Double point-homogeneous spherical curves

Guy Valette

Abstract

A curve is, in this paper, the image of the circle S^{1} under an immersion f into S^{2}, \mathbb{R}^{2} or the real projective plane $P_{2}(\mathbb{R})$, such that every multiple point of f is an ordinary double point. Such a curve C is double pointhomogeneous or DP-homogeneous when the group of diffeomorphisms (of S^{2}, \mathbb{R}^{2} or $P_{2}(\mathbb{R})$) preserving C has a transitive action on the set of its double points. The orbits of DP-homogeneous curves in S^{2} are totally determined; using combinatorial methods, we prove that they fall into five countably infinite families ; the description of every family is illustrated by drawings of some representatives with a small number of double points. As a corollary, we obtain a similar classification of the DP-homogeneous curves in \mathbb{R}^{2}. We also propose a conjecture about the classification of DP-homogeneous curves in $P_{2}(\mathbb{R})$.

1 Introduction

The curves considered in this paper are generic which means that each one is the image of an immersion f of the circle S^{1} into a two-dimensional manifold M such that every multiple point of f is an ordinary double point. Such a curve C is said to be double point-homogeneous or DP-homogeneous if, for every pair (p, q) of double points of C, there is a diffeomorphism of M which preserves C and sends p onto q. The main result of this paper is the classification of the orbits of DP-homogeneous spherical curves (case $M=S^{2}$) under the action of the group of all diffeomorphisms of S^{2}. A consequence of this is the classification of DP-homogeneous plane curves (case $M=\mathbb{R}^{2}$) under the action of the group of

[^0]all diffeomorphisms of \mathbb{R}^{2}. We sometimes say that two curves are equivalent if they belong to the same orbit.

Examples of DP-homogeneous plane curves are presented in Figures 1 and 2. Any two different curves among the eight shown there are not equivalent. But if we denote by C a curve in Figure 1 and by D the curve in Figure 2 having the same number of double points as C, and if we map \mathbb{R}^{2} onto open subsets of S^{2} by diffeomorphisms F and G, then the spherical curves $F(C)$ and $G(D)$ are equivalent. This remark suggests the existence of a first infinite family of orbits of DP-homogeneous spherical curves, the family \mathbf{P}, with representatives of \mathbf{P}_{1} to \mathbf{P}_{4} shown in Figure 3.

FIGURE 1: Four DP-homogeneous plane curves which are not equivalent with respect to diffeomorphisms of \mathbb{R}^{2}. They belong to Family \mathbf{P}^{\prime} (see Section 4).

Figure 2: Four DP-homogeneous plane curves which are not equivalent to those of Figure 1. They belong to Family $\mathbf{P}^{\prime \prime}$ (see Section 4).

Figure 3: Representatives of the first four elements of the family \mathbf{P} of orbits of DPhomogeneous spherical curves.

We shall prove that the other orbits of DP-homogeneous spherical curves are classified in a natural way into four families presented in Figures 4, 5, 6 and 7 by means of representatives.

Figure 4: Representatives of the first three elements of the family \mathbf{Q}.

Figure 5: Representatives of the first three elements of the family \mathbf{R}.

Figure 6: Representatives of the first three elements of the family \mathbf{S}.

Figure 7: Representatives of the first three elements of the family \mathbf{T}.
Let us denote by $O(n)$ the number of orbits of DP-homogeneous spherical curves having exactly n double points ($n \geq 1$); a first consequence of our classification is the fact that the function $n \rightarrow O(n)$ is completely known: its first fourteen values are $1,2,2,4,2,2,2,4,2,3,2,3,2,3$, and the next values satisfy the recurrence $O(n)=O(n-12)$.

Another consequence of our classification is the analogous classification of the orbits of DP-homogeneous plane curves. Two infinite families were already presented in Figures 1 and 2. There is a third one: representatives of its first three elements are shown in Figure 8.

Figure 8: Representatives of the first elements of the third family of orbits of DPhomogeneous plane curves. They belong to Family \mathbf{S}^{\prime} (see Section 4).

