-
like with respect to any of its points.

Note, in addition, that by Köthe [14], the Cauchy transformation of functionals
always establishes a mutual duality between the spaces O(Ω) and O(∁Ω) of all
holomorphic functions in Ω and all germs of holomorphic functions on ∁Ω that
vanish at infinity.

So it is natural to ask:

(a) Can we improve for A−∞(Ω) the duality result above?

(b) What about the space A∞(∁Ω), that is, can we have an isomorphy between(
A∞(∁Ω)

)′
b

and A−∞(Ω)?

Here we even wish to obtain the results as close as possible to those of Köthe.
In the present paper we give positive answers to these questions for, at least,

Carathéodory domains with rectifiable boundaries. (Here we recall that a boun-
ded simply connected domain Ω in C is called Carathéodory if its boundary coin-
cides with the boundary of the infinite component of the open set ∁Ω. In partic-
ular, every Jordan domain is Carathéodory). Namely, (a) holds for Carathéodory
domains (Theorem 4.3), while (b) is true for Carathéodory domains with recti-
fiable boundaries (Theorem 4.5). Besides, we also provide an application to the
representation problem (Theorems 5.6 – 5.7), which, to our knowledge, has never
been treated.

The final remark is that it turns out from the proofs presented in this paper
that the injectivity of the Cauchy transformation is much more difficult than the
surjectivity, which is quite unusual for such a kind of result. Moreover, the sur-
jectivity is valid for a class of domains which is much wider than the class of
Carathéodory domains.
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2 Notation and preliminaries

Let Ω be a bounded domain in C and ∁Ω := C \ Ω its complement in the ex-
tended complex plane C. By O(Ω) we denote the Frechét-Schwartz (briefly, (FS)-)
space of all holomorphic functions in Ω. The notation O(∁Ω) is used for the dual
Fréchet-Schwartz (briefly, (DFS)-) space of all germs of holomorphic functions on
∁Ω vanishing at infinity. We refer the reader to [16, 21] for information on the
notions of (FS)- and (DFS)-spaces in details.

Let dΩ(z) := minw∈∂Ω |z − w|, the minimum Euclidean distance between
z ∈ Ω and ∂Ω. W.l.o.g., we will assume that Ω ⊂ {z : |z| < 1}. Hence, dΩ(z) ≤ 1
for all z ∈ Ω. The space A−∞(Ω) of holomorphic functions in Ω with polynomial
growth near ∂Ω is defined as follows:

A−∞(Ω) :=

{
f ∈ O(Ω) : sup

z∈Ω

| f (z)| [dΩ(z)]
k
< ∞, for some k ∈ N

}
.

This space can be equipped with its natural inductive limit topology of Banach
spaces

A−k(Ω) :=

{
f ∈ O(Ω) : ‖ f‖k = sup

z∈Ω

| f (z)| [dΩ(z)]
k
< ∞

}
, k = 1, 2, . . . ,

and hence becomes a (DFS)-space.
Denote by A∞(∁Ω) the space of all holomorphic functions in the interior int ∁Ω

of ∁Ω, vanishing at infinity and having C∞-extensions on ∁Ω. It will be endowed
with its natural topology of an (FS)-space given by the system of norms

|g|n := max
0≤k≤n

max
z∈∁Ω

|g(k)(z)|, n = 0, 1, . . . . (2.1)

In what follows we will assume that Ω is regular, that is int Ω = Ω. This excludes
domains having cuts and isolated points and is natural when we consider the
space A∞(∁Ω). It is clear that int ∁Ω = ∁Ω and ∂∁Ω = ∂Ω for a regular domain
Ω.

For a locally convex space E, let E′ and E′
b denote the dual and the strong dual

spaces to E.

Clearly, the partial fraction
1

z − ζ
belongs to A−∞(Ω) for all ζ ∈ ∁Ω as well as

A∞(∁Ω) for all ζ ∈ Ω. Consequently, the Cauchy transformation of functionals

F : T 7−→ FT(ζ) := T

(
1

z − ζ

)
,

is well defined on (A−∞(Ω))′ for all ζ ∈ ∁Ω and on (A∞(∁Ω))′ for all ζ ∈ Ω.

