
Symmetric cohomology of groups as a Mackey

functor

Constantin-Cosmin Todea

Abstract

Symmetric cohomology of groups, defined by M. Staic in [2], is similar to the

way one defines the cyclic cohomology for algebras. We show that there is a well-

defined restriction, conjugation and transfer map in symmetric cohomology, which

form a Mackey functor under a restriction. Some new properties for the symmetric

cohomology group using normalized cochains are also given.

1 Introduction

Symmetric cohomology for groups was introduced by M. Staic in [2] in order to associate

to topological spaces some elements in the third symmetric cohomology of some groups.

Further algebraic properties of symmetric cohomology of groups in low dimension were

studied by the same author in [3]. M. Singh also studies symmetric continuous cohomol-

ogy of topological groups in [1]. He shows that the symmetric continuous cohomology

of a profinite group with coefficients in a discrete module is equal to the direct limit of

the symmetric cohomology of finite groups. In Section 2 we continue the investigation of

the first symmetric cohomology of a group and we propose a new approach for defining

symmetric cohomology (with coefficients in a particular G-module, where G is a group)

using normalized cochains, which seems to give some easier conditions to be verified.

In Section 3 we prove the main result of this paper, Theorem 3.2 where we verify that

the restriction, conjugation and transfer in symmetric cohomology satisfy the axioms of a

Mackey functor. Some axioms are verified in general but for a few we need a restriction.

If we can drop this restriction remains an open problem, which is proposed in Remark 1.1.
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We believe that these results should be important for further developments in algebraic

and topological context.

For the rest of this section we recall the definition of symmetric cohomology of

groups, some notations and definitions for group cohomology. First we recall some well-

known facts about ordinary group cohomology: restriction, transfer and conjugation map.

We will give the explicit description of these maps using standard cochains from [4]. Let

G be a group, let A be a G-module and n ≥ 0 an integer. For G/H the set of left cosets

of H in G, also denoted G =
⋃

c∈G/H c, choose once and for all a representative c ∈ c. By

convention if c = H we require c = 1. If g1, . . . ,gn are n elements from G we will use the

notations

x1 = g1 . . .gn, x2 = g2 . . .gn, . . . , xn = gn.

Recall that the abelian group of n-cochains is Cn(G,A) = {σ : Gn → A} and we define

the differential ∂ n : Cn(G,A)→Cn+1(G,A) by

∂ n(σ)(g1, . . . ,gn+1) =

g1σ(g2, . . . ,gn+1)+
n

∑
i=1

(−1)iσ(g1, . . . ,gigi+1, . . . ,gn+1)+ (−1)n+1σ(g1, . . . ,gn).

The homology of the cochain complex (C∗(G,A),∂ ∗) is called the cohomology of G with

coefficients in A

Hn(G,A) := Ker∂ n/Im∂ n−1.

Let H be a subgroup of G and g ∈ G. Sometimes, when more groups are involved, for

explicitness we will denote the differential with an index. For example ∂H ,∂gH are used

for cohomology of the group H, respectively of the group gH, where gH = gHg−1. By

[4, Proposition 2.5.1] we have:

1.1. Restriction.

resG
H : Hn(G,A)→ Hn(H,A), resG

H [σ ] = [resG
H(σ)],

where resG
H(σ)(h1, . . . ,hn) = σ(h1, . . . ,hn) for any h1, . . . ,hn ∈ H and σ ∈ Ker∂ n

G.

1.2. Conjugation.

cg,H : Hn(H,A)→ Hn(gH,A), cg,H [σ ] = [cg,H(σ)],

where cg,H(σ)(gh1, . . . , ghn) = gσ(h1, . . . ,hn) for any h1, . . . ,hn ∈ H and σ ∈ Ker∂ n
H .