2 Statement of the main result

The following definitions, where M denotes \mathbb{R}^{2} or S^{2}, are useful for the description of DP-homogeneous (plane or spherical) curves.

Definitions: A curvilinear m-gon ($m \geq 1$) is any subset D of M which is homeomorphic to a closed disk and whose boundary B is a closed curve which is smooth everywhere excepted in m angular points, called vertices. If $m>1$, a side of D is an arc of B joining neighboring vertices; if $m=1$, it is B.

A vertex a of the curvilinear m-gon D is said to be salient if the measure of the interior angle of D in a is smaller than π, and is re-entrant if this measure is greater than π.

Let C be a curve having n double points ($n \geq 1$); a curvilinear m-gon is said to be inscribed in C if its sides are arcs of C joining neighboring double points if $m>1$, the same double point if $m=1$. An example of an inscribed 5-gon is given in Figure 9.

FIgURE 9: A 5-gon (coloured in grey) inscribed in a curve.
A curve C in M determines a tiling of M, whose tiles are the closures of the connected components of $M \backslash C$; for brevity's sake, we will say that the tiles of this tiling are the tiles of C. Such a tile is biangular (resp. triangular) if it is a curvilinear 2-gon (resp. 3-gon) with salient vertices.

ThEOREM: If a DP-homogeneous spherical curve has at least one double point, then (under the group of all diffeomorphisms of S^{2}) it belongs to one orbit of one of the following five families:

1) The family \mathbf{P} is the sequence of orbits $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots, \mathbf{P}_{n}, \ldots$ where any element of \mathbf{P}_{1} is a figure-eight curve and, if $n>1$, any element C of \mathbf{P}_{n} is a curve (with n double points) one tile of which is a curvilinear n-gon with salient vertices, each of these vertices being also the vertex of a curvilinear 1-gon inscribed in C. Examples of elements of \mathbf{P}_{1}, $\mathbf{P}_{2}, \mathbf{P}_{3}$ and \mathbf{P}_{4} are shown on the four spheres of Figure 3.
2) The family \mathbf{Q} is the sequence of orbits $\mathbf{Q}_{2}, \mathbf{Q}_{4}, \mathbf{Q}_{6}, \ldots, \mathbf{Q}_{2 m}, \ldots$ where any element C of $\mathbf{Q}_{2 m}$ is a curve (with $2 m$ double points) in which a curvilinear $2 m$-gon D is inscribed; the vertices of D are alternately salient and re-entrant and each of them is also the vertex of a curvilinear 1-gon inscribed in C. Examples of elements of $\mathbf{Q}_{2}, \mathbf{Q}_{4}$ and \mathbf{Q}_{6} are shown on the three spheres of Figure 4.
3) The family \mathbf{R} is the sequence of orbits $\mathbf{R}_{4}, \mathbf{R}_{8}, \mathbf{R}_{12}, \ldots, \mathbf{R}_{4 m}, \ldots$ where any element C of $\mathbf{R}_{4 m}$ is a curve (with $4 m$ double points) in which a curvilinear $4 m$-gon D is inscribed; every vertex of D has one salient neighbour and one re-entrant neighbour, and is also the vertex of a curvilinear 1-gon incribed in C. Examples of elements of $\mathbf{R}_{4}, \mathbf{R}_{8}$ and \mathbf{R}_{12} are shown on the spheres of Figure 5.
4) The family \mathbf{S} is the sequence of orbits $\mathbf{S}_{3}, \mathbf{S}_{5}, \mathbf{S}_{7}, \ldots, \mathbf{S}_{2 m+1}, \ldots$ where any element C of $\mathbf{S}_{2 m+1}$ is a curve (with $2 m+1$ double points) in which two curvilinear $(2 m+1)$-gons with the same salient vertices are inscribed; they are separated by a chain of $2 m+1$ biangular tiles with salient vertices. Examples of elements of $\mathbf{S}_{3}, \mathbf{S}_{5}$ and \mathbf{S}_{7} are shown on the three spheres of Figure 6.
5) The family \mathbf{T} is the sequence of orbits $\mathbf{T}_{4}, \mathbf{T}_{8}, \mathbf{T}_{10}, \ldots, \mathbf{T}_{6 m-2}, \mathbf{T}_{6 m+2}, \ldots$ where any element C of $\mathbf{T}_{6 m \pm 2}$ is a curve (with $6 m \pm 2$ double points) whose two tiles are curvilinear $(3 m \pm 1)$-gons with salient vertices; they are strictly separated by a belt of $6 m \pm 2$ triangular tiles. If $6 m \pm 2>4$, then the tiling of C is combinatorially equivalent to the natural tiling of the boundary of an antiprism whose bases are ($3 m \pm 1$)-gons. Examples of elements of $\mathbf{T}_{4}, \mathbf{T}_{8}$ and \mathbf{T}_{10} are shown on the spheres of Figure 7.