3 The Cauchy transformation as a mutual epimorphism

In this section we prove that, for a regular domain Ω with rectifiable boundary,
the Cauchy transformation of functionals is an epimorphism from (A−∞(Ω))′b
onto A∞(∁Ω) as well as from (A∞(∁Ω))′b onto A−∞(Ω).
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Proposition 3.1. Let Ω be a bounded regular domain in C. Then the Cauchy transfor-

mation of functionals is an epimorphism from (A−∞(Ω))
′
b onto A∞(∁Ω).

Proof. Let T ∈
(

A−∞(Ω)
)′

. Then for each k ∈ N there exists Ck > 0 such that

|T( f )| ≤ Ck‖ f‖k, ∀ f ∈ A−k(Ω).

Define the Banach spaces of continuous functions on Ω

C−k
0 (Ω) :=

{
f ∈ C(Ω) : ‖ f‖k < ∞, f (z)[dΩ(z)]k → 0 as z → ∂Ω

}
, k = 1, 2, . . . .

By the Hahn–Banach theorem, T can be extended as a continuous linear func-

tional on C−k
0 (Ω) for every k ∈ N. From this it follows that for each k ∈ N there

exists a Borel complex measure µT,k on Ω such that

Bk :=
∫

Ω

d|µT,k|(z)

[dΩ(z)]k
< ∞

and

T( f ) =
∫

Ω
f (z) dµT,k(z), ∀ f ∈ C−k

0 (Ω).

Using this for the Cauchy kernel
1

z − ζ
, we have

FT(ζ) =
∫

Ω

dµT,k(z)

z − ζ
, ∀ζ ∈ ∁Ω, ∀k ∈ N. (3.1)

Given n ∈ N0, we have

∫

Ω

d|µT,n+1|(z)

|z − ζ|n+1
≤
∫

Ω

d|µT,n+1|(z)

[dΩ(z)]n+1
= Bn+1 < ∞, ∀ζ ∈ ∁Ω.

Hence, by (3.1) we get

F
(n)
T (ζ) = n!

∫

Ω

dµT,n+1(z)

(z − ζ)n+1
, ∀ζ ∈ ∁Ω,

which implies that FT(ζ) ∈ O(∁Ω). In addition, for all ζ1, ζ2 ∈ ∁Ω,

|F
(n)
T (ζ1)−F

(n)
T (ζ2)| =

∣∣∣∣n!
∫

Ω

dµT,n+1(z)

(z − ζ1)n+1
− n!

∫

Ω

dµT,n+1(z)

(z − ζ2)n+1

∣∣∣∣

= n!|ζ1 − ζ2|

∣∣∣∣∣
n

∑
ℓ=0

∫

Ω

dµT,n+1(z)

(z − ζ1)n−ℓ+1(z − ζ2)ℓ+1

∣∣∣∣∣ ≤ Bn+1(n + 1)!|ζ1 − ζ2|.

Thus, F
(n)
T (ζ) is continuous on ∁Ω for every n ∈ N0. Finally, we have that

FT belongs to A∞(∁Ω) and, consequently, the corresponding Cauchy operator

F : T 7→ FT acts from (A−∞(Ω))
′

into A∞(∁Ω). It is easy to see that it has a

closed graph. Since (A−∞(Ω))
′
b and A∞(∁Ω) both are (FS)−spaces, the continu-

ity of this operator follows from the closed graph theorem.
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Next we prove that FT((A−∞(Ω))′) = A∞(∁Ω).
Let g be a fixed function in A∞(∁Ω). Since g ∈ C∞(∁Ω), by Whitney’s exten-

sion theorem for C∞-functions [20, Theorem I], there exists its infinitely differen-
tiable extension in R

2, say g̃. Consider the following form

〈 f , g〉 :=
1

2πi

∫

Ω
f (z)

∂g̃

∂z̄
(z) dz̄ ∧ dz, f ∈ A−∞(Ω).

Since g ∈ O(∁Ω) ∩ C1(∁Ω), we have
∂g̃

∂z̄
=

∂g

∂z̄
= 0 on ∁Ω. From this it follows

that
∂g̃

∂z̄
(ζ) = 0 for all ζ ∈ ∂∁Ω = ∂Ω. Then, by Taylor’s formula,

∣∣∣∣
∂g̃

∂z̄
(z)

∣∣∣∣ ≤ Ck[dΩ(z)]
k , ∀z ∈ Ω, ∀k ∈ N,

where Ck are some constants depending only on g̃. Consequently, for every k ∈ N

and all f ∈ A−k(Ω),

|〈 f , g〉| ≤
Ck

2π

∫

Ω
| f (z)|[dΩ(z)]k dλz ≤

Ckλ(Ω)

2π
‖ f‖k,

where λ is the Lebesgue measure in R2. Therefore, ϕ := 〈·, g〉 ∈ (A−∞(Ω))′ .
It remains to check that the Cauchy transformation of ϕ coincides with g.