1.3. Transfer.

trG
H : Hn(H,A)→ Hn(G,A), trG

H [σ ] = [trG
H(σ)],

where

trG
H(σ)(g1, . . . ,gn) = ∑

c∈G/H

x1cσ(x1c−1g1x2c,x2c−1g2x3c, . . . ,xnc−1gnc)

for any g1, . . . ,gn ∈ G and σ ∈ Ker∂ n
H . Notice that xic

−1gixi+1c ∈ H and xnc−1gnc ∈ H

for any i ∈ {1, . . . ,n−1}.
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In [2] M. Staic defines an action of Σn+1 (the symmetric group on n+ 1 letters) on

Cn(G,A), using a generating set of transpositions {(1,2); (2,3); . . . ; (n,n+ 1)} by

1.4.

((1,2)σ)(g1, . . . ,gn) = −g1σ(g−1
1 ,g1g2,g3, . . . ,gn),

((i, i+ 1)σ)(g1, . . . ,gn) = −σ(g1, . . . ,gi−1gi,g
−1
i ,gigi+1, . . . ,gn) for 1 < i < n,

((n,n+ 1)σ)(g1, . . . ,gn) = −σ(g1,g2, . . . ,gn−1gn,g−1
n ).

Now [2, Proposition 5.1] assure us that formulas 1.4 give a well-defined action of Σn+1

on Cn(G,A) compatible with the differentials ∂ . Hence we have a new cohomology.

Definition 1.5. [2, Definition 5.2] The subcomplex of invariants denoted CSn(G,A) =
Cn(G,A)Σn+1 is called the symmetric cochain complex. Its homology is the symmetric co-

homology of G with coefficients in A and is denoted HSn(G,A) = ZSn(G,A)/BSn(G,A).

2 Some remarks on HS1(G,A) and HS2(G,A).

In [3] the author gives conditions for the natural map HSn(G,A)→ Hn(G,A) to be injec-

tive. For the first and the second symmetric cohomology these natural maps are injective

in general. Similar results are obtained in [1] for (symmetric) continuous cohomology of

topological groups, denoted (HSn
c(G,A)) Hn

c(G,A). We will show the easy detail, missed

in both papers, that for the first symmetric cohomology group we actually have an equal-

ity.

Proposition 2.1. With the above notations we have an equality HS1(G,A) = H1(G,A).
In particular, in the context of continuous symmetric topological groups ([1, Section 3])

we have HS1
c(G,A) = H1

c(G,A).

Proof. Recall the well-known fact H1(G,A) = Der(G,A)/Pder(G,A), where

Der(G,A) = {σ : G → A | σ(gh) = gσ(h)+σ(g)},

Pder(G,A) = {σa : G → A | a ∈ A, σa(g) = ga−a}

One can see, from Definition 1.5, that σ ∈ CS1(G,A) if and only if σ(g) = −gσ(g−1).
Therefor σ ∈ ZS1(G,A) if and only if σ(gh) = gσ(h)+σ(g) and σ(g) = −gσ(g−1).
We will prove next that ZS1(G,A) = Der(G,A). The inclusion from left to right is trivial.

Let σ ∈ Der(G,A) and take g = h = 1 in the derivation relation to obtain σ(1) = σ(1)+
σ(1), thus σ(1) = 0. Now take h = g−1 in the same derivation relation to get

σ(1) = gσ(g−1)+σ(g).

Since σ(1) = 0 we obtain that σ ∈ ZS1(G,A).
One can also see from Definition 1.5 that CS0(G,A) = A; hence the definition of ∂ 0

assure us that Pder(G,A) = BS1(G,A).
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It is known that if we use normalized cochains the group cohomology is the same. We

will show that by using normalized cochains the conditions on a symmetric cocycle and

on a symmetric boundary are much easier to handle. Let n ≥ 0 be an integer. Recall that

Hn(G,A) = Zn(G,A)/Bn(G,A), where σ ∈ Zn(G,A) is a normalized cocycle if ∂ n
G(σ) =

0 and

σ(g1, . . . ,gn) = 0

for any g1, . . . ,gn ∈ G with some gi = 1 where i ∈ {1, . . . ,n}. Similarly we have the

definition of a normalized boundary. We say that a n-cochain σ : Gn → A satisfies the (∗)
conditions if