3 Gauss diagrams and proofs

Our proof of the Theorem uses diagrams introduced by Gauss [Ga]. We define them via codes of curves which are similar to the Gauss codes used in knot theory.

Notations and definitions: Let $C=f\left(S^{1}\right)$ be a spherical curve with n double points $(n>0)$. In order to define a Gauss code of C, we first give a name (letter with or without subscript) to each double point of C and then write their names following the order in which $f(u)$ meets them when u runs along S^{1}; the word (of length $2 n$) so obtained is a Gauss code of C, which is defined (after the choice of names) up to an element of the dihedral group $D_{2 n}$.

Every Gauss code Ω of $2 n$ letters may be represented by a Gauss diagram of order n, i.e. a plane figure Γ consisting of
(i) a circle γ of the Euclidean plane,
(ii) the vertices of a regular $2 n$-gon P inscribed in γ, also called vertices of Γ, denoted by the letters of Ω in such a way that neighboring vertices of P correspond to successive letters of Ω,
(iii) the n chords joining the vertices which have the same name.

Figure 10 describes an example of this representation.

AABCCDEBDFFE
DFFEAABCCDEB
CCBAAEFFDBED

Figure 10: From left to right : a curve whose double points are A, B, C, D, E, F; three equivalent Gauss codes of this curve ; a Gauss diagram Γ of these codes and of the curve ; a variant to Γ with a better visibility (it is sometimes useful to take different but similar names for the endpoints of a chord).

Let K be a chord of the Gauss diagram Γ; the step of K is the minimum number of sides of P needed to join the endpoints of K along the boundary of P. An s-chord is a chord whose step is s (in the example of Fig. 10, Γ has three 1-chords, one 3 -chord and two 5-chords).

One easily proves that every chord in the Gauss diagram of any plane or spherical curve has an odd step and that if a curve is DP-homogeneous, then all its chords have the same step (note that the converse is not true: for example, there is a spherical curve with three double points which is not DP-homogeneous, but whose Gauss diagram has only 1-chords).

Lemma 1: If a spherical curve C with n double points is DP-homogeneous, then its Gauss diagram Γ is invariant under the group C_{n} of rotations whose angles are multiples of $2 \pi / n$.

Proof: Let s be the common step of the chords of Γ and let [0], [1], ... , [2n-1] be the vertices of the polygon P used in the definition of Γ (the sides of P are the segments $[[j],[j+1]]$, addition being done $\bmod 2 n$). As the Lemma is obvious when $s=1$ or $s=n$, we may assume that $1<s<n$ and prove the assertion by contradiction. Let us agree that two chords are neighboring if one of them is the image of the other by a rotation of π / n.

If the assertion were false, then we could find in Γ two neighboring chords, one of them being [[a],[$a+s]$] and the other [$[a+1],[a+1+s]]$; two possibilities occur: either one of these chords is neighboring with a third chord, or not.
α) The first assumption implies that a double point of C is a vertex of two biangular tiles of C; as C is DP-homogeneous, all the double points of C have the same property; this implies that, for every vertex [j], the segment $[[j],[j+s]]$ is a chord of Γ, which is only possible when $s=n$, contradicting the condition $1<s<n$.
β) The second assumption and the DP-homogeneity imply that the set of chords
of Γ can be partitioned into disjoint pairs of neighboring chords and consequently, that the set of vertices of Γ can be partitioned into disjoint pairs of neighboring vertices which are endpoints of neighboring chords. Since $[[a],[a+s]]$ and $[[a+1],[a+1+s]]$ are such chords, the number of vertices of Γ between $[a+1]$ and $[a+s]$ is equal to $s-2$, an odd number, giving the contradiction.