To do this, let ζ ∈ ∁Ω and R > 0 be so large that Ω ∪ {ζ} ⊂ BR := {z :
|z| < R}. Applying the Cauchy–Green formula for C1−functions and using that

g ∈ O(∁Ω) and the equalities
∂g̃

∂z̄
(z) = 0 and g̃(z) = g(z) (z ∈ ∂BR) and g(∞) = 0,

we have

Fϕ(ζ) =

〈
1

z − ζ
, g

〉
=

1

2πi

∫

Ω

1

z − ζ
·

∂g̃

∂z̄
(z) dz̄ ∧ dz

=
1

2πi

∫

BR

1

z − ζ
·

∂g̃

∂z̄
(z) dz̄ ∧ dz = g̃(ζ) −

1

2πi

∫

∂BR

g̃(z) dz

z − ζ

= g(ζ) −
1

2πi

∫

∂BR

g(z) dz

z − ζ
= g(ζ).

Thus, Fϕ(ζ) = g(ζ) for all ζ ∈ ∁Ω, and, by reasons of continuity, Fϕ = g on ∁Ω.
This completes the proof.

Next, consider the space A∞(∁Ω). Recall that the topology of this space is
given by the system of norms (| · |n)n∈N0

(see (2.1)) under which A∞(∁Ω) becomes
an (FS)-space. By | · |′n we denote the dual norms

|T|′n := sup{|T(g)| : |g|n ≤ 1, g ∈ A∞(∁Ω)}, T ∈ (A∞(∁Ω))′ .

Notice that the strong dual (A∞(∁Ω))′b is nothing that the (DFS)-space

ind
n
{T ∈ (A∞(∁Ω))′ : |T|′n < ∞}.
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Proposition 3.2. Let Ω be a bounded regular domain in C with rectifiable boundary.

Then the Cauchy transformation of functionals is an epimorphism from
(

A∞(∁Ω)
)′

b
onto

A−∞(Ω).

Proof. Let T ∈
(

A∞(∁Ω)
)′

. Then |T|′n < ∞ for some n ∈ N and, consequently,

|T(g)| ≤ |T|′n |g|n, g ∈ A∞(∁Ω).

For every ζ ∈ Ω, the Cauchy kernel (z − ζ)−1 belongs to A∞(∁Ω) and

∣∣∣∣
1

z − ζ

∣∣∣∣
n

= max
0≤k≤n

max
z∈∁Ω

k!

|z − ζ|k+1
≤

n!

[dΩ(ζ)]n+1
, ∀ζ ∈ Ω.

Hence,
‖FT‖n+1 = sup

ζ∈Ω

|FT(ζ)|[dΩ(ζ)]n+1 ≤ n!|T|′n. (3.2)

By standard arguments, one can see that FT ∈ O(Ω). Thus, FT ∈ A−∞(Ω).
Applying (3.2), we see that the Cauchy transformation F is a linear continuous

operator from
(

A∞(∁Ω)
)′

b
into A−∞(Ω).

Prove now that F ((A∞(∁Ω)))′ = A−∞(Ω).
Let f ∈ A−∞(Ω). Then f ∈ O(Ω) and there is n ∈ N such that

‖ f‖n = sup
z∈Ω

| f (z)|[dΩ(z)]n < ∞. (3.3)

As above, take R > 0 so large that Ω ⊂ BR. By Whitney’s extension theorem
(see, e.g., [10, Theorem 2.3.6]), there exists a linear continuous extension opera-
tor L : Cn+1(BR \ Ω) → Cn+1(BR), where Cn+1(BR \ Ω) and Cn+1(BR) are the
spaces of (n + 1)-times continuously differentiable functions on BR \ Ω and BR,
respectively. By ‖L‖ we denote the norm of the operator L.

Obviously, A∞(∁Ω) ⊂ Cn+1(BR \ Ω) and, for every g ∈ A∞(∁Ω),
∂g

∂z̄
= 0 on

∁Ω. Since Lg
∣∣∣

BR\Ω
= g, we have that

∂(Lg)

∂z̄
= 0 on ∂Ω. For every z ∈ Ω, take

ζ ∈ ∂Ω so that |ζ − z| = dΩ(z). By Taylor’s formula, there is θ = θ(z, ζ) ∈ (0, 1)
such that

∂(Lg)

∂z̄
(z) =

n

∑
j=0

1

(n − j)!j!