σ(g1,g−1
1 ,g3, . . . ,gn) = 0

σ(g1, . . . ,gi−1,gi,g
−1
i ,gi+2, . . . ,gn) = 0 for 1 < i < n−1

σ(g1, . . . ,gn−2,gn,g−1
n ) = 0

for any g1, . . . ,gn ∈ G. Also, we say that a n-boundary σ : Gn → A is a n-(∗)-boundary if

there is β : Gn−1 → A which satisfies the corresponding (∗) conditions such that ∂ n(β ) =
σ . For the rest of this section we will work with normalized n-cochains in the case of

usual group cohomology. For p an integer we denote by pA the subgroup {a∈A | pa= 0},

which is the p-torsion subgroup of A.

Proposition 2.2. Let A be a G-module such that 2A = 0. Then:

(a) ZSn(G,A) is the abelian group of all normalized n-cocycles which satisfies (∗).

(b) BSn(G,A) is the abelian group of all normalized n-(∗)-boundaries which satisfies

(∗).

Proof. a) Let σ ∈ ZSn(G,A). Then for any y1, . . . ,yn+1 ∈ G we have

y1σ(y2, . . . ,yn+1)+
n

∑
j=1

(−1) jσ(y1, . . . ,y jy j+1, . . . ,yn+1)+

(−1)n+1σ(y1, . . . ,yn) = 0 (1)

and

σ(g1, . . . ,gn) = −g1σ(g−1
1 ,g1g2,g3, . . . ,gn) (2)

σ(g1, . . . ,gn) = −σ(g1, . . . ,gi−1gi,g
−1
i ,gigi+1, . . . ,gn) for 1 < i < n (3)

σ(g1, . . . ,gn) = −σ(g1,g2, . . . ,gn−1gn,g−1
n ) (4)

for any g1, . . . ,gn ∈ G.

We take gn = 1 in (4) to get σ(g1, . . . ,gn−1,1) = −σ(g1, . . . ,gn−1,1) and since

2A = 0 we obtain σ(g1, . . . ,gn−1,1) = 0. Let g1 = 1 in (2) and gi = 1,1 < i < n,

in (3) to obtain similarly that σ is normalized. We take g2 = g−1
1 in (2) to obtain

the first condition of (∗); we use that σ is normalized. In the same way we take

gi+1 = g−1
i ,1 < i < n, in (3) and gn−1 = 1 in (4) to obtain the remaining conditions

of (∗).
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For the reverse inclusion let σ ∈ Zn(G,A) such that (∗) is true. It follows that σ is

normalized and satisfies (1). In (1) we take

y1 = g1,y2 = g−1
1 ,y3 = g1g2,y4 = g3, . . . ,yn+1 = gn

to obtain (2). By taking in (1)

y1 = g1, . . . ,yn−1 = gn−1gn,yn = g−1
n ,yn+1 = gn

we obtain (4). Next, we fix i such that 1 < i < n and let

y1 = g1, . . . ,yi = gi,yi+1 = g−1
i ,yi+2 = gigi+1,yi+3 = gi+2, . . . ,yn+1 = gn.

It follows that in the sum from (1) for j = i−1 we obtain

(−1)i−1σ(g1, . . . ,gi−1gi,g
−1
i ,gigi+1, . . . ,gn),

for j = i+ 1 we obtain

(−1)i+1σ(g1, . . . ,gn)

and all the other terms are zero, since σ is normalized and satisfies (∗); hence (3)

is true.

b) Let σ ∈ BSn(G,A). Then there is β : Gn−1 → A such that for any y1, . . . ,yn ∈ G we

have

σ(y1, . . . ,yn) =

y1β (y2, . . . ,yn)+
n−1

∑
j=1

(−1) jβ (y1, . . . ,y jy j+1, . . . ,yn)+ (−1)nβ (y1, . . . ,yn−1) (5)

and

β (g1, . . . ,gn−1) = −g1β (g−1
1 ,g1g2,g3, . . . ,gn−1) (6)