The notation $\Gamma(n, s)$ will be used for any plane diagram consisting of
(i) a circle γ of the Euclidean plane,
(ii) the vertices of a regular $2 n$-gon P inscribed in γ,
(iii) n chords of γ with odd step s joining pairs of vertices of P, whose union is invariant under the rotation group C_{n}.

Note that, given integers n and s with s odd and $1 \leq s \leq n$, there is essentially one diagram with these properties. Examples are drawn in Fig. 11.

Figure 11: The diagrams $\Gamma(6,3)$ and $\Gamma(8,5)$; $A F B A C B D C E D F E$ may be a code for $\Gamma(6,3)$, and $A_{0} a_{6} A_{1} a_{7} A_{2} a_{0} A_{3} a_{1} A_{4} a_{2} A_{5} a_{3} A_{6} a_{4} A_{7} a_{5}$ for $\Gamma(8,5)$.

In the proof of Lemma 2, we use a procedure found by L. Lovasz and M.L. Marx [LM] to decide whether or not a word of $2 n$ characters (n symbols occurring twice) is the Gauss code of a spherical curve. In order to increase the readability of our paper, we now recall three definitions and two properties given in [LM].

Definitions: If a word has the form $A \alpha A \beta$ where α and β are non-empty sequences, then the vertex split at A is the change from this word to $\alpha^{-1} \beta$ where α^{-1} has the same letters as α but in the opposite order.

The loop removal at A of the word $A \alpha A \beta$ is the change from this word to the one obtained from β by deleting all the letters which occur in α.

A reduced word of a word Ω is a non-empty word obtained from Ω after a finite number of changes (vertex splits or loop removals).

PROPERTY 1 ("biparity condition" in [LM]): If the Gauss code of a spherical curve with at least two double points A and B has the form $A \alpha A \mu B \beta B \gamma$ where α, μ, β, γ are finite (possibly empty) sequences of letters, then α and β have an even number of common letters.

Property 2 ("Theorem" in [LM]): A word Ω wherein each letter occurs twice is a Gauss code of a spherical curve if and only if no reduced word of Ω has the form $A_{1} A_{2} \ldots A_{m} A_{1} A_{2} \ldots A_{m}$ with m even.

Lemma 2: If C is a DP-homogeneous spherical curve, then its Gauss diagram belongs to one of the three families described below and shown in Fig. 12:
a) the family \mathbf{A} consists of diagrams $\Gamma(n, 1)$ where $n \in \mathbb{N}_{0}$,
b) the family \mathbf{B} consists of diagrams $\Gamma(n, n)$ where $n=2 m+1\left(m \in \mathbb{N}_{0}\right)$,
c) the family \mathbf{C} consists of diagrams $\Gamma(n, s)$ where n and s depend on $m \in \mathbb{N}_{0}$ in one of the following ways:
either $\quad n=6 m-2$ and $s=4 m-1 \quad$ or $\quad n=6 m+2$ and $s=4 m+1$.

FIgURe 12: The three families of diagrams considered in Lemma 2.
Proof: The family A (resp. B) consists of all the diagrams described in Lemma 1 when the step s equals 1 (resp. n). Hence it remains to exclude, among the diagrams $\Gamma(n, s)$ such that $2<s<n$, those which are neither of the form $n=6 m-2$ and $s=4 m-1$ nor of the form $n=6 m+2$ and $s=4 m+1$. In other words, we must exclude all diagrams $\Gamma(n, s)$ for which n is odd and, among the diagrams with n even, those for which $2 n$ does not belong to $\{3 s-1,3 s+1\}$. Suppose on the contrary that there is a spherical curve C whose Gauss diagram must be excluded. By Lemma 1, its Gauss code Ω may be written as $A \alpha A \mu B \beta B \gamma$ where the words μ and γ are possibly empty and $|\alpha|=|\beta|=s-1$. ($|\sigma|$ denotes the number of letters of the word σ). We distinguish three cases in order to get a contradiction.