∂n(∂(Lg)/∂z̄)

∂xn−j∂yj
(z + θ(ζ − z)) (x − ξ)n−j(y − η)j,

where z = x + iy and ζ = ξ + iη. Then

∣∣∣∣
∂(Lg)

∂z̄
(z)

∣∣∣∣ ≤
2n

n!
‖L‖|g|n+1[dΩ(z)]

n

and, consequently, the linear form

〈 f , g〉 :=
1

2πi

∫

Ω
f (z)

∂(Lg)

∂z̄
(z) dz̄ ∧ dz, g ∈ A∞(∁Ω),
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satisfies the following estimate

|〈 f , g〉| ≤ C|g|n+1, g ∈ A∞(∁Ω),

where C :=
2n−1

πn!
‖L‖‖ f‖nλ(Ω). Hence, ϕ := 〈 f , ·〉 is a linear continuous func-

tional on A∞(∁Ω).
We now check that for Ω with rectifiable boundary, F (ϕ) = f . Indeed, for

such a domain there exists a sequence of finitely connected domains Ωk with
smooth boundaries ∂Ωk such that Ωk ⊂ Ωk+1, Ω =

⋃
k Ωk and the lengths ℓk

of ∂Ωk are bounded from above by some constant M independent of k. By the
Cauchy-Green formula

1

2πi

∫

Ωk

f (z)
∂(Lg)

∂z̄
(z) dz̄ ∧ dz

=
1

2πi

∫

Ωk

∂( f Lg)

∂z̄
(z) dz̄ ∧ dz =

1

2πi

∫

∂Ωk

f (z)(Lg)(z) dz.

Consequently,

〈 f , g〉 = lim
k→∞

1

2πi

∫

∂Ωk

f (z)(Lg)(z) dz.

Let now g be holomorphic in some neighborhood of ∂Ω. Take k so large that ∂Ωk

lies in this neighborhood. As above, for every z ∈ ∂Ωk, choose ζ ∈ ∂Ω so that
|ζ − z| = dΩ(z). Then, using twice Taylor’s formula, we have that

(Lg)(z)

= g(ζ) +
g′(ζ)

1!
(z − ζ) + . . . +

g(n)(ζ)

n!
(z − ζ)n +

(Lg)(n+1)(z + θ1(z − ζ))

(n + 1)!
(z − ζ)n+1

= g(z)−
(Lg)(n+1)(z + θ2(z − ζ))

(n + 1)!
(z − ζ)n+1 +

(Lg)(n+1)(z + θ1(z − ζ))

(n + 1)!
(z − ζ)n+1,

where θ1,2 = θ1,2(z, ζ) ∈ (0, 1). Thus,

|(Lg)(z) − g(z)| ≤ B[dΩ(z)]n+1, z ∈ ∂Ωk,

where B is some constant depending only on |g|n+1. From this it follows that
∣∣∣∣
∫

∂Ωk

f (z)(Lg)(z) dz −
∫

∂Ωk

f (z)g(z) dz

∣∣∣∣ ≤ B‖ f‖ndkℓk,

where dk := maxz∈∂Ωk
dΩ(z) → 0 as k → ∞.

Thus, for g holomorphic in some neighborhood of ∂Ω,

〈 f , g〉 = lim
k→∞

1

2πi

∫

∂Ωk

f (z)g(z) dz.
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In particular, for g(z) =
1

z − ζ
with a fixed ζ ∈ Ω,

Fϕ(ζ) = lim
k→∞

1

2πi

∫

∂Ωk

f (z)

z − ζ
dz = f (ζ).

This completes the proof.

4 The Cauchy transformation as a mutual isomorphism

For a subset Z in C, let

PF [Z] :=

{
1

z − ζ
: ζ ∈ Z

}
,

being a family of partial fractions.

As an immediate consequence of Propositions 3.1 and 3.2, the well-known
Banach criterion of completeness, and the open mapping theorem, we have the
following result.