β (g1, . . . ,gn−1) = −β (g1, . . . ,gi−1gi,g
−1
i ,gigi+1, . . . ,gn−1) for 1 < i < n−1 (7)

β (g1, . . . ,gn−1) = −β (g1,g2 . . . ,gn−2gn−1,g−1
n−1) (8)

for any g1, . . . ,gn−1 ∈ G. We take g1 = 1 in (6), gi = 1 in (7) and gn−1 = 1 in (8)

to obtain that β is normalized. Since β is normalized and satisfies (6), (7), (8) the

same proof as in the first part of a) assure us that σ is a n-(∗)-boundary. Since

BSn(G,A) ⊆ ZSn(G,A) we know from a) that σ satisfies (∗).

For the reverse inclusion let σ ∈ Bn(G,A) be a n-(∗)-boundary which satisfies (∗).
So there is β : Gn−1 → A normalized such that (5) is true. In (5) we consider

y1 = g1,y2 = g−1
1 ,y3 = g1g2,y4 = g3, . . . ,yn = gn−1

to obtain (6). To obtain (8) we take

y1 = g1,y2 = g2, . . . ,yn−2 = gn−2gn−1,yn−1 = g−1
n−1,yn = gn−1

in (5). For the last condition fix i such that 1 < i < n−1 and let

y1 = g1, . . . ,yi−1 = gi−1gi,yi = g−1
i ,yi+1 = gi, . . . ,yn = gn−1.
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Now, in the sum from (5) for j = i−1 we obtain

(−1)i−1β (g1, . . . ,gn−1),

for j = i+ 1 we obtain

(−1)i+1β (g1, . . . ,gi−1gi,g
−1
i ,gigi+1, . . . ,gn−1)

and all the other terms are zero; hence (7) is true.

For n = 2 we have the next corollary which shows us that using normalized cochains

the conditions to define symmetric cocycles and coboundaries appears to be more easy to

remember and to work with them.

Corollary 2.3. Let A be a G-module such that 2A = 0. Then:

(a) ZS2(G,A) = Z2(G,A)∩{σ : G×G → A | σ(g,g−1) = 0,∀g ∈ G};

(b) BS2(G,A) = B2(G,A)∩{σ : G×G → A | σ(g,g−1) = 0,∀g ∈ G}.

3 Symmetric cohomology and Mackey functors

In [1, Corollary 4.2] Singh proves that there is a well-defined restriction and inflation

map for continuous symmetric cohomology. Using explicit descriptions we will define

a restriction, conjugation and transfer map in algebraic context, for symmetric cohomol-

ogy. Moreover we will investigate when these maps give a Mackey functor; see [5, §53].

If σ ∈CSn(G,A)∩Ker∂ n is a symmetric cocycle we denote by [σ ]S ∈ HSn(G,A) its co-

homology class.

3.1. Let K ≤ H ≤ G and n ≥ 0 an integer. It is easy to show that

rG
H : HSn(G,A)→ HSn(H,A); rG

H([σ ]S) = [resG
H(σ)]S

is a well-defined linear map and satisfies rH
K ◦ rG

H = rG
K .

Lemma 3.1. Let H be a subgroup of G, g ∈ G, A be a G-module and n ≥ 0 be an integer.

(1) If σ ∈CSn(H,A) then cg,H(σ) ∈CSn(gH,A) and trG
H(σ) ∈CSn(G,A).