ג) $2 n$ is greater than $3 s+1$. If $s \equiv 3 \bmod 4$, then we take $\mu=\varnothing$ in the notation above for Ω; if $s \equiv 1 \bmod 4$, then we choose $|\mu|=2$; in both cases, the number of common letters of α and β is odd, contradicting Property 1.
$\beta) n$ is odd and $2 n \leq 3 s+1$. Since $|\alpha|=|\beta|=s-1$, we have

$$
|\mu|+|\gamma|=2 n-2(s-1)-4=2 n-2 s-2 \leq 3 s+1-2 s-2=s-1,
$$

which shows that a letter cannot appear twice in any word α, μ, β or γ; moreover, the distance between any letter of μ and any letter of γ is at least $s+2$; this implies that any letter of $\mu \cup \gamma$ appears also in $\alpha \cup \beta$. Hence the number of letters with two occurences in $\alpha \cup \beta$ is equal to $(2(s-1)-(2 n-2 s-2)) / 2$ i.e. $2 s-n$, which implies that the number of letters common to α and β is the odd number $2 s-n$, contradicting Property 1.
$\gamma) n$ is even and $2 n<3 s+1$. We use the notation introduced in the second example of Fig. 11 for the Gauss code of a curve C with diagram $\Gamma(n, s)$: so
$A_{k}=[2 k]$ and $a_{k}=[2 k+s]$ if we identify the set of vertices of $\Gamma(n, s)$ with $\mathbb{Z} /(2 n)$. By Lemma 1, a Gauss code for $\Gamma(6,5)$ can be written as

$$
\Omega(6,5)=A_{0} a_{4} A_{1} a_{5} A_{2} a_{0} A_{3} a_{1} A_{4} a_{2} A_{5} a_{3}
$$

if $\Omega(6,5)$ were the Gauss code of a spherical curve, then a vertex split of $\Omega(6,5)$ at A_{0} would produce the Gauss code Ω^{\prime} of a spherical curve, but this is not so because Ω^{\prime} does not satisfy the biparity condition, a contradiction. In the case $n>7$, a Gauss code for $\Gamma(n, s)$ may be written as

$$
\Omega(n, s)=A_{0} a_{g} A_{1} a_{g+1} A_{2} \ldots a_{n-1} A_{h} a_{0} A_{h+1} a_{1} \ldots A_{g} a_{g-h} A_{g+1} a_{g-h+1} \ldots A_{n-1} a_{g-1}
$$

where $g=(2 n-s+1) / 2$ and $h=(s-1) / 2$. In this case two changes are needed to conclude: the first one is the vertex split of $\Omega(n, s)$ at A_{0}, giving the word

$$
A_{h} a_{n-1} A_{h-1} \ldots A_{2} a_{g+1} A_{1} a_{g} A_{h+1} a_{1} \ldots A_{g} a_{g-h} A_{g+1} a_{g-h+1} \ldots A_{n-1} a_{g-1}
$$

or the equivalent word

$$
\Omega^{\prime}=A_{g+1} a_{g-h+1} \ldots A_{n-1} a_{g-1} A_{h} a_{n-1} A_{h-1} \ldots A_{2} a_{g+1} A_{1} a_{g} A_{h+1} a_{1} \ldots A_{g} a_{g-h}
$$

also written $\Omega^{\prime}=A_{g+1} \alpha a_{g+1} \beta$ if we set

$$
\alpha=a_{g-h+1} \ldots A_{n-1} a_{g-1} A_{h} a_{n-1} A_{h-1} \ldots A_{2} \text { and } \beta=A_{1} a_{g} A_{h+1} a_{1} \ldots A_{g} a_{g-h}
$$

Finally, a loop removal of Ω^{\prime} at A_{g+1} creates the reduced word $A_{1} a_{g} a_{1} A_{g}$ which means, according to Property 2, that $\Omega(n, s)$ is not the Gauss code of a spherical curve, contrary to the assumption.