Proposition 4.1. (a) Let Ω be a bounded regular domain in C. The Cauchy transforma-

tion of functionals is an isomorphism between (A−∞(Ω))
′
b and A∞(∁Ω) if and only if

the system PF [∁Ω] is complete in A−∞(Ω).
(b) Let Ω be a bounded regular domain in C with rectifiable boundary. The Cauchy

transformation of functionals is an isomorphism between
(

A∞(∁Ω)
)′

b
and A−∞(Ω) if

and only if the system PF [Ω] is complete in A∞(∁Ω).

Thus, we should study the question about the completeness of the corre-
sponding systems of partial fractions in spaces A−∞(Ω) and A∞(∁Ω). To do this,
we start with the following auxiliary, perhaps known, result.

Lemma 4.2. Let Ω be a bounded domain in C and

Ã−k(Ω) :=

{
f ∈ O(Ω) : ‖̃ f‖k :=

∫

Ω
| f (z)|[dΩ(z)]k dλz < ∞

}
, k ∈ N,

being normed spaces. Then A−∞(Ω) =
∞⋃

k=1

Ã−k(Ω) and the original topology in

A−∞(Ω) coincides with the topology of inductive limit from the sequence
(

Ã−k(Ω)
)∞

k=1
.

Proof. Since ‖̃ f‖k ≤ λ(Ω)‖ f‖k for all f ∈ A−k(Ω), A−k(Ω) →֒ Ã−k(Ω) for every
k ∈ N.

Let now f ∈ Ã−k(Ω). Fixing the point z ∈ Ω, we have that the ball

Bz := {w : |w − z| ≤
1

2
dΩ(z)} is contained in Ω and dΩ(w) ≥

1

2
dΩ(z) for all
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w ∈ Bz. Then, using also that | f | is a subharmonic function in Ω, we have

| f (z)| ≤
4

π[dΩ(z)]2

∫

Bz

| f (w)| dλw

≤
4

π[dΩ(z)]2

(
sup
w∈Bz

1

[dΩ(w)]k

) ∫

Ω
| f (w)|[dΩ(w)]k dλw

≤
2k+2

π[dΩ(z)]k+2
‖̃ f‖k.

Therefore, ‖ f‖k+2 ≤ 2k+2π−1‖̃ f‖k for all f ∈ Ã−k(Ω). Consequently, Ã−k(Ω) →֒

A−k−2(Ω).
This completes the proof.

Theorem 4.3. Let Ω be a Carathéodory domain in C. Then the Cauchy mapping is an

isomorphism from (A−∞(Ω))
′
b onto A∞(∁Ω).

Proof. By Proposition 4.1 (a), we should only prove that PF [∁Ω] is complete in
A−∞(Ω).

First, we prove that the set of all polynomials is dense in A−∞(Ω).
Fix any k ∈ N and note that dΩ(w) ≤ 2dΩ(z) for every z ∈ Ω and all w ∈ Ω

with |w − z| ≤ dΩ(z). Then

1

r2

∫

|w−z|≤r
[dΩ(w)]k dλw ≤ 2kπ[dΩ(z)]

k , 0 < r ≤ dΩ(z), z ∈ Ω.

Consequently, for each f ∈ Ã−k(Ω),

∫

Ω
| f (z)|

{
sup

0<r≤dΩ(z)

1

r2

∫

|w−z|≤r
[dΩ(w)]k dλw

}
dλz

≤ 2kπ
∫

Ω
| f (z)|[dΩ(z)]k dλz = 2kπ‖̃ f‖k < ∞.

Hence, by Hedberg [9, Theorem 1] the set of all polynomials is dense in Ã−k(Ω)
(this space coincides with H1([dΩ(z)]

k ; Ω) in the notation of [9]). Using Lem-
ma 4.2, we obtain the desired density of polynomials in A−∞(Ω).

To complete the proof, it is sufficient to note that each polynomial can be ap-
proximated in the topology of A−∞(Ω) by partial fractions of PF [Ωc]. But this
is an easy consequence of the well-known fact that PF [∁BR] is a complete sys-
tem in O(BR) (as above, BR is the open disk centered at the origin of radius R).
Taking R so large that Ω ⊂ BR, we can approximate each polynomial by func-
tions from spanPF [∁BR] ⊂ PF [∁Ω] in the topology of O(BR) and, in particular,
by the norm ‖ f‖ := maxz∈Ω | f (z)|. It remains to note that ‖ f‖k ≤ ‖ f‖ for all

f ∈ O(Ω) ∩ C(Ω).
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Proposition 4.4. Let Ω be a bounded domain in C. Then the system PF [Ω] is complete
in A∞(∁Ω).

