A new proof for the bornologicity of the space of slowly increasing functions

Julian Larcher Jochen Wengenroth

Abstract

A. Grothendieck proved at the end of his thesis that the space \mathcal{O}_{M} of slowly increasing functions and the space \mathcal{O}_{C}^{\prime} of rapidly decreasing distributions are bornological. Grothendieck's proof relies on the isomorphy of these spaces to a sequence space and we present the first proof that does not utilize this fact by using homological methods and, in particular, the derived projective limit functor.

1 Introduction and notation

In [Sch66, p. 243] L. Schwartz introduced the space of multipliers of temperate distributions, i.e., the space of slowly increasing functions

$$
\mathcal{O}_{\mathrm{M}}=\left\{f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right) ; \forall \alpha \in \mathbb{N}_{0}^{d} \exists N \in \mathbb{N}:\langle x\rangle^{-N} \partial^{\alpha} f \in L^{\infty}\right\}
$$

where $\mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$ is the space of complex valued, infinitely differentiable functions on $\mathbb{R}^{d},\langle x\rangle=1+|x|^{2}, \partial^{\alpha}$ is the partial derivative, and L^{∞} is the Lebesgue space of bounded functions. The dual \mathcal{O}_{M}^{\prime} of \mathcal{O}_{M} is the space of very rapidly decreasing distributions.

Schwartz also introduced the space of convolutors of temperate distributions, i.e., the space \mathcal{O}_{C}^{\prime} of rapidly decreasing distributions, which is the dual of the space

$$
\mathcal{O}_{\mathrm{C}}=\left\{f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right) ; \exists N \forall \alpha \in \mathbb{N}_{0}^{d}:\langle x\rangle^{-N} \partial^{\alpha} f \in L^{\infty}\right\}
$$

[^0]of very slowly increasing functions. These spaces are related as in the diagram
\[

$$
\begin{aligned}
\mathcal{O}_{\mathrm{C}} & \subseteq \mathcal{O}_{\mathrm{M}} \\
2 \| & 2 \| \\
\mathcal{O}_{M}^{\prime} & \subseteq \mathcal{O}_{C}^{\prime}
\end{aligned}
$$
\]

where in both cases the Fourier transform can be taken as the isomorphism.
It is comparatively easy to see that the four spaces are nuclear and semireflexive, that \mathcal{O}_{M} and \mathcal{O}_{C}^{\prime} are complete and that \mathcal{O}_{C} and \mathcal{O}_{M}^{\prime} are (LF)-spaces and hence bornological. But the completeness of \mathcal{O}_{C} and \mathcal{O}_{M}^{\prime} and the bornologicity of \mathcal{O}_{M} and \mathcal{O}_{C}^{\prime} are not trivial (which was even asserted by Grothendieck, [Gro55, Chap. II, p. 130]). Since the dual of a bornological space is complete and the dual of a complete nuclear space is bornological, these two problems are equivalent (for the definitions of these topological properties and relations between them see [Itō87, Section 424]).

Grothendieck proved that \mathcal{O}_{M} is bornological by showing that it is isomorphic to a complemented subspace of the sequence space $s \hat{\otimes}_{\pi} s^{\prime}$ [Gro55, Chap. II, Lemme 18, p. 132] and verified "directly" that the space $s \hat{\otimes}_{\pi} s^{\prime}$ is bornological [Gro55, Chap.II, Prop. 15, p. 125, Cor. 2, p. 128]. We will find out more about this isomorphy in Section 2 and also give a homological proof of the bornologicity of $s \hat{\otimes}_{\pi} s^{\prime}$.

In [Kuc85], J. Kučera claimed to have presented a new (and simple) proof for the main properties of the space \mathcal{O}_{M}. That Kučera's proof contains severe mistakes and that it is based on incorrect propositions is clarified in [Lar12], where also the lack of a proof of the bornologicity of \mathcal{O}_{M}, that does not use the isomorphy $\mathcal{O}_{M} \cong s \hat{\otimes}_{\pi} s^{\prime}$, is pointed out. In Section 3 we will give such a proof.