(2) The following two diagrams are commutative

CSn(H,A)
cg,H

//

∂ n
H

��

CSn(gH,A)

∂ n
gH

��

CSn+1(H,A)
cg,H

// CSn+1(gH,A)

,

CSn(H,A)
trG

H
//

∂ n
H

��

CSn(G,A)

∂ n
G

��

CSn+1(H,A)
trG

H
// CSn+1(G,A)

.
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Proof. (1) We will show the statement for trG
H ; the similar statement for cg,H is left to

the reader. Let g1, . . . ,gn ∈ H. We have

((1,2)trG
H(σ))(g1, . . . ,gn)

= −g1trG
H(σ)(g−1

1 ,g1g2,g3, . . . ,gn)

= −g1 ∑
c∈G/H

x2cσ(x2c−1g−1
1 x1c,x1c−1g1g2x3c,x3c−1g3x4c, . . . ,xnc−1gnc)

= ∑
c∈G/H

−x1c x1c−1g1x2cσ((x1c−1g1x2c)−1,x1c−1g1x2c x2c−1g2x3c, . . . ,xnc−1gnc)

= ∑
c∈G/H

x1c((1,2)σ)(x1c−1g1x2c,x2c−1g2x3c, . . . ,xnc−1gnc)

= trG
H(σ)(g1, . . . ,gn),

where the last equality is true since σ ∈CSn(H,A).

Let i be an integer such that 1 < i < n.

((i, i+ 1)trG
H(σ))(g1, . . . ,gn)

= −trG
H(σ)(g1, . . . ,gi−1gi,g

−1
i ,gigi+1, . . . ,gn)

= − ∑
c∈G/H

x1cσ(x1c−1g1x2c, . . . ,xi−1c−1gi−1gixi+1c,

xi+1c−1g−1
i xic,xic

−1gigi+1xi+2c . . . ,xnc−1gnc)

= ∑
c∈G/H

x1c((i, i+ 1)σ)(x1c−1g1x2c,x2c−1g2x3c, . . . ,xnc−1gnc)

= trG
H(σ)(g1, . . . ,gn),

where the last equality is true since σ ∈ CSn(H,A). Finally for the action of

(n,n+ 1) we obtain

((n,n+ 1)trG
H(σ))(g1, . . . ,gn)

= −trG
H(σ)(g1, . . . ,gn−1gn,g−1

n )

= − ∑
c∈G/H

x1g−1
n cσ(x1g−1

n c
−1

g1x2g−1
n c, . . . ,xn−1g−1

n c
−1

gn−1gng−1
n c,g−1

n c
−1

g−1
n c)

If c runs in G/H then g−1
n c runs in G/H hence we can replace g−1

n c by c and we

continue the above equalities:

((n,n+ 1)trG
H(σ))(g1, . . . ,gn)

= − ∑
c∈G/H

x1cσ(x1c−1g1x2c, . . . ,xn−1c−1gn−1gnc,c−1g−1
n gnc)

= − ∑
c∈G/H

x1cσ(x1c−1g1x2c, . . . ,xn−1c−1gn−1gnc gnc−1gnc, (gnc−1gnc)−1)

= ∑
c∈G/H

x1c(n,n+ 1)σ(x1c−1g1x2c, . . . ,xn−1c−1gn−1xnc,xnc−1gnc)

= ∑
c∈G/H

x1cσ(x1c−1g1x2c, . . . ,xn−1c−1gn−1xnc,xnc−1gnc)

= trG
H(σ)(g1, . . . ,gn),

where the fourth equality is true since σ ∈CSn(H,A).
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(2) The proof of statement (2) follows from the similar result for the usual group coho-

mology and statement (1).

Now Lemma 3.1 assure us that there are well-defined linear maps, conjugation and

transfer, which we consider in the next definition.

Definition 3.2. The conjugation map for symmetric cohomology is

cg,H : HSn(H,A)→ HSn(gH,A), cg,H([σ ]S) = [cg,H(σ)]S,

and the transfer map is

tG
H : HSn(H,A)→ HSn(G,A), tG

H([σ ]S) = [trG
H(σ)]S,

where σ ∈CSn(H,A) is a symmetric cocycle.

Remark 3.3. It might be possible that cg,H and tG
H to be defined as consequences of

[1, Proposition 4.1] but we prefer these explicit constructions.

It is well known that there is a natural map from the symmetric group cohomology to

the usual group cohomology

i : HSn(G,A)→ Hn(G,A), i([σ ]S) = [σ ].