Proof. Let g ∈ A∞(∁Ω). By Whitney’s extension theorem, there exists g̃ ∈ C∞(R2)

such that g̃(α)
∣∣
∁Ω

= g(α) for all α = (α1, α2) ∈ N2
0. Fixed z ∈ ∁Ω, let R > 0 be

so large that Ω ∪ {z} ⊂ BR. Applying the Cauchy–Green formula and using that
g ∈ O(∁Ω), we have

g(z) = g̃(z) =
1

2πi

∫

∂BR

g̃(τ)

τ − z
dτ +

1

2πi

∫

BR

(∂g̃/∂z̄)(τ)

τ − z
dτ̄ ∧ dτ

=
1

2πi

∫

∂BR

g(τ)

τ − z
dτ +

1

2πi

∫

Ω

(∂g̃/∂z̄)(τ)

τ − z
dτ̄ ∧ dτ

=
1

2πi

∫

Ω

(∂g̃/∂z̄)(τ)

τ − z
dτ̄ ∧ dτ.

Thus,

g(z) =
1

2πi

∫

Ω

(∂g̃/∂z̄)(τ)

τ − z
dτ̄ ∧ dτ, z ∈ ∁Ω,

and, consequently,

g(k)(z) =
k!

2πi

∫

Ω

(∂g̃/∂z̄)(τ)

(τ − z)k+1
dτ̄ ∧ dτ, z ∈ ∁Ω, k ∈ N0. (4.1)

As above, since
∂g̃

∂z̄
(τ) = 0 on ∂Ω,

∂g̃

∂z̄
(τ) = o([dΩ(τ)]m) (τ ∈ Ω, m ∈ N).

Hence, the functions
(∂g̃/∂z̄)(τ)

(τ − z)k+1
are continuous and, consequently, equicontinu-

ous on Ω × ∁Ω. Consequently, for a fixed ε > 0 and n ∈ N0, there is δ > 0 such
that
∣∣∣∣
(∂g̃/∂z̄)(τ)

(τ − z)k+1
−

(∂g̃/∂z̄)(ξ)

(ξ − z)k+1

∣∣∣∣ ≤ ε, ∀z ∈ ∁Ω, ∀ξ, τ ∈ Ω with |ξ − τ| ≤ δ,

and k = 0, . . . , n.

Choosing a partition of Ω into measurable pairwise disjoint subsets Ω1, . . . , Ωp,
the diameters of which are less than δ and taking arbitrary points τj ∈ Ωj

(1 ≤ j ≤ p), we then have
∣∣∣∣∣

1

2πi

∫

Ω

(∂g̃/∂z̄)(τ)

(τ − z)k+1
dτ̄ ∧ dτ −

p

∑
j=1

2iλ(Ωj)
(∂g̃/∂z̄)(τj)

(τj − z)k+1

∣∣∣∣∣

≤
1

2π

p

∑
j=1

∫

Ωj

∣∣∣∣∣
(∂g̃/∂z̄)(τ)

(τ − z)k+1
−

(∂g̃/∂z̄)(τj)

(τj − z)k+1

∣∣∣∣∣ dλ ≤
1

2π

p

∑
j=1

ελ(Ωj) =
λ(Ω)

2π
ε,

for all z ∈ ∁Ω and k = 0, . . . , n. Then, putting cj :=
2iλ(Ωj)

π

∂g̃

∂z̄
(τj) and using

(4.1), we obtain that the function

h(z) :=
p

∑
j=1

cj

τj − z
∈ spanPF [Ω]
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satisfies the inequalities

|g(k)(z)− h(k)(z)| ≤ k!
λ(Ω)

2π
ε, z ∈ ∁Ω, k = 0, . . . , n.

Thus,

|g − h|n ≤ n!
λ(Ω)

2π
ε,

which completes the proof.

As an immediate consequence of Propositions 4.1 (b) and 4.4 we have the
desired result about the strong dual of A∞(∁Ω).

Theorem 4.5. Let Ω be a bounded regular domain in C with rectifiable boundary. Then

the Cauchy mapping is an isomorphism from
(

A∞(∁Ω)
)′

b
onto A−∞(Ω).

To this end, combining Theorems 4.3 and 4.5, we obtain

Corollary 4.6. Let Ω be a Carathéodory domain with rectifiable boundary. Then the
Cauchy transformation of functionals establishes a mutual duality between the spaces
A−∞(Ω) and A∞(∁Ω).