Proof of the Theorem: Every curve described in the Theorem is clearly DP-homogeneous; moreover, if it belongs to one of the families \mathbf{P}, \mathbf{Q} or \mathbf{R}, then its Gauss diagram belongs to family \mathbf{A} while, if it belongs to family \mathbf{S} (resp. \mathbf{T}), then its Gauss diagram belongs to family B (resp. C). So its remains to show that every DP-homogeneous spherical curve C with n double points belongs to one of the families $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ or \mathbf{T}. The rest of the proof has three parts, corresponding to the three possible families \mathbf{A}, \mathbf{B} and \mathbf{C}.
a) Curves with diagram in family \mathbf{A}. If the Gauss diagram of C is $\Gamma(1,1)$, then C is clearly a figure-eight curve and all such curves form the orbit \mathbf{A}_{1}. If the Gauss diagram of C is $\Gamma(n, 1)$ with $n>1$, then C is a union of n loops and n arcs connecting neighboring double points; these arcs form a Jordan curve B, which is boundary of two curvilinear n-gons.
α) If the loops of C at a double point and at its two neighbors (only one if $n=2$) are on the same side of B, then this property is true for every double point, and so C belongs to the orbit \mathbf{P}_{n}.
β) If the loop of C at a double point is on one side of B while the loops at its neighbors are on the other side, then this property is true for every double point, which implies that n is even and that C belongs to the orbit \mathbf{Q}_{n}.
γ) If the loops of C at the neighbors of a double point are not on the same side of B, then this property is true for every double point, and so n is a multiple of 4 and C belongs to the orbit \mathbf{R}_{n}.
b) Curves with diagram in family B. If the Gauss diagram of C is $\Gamma(n, n)$ ($n=2 m+1, m>0$), then any simple arc of the circle γ of $\Gamma(n, n)$ (i.e. any arc joining neighboring vertices) determines with its antipodal arc the boundary of a
biangular tile of the tiling of C; these biangular tiles have the properties described in point 4 of the Theorem, and so C belongs to the orbit \mathbf{S}_{n}.
c) Curves with diagram in family \mathbf{C}. A Gauss code of $\Gamma(4,3)$ is

$$
\Omega(4,3)=A_{0} a_{3} A_{1} a_{0} A_{2} a_{1} A_{3} a_{2}
$$

The simple arcs $A_{0} a_{3}, A_{3} a_{2}$ and $a_{0} A_{2}$ of the circle γ of $\Gamma(4,3)$ determine the sides of a triangular tile Δ_{0} of C. We define in the same way Δ_{1} by means of $A_{1} a_{0}, A_{0} a_{3}$ and $a_{1} A_{3}, \Delta_{2}$ by means of $A_{2} a_{1}, A_{1} a_{0}$ and $a_{2} A_{0}$, and Δ_{3} by means of $A_{3} a_{2}, A_{2} a_{1}$ and $a_{3} A_{1}$; as Δ_{0} and Δ_{1} have a common side, as well as Δ_{1} and Δ_{2}, Δ_{2} and Δ_{3}, Δ_{3} and Δ_{0}, and so these four tiles form a belt having the properties described in point 5 of the Theorem, which implies that C belongs to the orbit \mathbf{T}_{4}. In the same way, one proves that, if the Gauss diagram $\Gamma(n, s)$ of C is $\Gamma(6 m-2,4 m-1)(m>1)$ or $\Gamma(6 m+2,4 m+1)(m>0)$, then C belongs to the orbit \mathbf{T}_{n}.