Theorem 3.2. Let n ≥ 0 be an integer, let K,H be subgroups of G with K ≤ H and

g ∈ G. If the natural map i : HSn(G,A) → Hn(G,A) is one to one then the family of

abelian groups {HSn(H,A)}H≤G together with the linear maps {rH
K , tH

K ,cg,H}K≤H,g∈G is

a Mackey functor.

Proof. We recall the well-known axioms of a Mackey functor [5, §53] which we want to

prove

(i) rK
L rH

K = rH
L ; tH

K tK
L = tH

L if L ≤ K ≤ H;

(ii) rH
H = tH

H = idHSn(H,A);

(iii) cgh,H = cg,hHch,H if g,h ∈ G;

(iv) ch,H = idHSn(H,A) if h ∈ H;

(v) cg,KrH
K = r

gH
gK cg,H , cg,HtH

K = t
gH
gK cg,K if K ≤ H and g ∈ G;

(vi) Mackey axiom: if L,K ≤ H then

rH
L tH

K = ∑
h∈[L\H/K]

tL
L∩hK

r
hK
L∩hK

ch,K .

The first part of statement (i), statements (ii),(iii) and (v) are easy to verify since the

equalities hold for maps of cochain complex in general, the without hypothesis that i is

injective. We exemplify with (v). Let σ ∈CSn(H,A) and g1, . . . ,gn ∈ K and g ∈ G. We

have

cg,K(resH
K (σ))(gg1, . . . , ggn) = gresH

K (g1, . . . ,gn) = gσ(g1, . . . ,gn);
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res
gH
gK (cg,H(σ))(gg1, . . . , ggn) = cg,K(σ)(gg1, . . . , ggn) = gσ(g1, . . . ,gn).

For the second part let σ ∈CSn(K,A) and gg1, . . . , ggn ∈
gH. By abuse of notation we use

the same notations for tH
K as in 1.3.

cg,H(tr
H
K (σ))(gg1, . . . , ggn)

= gtrH
K (g1, . . . ,gn)

= g ∑
c∈H/K

x1cσ(x1c−1g1x2c,x2c−1g2x3c, . . . ,xnc−1gnc)

It is clear that if H =
⋃

c∈H/K c then gH =
⋃

gc∈gH/gK
gc and gc = gc for any c ∈ H/K.

Hence we have

tr
gH
gK (cg,K(σ))(gg1, . . . , ggn)

= ∑
gc∈gH/gK

gx1
gc cg,K(σ)(gx1

gc
−1gg1

gx2
gc, . . . , gxn

gc
−1ggn

gc)

= ∑
gc∈gH/gK

gx1cg−1gσ(x1c−1g1x2c, . . . ,xnc−1gnc)

= g ∑
c∈H/K

x1cσ(x1c−1g1x2c, . . . ,xnc−1gnc)

For (iv) we need to prove that [ch,H(σ)]S = [σ ]S if h ∈ H and σ is a symmetric cocycle.

Since for the usual group cohomology we have that [ch,H(σ)] = [σ ], using the injectivity

and the definition of i we are done. With some technical adjustments similar arguments

work for (vi) and the second part of (i), again using the injectivity of the map i.

By [3, Proposition 4.1] and Theorem 3.2 we have the next corollary.

Corollary 3.3. Let n ≥ 0 be an integer , let K,H be subgroups of G with K ≤ H and

g ∈ G. Let A be a G-module such that n+1 is not a zero divisor and the equation n!x = a

has a unique solution. Then the family of abelian groups {HSn(H,A)}H≤G together with

the linear maps {rH
K , tH

K ,cg,H}K≤H,g∈G is a Mackey functor.

Remark 3.4. We observe from the proof of Theorem 3.2 that some axioms of the defini-

tion of the Mackey functor for symmetric cohomology are proved in general without the

assumption that i is injective. It is an open problem if all the axioms can be proved in

general, without this assumption.
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