5 A possibility of representation of functions from A−∞(Ω) and

A∞(∁Ω) by series of partial fractions

In this section we study the question whether functions from the two spaces
A−∞(Ω) and A∞(∁Ω) can be represented in the form of a series of partial frac-
tions.

This problem can be formulated in a general setting as follows: a sequence(
xk

)
of non-zero elements of a locally convex space H is said to be an absolutely

representing system in H if any element x from H can be represented in the form
of the series

x =
∞

∑
k=1

ckxk,

which converges absolutely in the topology of H (see, e.g., [12]). This concept is
more general than the concept of basis, where the uniqueness of the representa-
tion is essentially required.

There are various criteria for a countable system to be absolutely representing
in (FS)- and (DFS)- spaces. Later such criteria have been formulated for more
practical spaces. One of those results will be used in this section.

5.1 Weakly sufficient sets for A−∞(Ω)

Recall that we consider the space A−∞(Ω) with its natural topological structure,
the internal inductive limit of Banach spaces A−k(Ω):

(A−∞(Ω), τ) = lim ind A−k(Ω).
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For a subset S ⊆ Ω, we define ‖ f‖k,S := supz∈S | f (z)| [dΩ(z)]
k , and

A−k,S(Ω) := { f ∈ A−∞(Ω) : ‖ f‖k,S < +∞}. In general, ‖ · ‖k,S is a semi-norm,

and we have inclusion relations A−k(Ω) ⊂ A−k,S(Ω) ⊂ A−∞(Ω). From this it
follows that A−∞(Ω) =

⋃
k∈N A−k(Ω) =

⋃
k∈N A−k,S(Ω).

Since A−k(Ω) →֒ A−k,S(Ω), one can endow A−∞(Ω) with another weaker
internal inductive limit topology from the sequence (A−k,S(Ω), ‖ · ‖k,S) of vector
spaces equipped with the semi-norms:

(A−∞(Ω), τS) = lim ind A−k,S(Ω).

Definition 5.1. (see, e.g., [17]) A subset S ⊆ Ω is called weakly sufficient for
A−∞(Ω) if the two topologies τ and τS are equivalent.

It is clear that the domain Ω itself is weakly sufficient for the space A−∞(Ω).
The question to ask is: does there exist a discrete (countable) subset S which is
weakly sufficient? The answer is positive, and moreover, there are different ways
to solve this problem.

In [8] it was shown, in particular, that for a rather general weighted inductive
limit of spaces of holomorphic functions in any domain of C satisfying some nat-
ural growth conditions, there always exists a discrete weakly sufficient set. The
following result is given in [3].

Lemma 5.2. Let Ω be an arbitrary domain in C. Then in the space A−∞(Ω) every
weakly sufficient set contains a discrete, weakly sufficient subset which is closed in Ω.

It should be noted that Lemma 5.2, by applying the result from [8], works
for any domain in C. It however guarantees only a “theoretical existence” of
such a discrete set. In [7] an explicit (“algorithmic”) method for construction of
a countable weakly sufficient set was presented for any bounded domain with
C1 smooth boundary. Applying this algorithm we can also obtain the (explicit)
existence of weakly sufficient sets for A−∞(Ω) in the present paper.

5.2 Sufficient sets for A∞(∁Ω)

For a set S ⊂ ∁Ω, we put

| f |m,S := max
0≤k≤n

max
z∈S

| f (k)(z)|, f ∈ A∞(∁Ω), n = 0, 1, . . . .

Then the system of seminorms (| f |m,S)
∞
m=0 defines another topology τS in A∞(∁Ω)

that is weaker than the origin topology τ.

Similar to the definition of weak sufficiency above, we can introduce the fol-
lowing notion.

Definition 5.3. The set S is called sufficient for A∞(∁Ω) if the two topologies τ
and τS coincide.
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It is clear that S is sufficient for A∞(∁Ω) if and only if

∀m ∃ℓ ∃Am > 0 : | f |m ≤ Am | f |ℓ,S, ∀ f ∈ A∞(∁Ω).

The existence of sufficient sets in A∞(∁Ω) is given in the following result
([3, Corollary 3.6]).

Lemma 5.4. Let Ω be a regular domain in C. Then there exists a sequence (ζk)
∞
k=1 ⊂

∁Ω, without accumulation points in ∁Ω, which is a sufficient set for A∞(∁Ω).