4 DP-homogeneous plane curves

Corollary: If a DP-homogeneous plane curve has at least one double point, then it belongs to one orbit (under the group of all diffeomorphisms of \mathbb{R}^{2}) of one of the three families described below:

1) The family \mathbf{P}^{\prime} is the sequence of orbits $\mathbf{P}_{1}^{\prime}, \mathbf{P}_{2}^{\prime}, \mathbf{P}_{3}^{\prime}, \ldots, \mathbf{P}_{n}^{\prime}, \ldots$ where any element of \mathbf{P}_{1}^{\prime} is a figure-eight curve and, if $n>1$, where any element C of \mathbf{P}_{n}^{\prime} is a curve (with n double points) one tile of which is a curvilinear n-gon with salient vertices, each of them being also the vertex of a curvilinear 1-gon inscribed in C. Examples of elements of $\mathbf{P}^{\prime}{ }_{1}, \mathbf{P}^{\prime}{ }_{2}, \mathbf{P}_{3}^{\prime}$ and \mathbf{P}_{4}^{\prime} are shown in Figure 1.
2) The family $\mathbf{P}^{\prime \prime}$ is the sequence of orbits $\mathbf{P}_{1}^{\prime \prime}, \mathbf{P}_{2}^{\prime \prime}, \mathbf{P}_{3}^{\prime \prime}, \ldots, \mathbf{P}_{n}^{\prime \prime}, \ldots$ where any element of $\mathbf{P}_{1}^{\prime \prime}$ is equivalent to a Pascal snail with inner loop and, if $n>1$, where any element of $\mathbf{P}_{n}^{\prime \prime}$ is a curve C (with n double points) in which a curvilinear n-gon D with re-entrant vertices is inscribed; every vertex of D is also the vertex of a curvilinear 1-gon inscribed in C. Examples of elements of $\mathbf{P}_{1}^{\prime \prime}, \mathbf{P}_{2}^{\prime \prime}, \mathbf{P}_{3}^{\prime \prime}$ and $\mathbf{P}_{4}^{\prime \prime}$ are shown in Figure 2.
3) The family \mathbf{S}^{\prime} is the sequence of orbits $\mathbf{S}_{3}^{\prime}, \mathbf{S}_{5}^{\prime}, \mathbf{S}_{7}^{\prime}, \ldots, \mathbf{S}_{2 m+1}^{\prime}, \ldots$ where any element C of $\mathbf{S}_{2 m+1}^{\prime}$ is a curve (with $2 m+1$ double points) one tile of which is a curvilinear $(2 m+1)$-gon D with salient vertices; D is separated from the unbounded tile of C by a chain of $2 m+1$ biangular tiles. Examples of elements of $\mathbf{S}_{3}^{\prime}, \mathbf{S}_{5}^{\prime}$ and \mathbf{S}_{7}^{\prime} are shown in Figure 8.

Proof: As \mathbb{R}^{2} is diffeomorphic to the complement of a point (denoted by ∞) in S^{2}, we may identify \mathbb{R}^{2} with $S^{2} \backslash \infty$. Any DP-homogeneous plane curve C may be seen as a DP-homogeneous spherical curve which, by the Theorem, belongs to one orbit of one of the families $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ and \mathbf{T}.

Suppose that the spherical curve C belongs to $\mathbf{P}_{1} ;$ if ∞ is a point of a 1-gonal tile, then C belongs (as a plane curve) to $\mathbf{P}_{1}^{\prime \prime}$; if not, then C belongs to \mathbf{P}_{1}^{\prime}.

If C belongs to \mathbf{P}_{n} with $n>1$, then ∞ cannot be a point of a 1-gonal tile, which implies that C belongs to \mathbf{P}_{n}^{\prime} or $\mathbf{P}_{n}^{\prime \prime}$.

If C belongs to \mathbf{S}_{n}, then ∞ cannot be a point of a 2-gonal tile, which implies that C belongs to S_{n}^{\prime}.

If C belongs to $\mathbf{Q}_{n}, \mathbf{R}_{n}$ or \mathbf{T}_{n}, then every position of ∞ leads to a contradiction, which proves that, in the classification of the orbits of DP-homogeneous plane curves, there is no familiy other than $\mathbf{P}^{\prime}, \mathbf{P}^{\prime \prime}$ and \mathbf{S}^{\prime}.