5.3 Functions from A∞(∁Ω) can be represented in series of partial frac-

tions

Applying a criterion [13, Theorem F] and Theorem 4.5 to the spaces A∞(∁Ω) and
A−∞(Ω), we obtain the following.

Lemma 5.5. Let Ω be a bounded regular domain in C with rectifiable boundary. The

system
(

1
zk−ζ

)∞

k=1
, where (zk) ⊂ Ω, is absolutely representing in the space A∞(∁Ω) if

and only if the set (zk) is weakly sufficient for the space A−∞(Ω), i.e.,

∀s ∈ N ∃p = p(s) ∈ N, ∃C = C(s) > 0 such that

sup
z∈Ω

|g(z)|[dΩ(z)]p ≤ C sup
k≥1

|g(zk)|[d(zk)]
s, ∀g ∈ A−∞(Ω).

By Lemma 5.2, we have the following representation result for A∞(∁Ω).

Theorem 5.6. Let Ω be a bounded regular domain in C with rectifiable boundary. Then

there is a discrete sequence
(
zk

)∞

k=1
⊂ Ω, such that the system

(
1

zk−ζ

)∞

k=1
is absolutely

representing in the space A∞(∁Ω), that is, any function g ∈ A∞(∁Ω) can be represented
in the form of a series of partial fractions

g(ζ) =
∞

∑
k=1

ck

zk − ζ
, ∀ζ ∈ ∁Ω,

that converges absolutely in the space A∞(∁Ω).

5.4 The space A−∞(Ω) has no absolutely representing system of partial

fractions

We note that for the space A−∞(Ω) the “dual relationship” above would look as
follows: the system (

1

z − ζk

)∞

k=1

, ζk ∈ ∁Ω (k ∈ N),

is absolutely representing in A−∞(Ω), that is, each function f ∈ A−∞(Ω) can be
represented in the form of a series

f (z) =
∞

∑
k=1

ck

z − ζk
, ∀z ∈ Ω, (5.1)
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which converges absolutely in the topology of A−∞(Ω), if and only if the set
(ζk)

∞
k=1 ⊂ ∁Ω is sufficient for the space A∞(∁Ω).

However, despite Lemma 5.4, there does not exist any absolutely representing
system of partial fractions in the space A−∞(Ω). In other words, representation
(5.1) is impossible.

Theorem 5.7. Let Ω be a Carathéodory domain with rectifiable boundary. There is no
absolutely representing system of partial fractions in A−∞(Ω).

Proof. Assume, on the contrary, that there exists a sequence (ζk)
∞
k=1 ⊂ ∁Ω such

that the corresponding system
(

1
z−ζk

)∞

k=1
is absolutely representing for the space

A−∞(Ω). This means that for a function f ∈ A−∞(Ω), we have a representation
(5.1), where the series converges absolutely in the topology of A−∞(Ω).

We may assume w.l.o.g. that 0 ∈ Ω. Since the topology in A−∞(Ω) is stronger
than the topology of pointwise convergence on Ω,

∞

∑
k=1

|ck|

|z − ζk|
< ∞, for each z ∈ Ω. (5.2)

In particular, for z = 0 ∈ Ω, we have

M :=
∞

∑
k=1

|ck|

|ζk|
< ∞.

Let R := max{|z| : z ∈ ∂Ω}. Using the facts that |z − ζ| >
|ζ|

2
, ∀z ∈ Ω,

∀|ζ| > 2R, and dΩ(z) ≤ min{R, |z − ζ|}, ∀z ∈ Ω, ∀ζ ∈ ∁Ω, we have

| f (z)| ≤ ∑
|ζk|≤2R

|ck|

|z − ζk|
+ ∑

|ζk|>2R

|ck|

|z − ζk|

≤
1

dΩ(z)
∑

|ζk|≤2R

|ck|+ ∑
|ζk|>2R

2|ck|

|ζk|

≤
1

dΩ(z)


 ∑

|ζk|≤2R

2R

|ζk|
|ck|+ ∑

|ζk|>2R

2R|ck|

|ζk|




=
2RM

dΩ(z)
, for all z ∈ Ω.

This shows that every function f ∈ A−∞(Ω), which is represented in the form
(5.1), necessarily belongs to A−1(Ω). On the other hand, for every ζ ∈ ∂Ω, the

function fζ(z) :=
1

(z − ζ)2
belongs to A−2(Ω) \ A−1(Ω). This contradiction com-

pletes the proof.
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