5 DP-homogeneity in the real projective plane

Family \mathbf{P} '

etc.

Family \mathbf{P} "

etc.

Family \mathbf{S}^{\prime}

etc.

Family $\mathbf{S "}$

etc.

Figure 13: Representatives of some elements of the four families of orbits of nullhomotopic DP-homogeneous curves in the real projective plane.

CONJECTURE: Let C be a DP-homogeneous curve of $P_{2}(\mathbb{R})$ with at least one double point.

1) If C is null-homotopic, then it belongs to one orbit (under the group of all diffeomorphisms of $P_{2}(\mathbb{R})$) of one of four infinite families:
a) The family \mathbf{P}^{\prime} is the sequence of orbits $\mathbf{P}_{n}^{\prime}\left(n \in \mathbb{N}_{0}\right)$, whose representatives are curves with n double points sketched, for $n<5$, in the first row of Fig. 13.
b) The family $\mathbf{P}^{\prime \prime}$ is the sequence of orbits $\mathbf{P}_{n}^{\prime \prime}\left(n \in \mathbb{N}_{0}\right)$, whose representatives are curves with n double points sketched, for $n<5$, in the second row of Fig. 13.
c) The family \mathbf{S}^{\prime} is the sequence of orbits $\mathbf{S}_{n}^{\prime}\left(n=2 m+1, m \in \mathbb{N}{ }_{0}\right)$, some representatives of which are sketched, for $n<8$, in the third row of Fig. 13.
d) The family $\mathbf{S}^{\prime \prime}$ is the sequence of orbits $\mathbf{S}_{n}^{\prime \prime}\left(n=2 m, m \in \mathbb{N}_{0}\right)$, some representatives of which are sketched, for $n<5$, in the last row of Fig. 13.
2) If C is not null-homotopic, then it belongs to one orbit (under the group of all diffeomorphisms of $P_{2}(\mathbb{R})$) of one of three infinite families:
a) The family \mathbf{Q}^{\prime} is the sequence of orbits $\mathbf{Q}_{n}^{\prime}(n=2 m+1, m \in \mathbb{N})$, whose representatives are sketched, for $n<6$, in the upper part of Fig. 14.
b) The family \mathbf{R}^{\prime} is the sequence of orbits $\mathbf{R}_{n}^{\prime}(n=4 m+2, m \in \mathbb{N})$, whose representatives are sketched, for $n<7$, in the lower part of Fig. 14.
c) The family \mathbf{T}^{\prime} is the sequence of orbits $\mathbf{T}_{n}^{\prime}(n=6 m-1$ or $n=6 m+1$, $m \in \mathbb{N}_{0}$) whose representatives are sketched, for $n<8$, in Fig. 15.

Family \mathbf{Q}^{\prime}

Family R'

Figure 14: Representatives of some elements of the families of orbits \mathbf{Q}^{\prime} and \mathbf{R}^{\prime} of non null-homotopic DP-homogeneous curves in the real projective plane.

Figure 15: Representatives of the orbits \mathbf{T}_{5}^{\prime} and \mathbf{T}_{7}^{\prime} of non null-homotopic DP-homogeneous curves in the real projective plane.

Acknowledgments: I should like to express my grateful thanks to J.-P. Doignon and J.-B. Zuber who encouraged me to write and publish this work.

References

[Ga] C.F. Gauss, Zur Geometria Situs, Werke, vol. 8, p. 271-286.
[LM] L. Lovasz, M.L. Marx A forbidden substructure characterization of Gauss codes, Acta Sci. Math. Soc. 38 (1976), p. 115-119.

Emeritus Professor, Department of Mathematics,
Vrije Universiteit Brussel,
Pleinlaan 2, B1050 Brussels, Belgium
email: guy.valette@vub.ac.be

[^0]: Received by the editors in November 2015.
 Communicated by J. Doyen.
 2010 Mathematics Subject Classification : Primary 53A04; Secondary 52C20, 58D19.
 Key words and phrases : smooth closed curve, double point, transitive action, tiling.