2 Projective limits and the space $s \hat{\otimes}_{\pi} s^{\prime}$

Since quotients (and, in particular, complemented subspaces) of bornological spaces are bornological, it was sufficient for Grothendieck to prove that \mathcal{O}_{M} is isomorphic to a complemented subspace of $s \hat{\otimes}_{\pi} s^{\prime}$, where s is the space of rapidly decreasing sequences

$$
s=\left\{\left(x_{j}\right)_{j \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} ; \forall k: \sup _{j \in \mathbb{N}} j^{k}\left|x_{j}\right|<\infty\right\}
$$

and s^{\prime} is its dual, the space of slowly increasing sequences

$$
s^{\prime}=\left\{\left(x_{j}\right)_{j \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} ; \exists k: \sup _{j \in \mathbb{N}} j^{-k}\left|x_{j}\right|<\infty\right\}
$$

By $s \hat{\otimes}_{\pi} s^{\prime}$ we denote the completed projective tensor product of these spaces. E.g., by [Bar12, Remark 1, p. 321], this space $s \hat{\otimes}_{\pi} s^{\prime}$ is canonically isomorphic to

$$
s \hat{\otimes}_{\pi} s^{\prime} \cong\left\{x \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}} ; \forall n \exists N: \sup _{i, j} i^{n} j^{-N}\left|x_{i, j}\right|<\infty\right\}
$$

In [Val81], M. Valdivia proved that \mathcal{O}_{M} is even isomorphic to $s \hat{\otimes}_{\pi} s^{\prime}$ itself which answered a question posed in [Gro55, Chap. II, p. 134]. C. Bargetz used this fact, the bornologicity of $s \hat{\otimes}_{\pi} s^{\prime}$, and methods of the theory of topological tensor products to obtain the isomorphy $\mathcal{O}_{\mathrm{C}} \cong s \hat{\otimes}_{l} s^{\prime}$ [Bar12, Prop. 1, p. 318].

The descriptions of the spaces \mathcal{O}_{M} and $s \hat{\otimes}_{\pi} s^{\prime}$ already indicate how they can be written as projective limits of LB-spaces (countable inductive limits of Banach spaces)

$$
\begin{gather*}
\mathcal{O}_{\mathrm{M}}=\bigcap_{n \in \mathbb{N}} X_{n}=\bigcap_{n \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} X_{n, N}, \tag{1}\\
s \hat{\otimes}_{\pi} s^{\prime}=\bigcap_{n \in \mathbb{N}} Y_{n}=\bigcap_{n \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} Y_{n, N}, \tag{2}
\end{gather*}
$$

where $X_{n, N}$ and $Y_{n, N}$ are the Banach spaces

$$
\begin{gathered}
X_{n, N}=\left\{f \in \mathcal{C}^{n}\left(\mathbb{R}^{d}\right) ;\|f\|_{n, N}=\sup _{x \in \mathbb{R}^{d},|\alpha| \leq n}\langle x\rangle^{-N}\left|\partial^{\alpha} f(x)\right|<\infty\right\}, \\
Y_{n, N}=\left\{x \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}} ;\|x\|_{n, N}=\sup _{i, j} i^{n} j^{-N}\left|x_{i, j}\right|<\infty\right\} .
\end{gathered}
$$

These representations as projective limits of LB-spaces are not only natural but also extremely useful since there are very good criteria for checking bornologicity. They are related to the derived projective limit functor $\operatorname{Proj}^{1} \mathscr{X}$ (which can be defined as the cokernel of the map $\Pi X_{n} \rightarrow \Pi X_{n},\left(x_{n}\right)_{n} \mapsto\left(x_{n}-\varrho_{n+1}^{n}\left(x_{n+1}\right)\right)_{n}$ where ϱ_{m}^{n} are the connecting maps of the projective spectrum \mathscr{X}, in our cases, ϱ_{m}^{n} are just inclusions). Indeed, an unpublished theorem of D. Vogt (his proof reproduced in [Wen03, Th. 3.3.4]) says that Proj \mathscr{X} is bornological whenever $\operatorname{Proj}^{1} \mathscr{X}=0$. Moreover, there is a variety of evaluable conditions ensuring $\operatorname{Proj}{ }^{1} \mathscr{X}=0$. We are going to apply the following results of Palamodov-Retakh [Pal71] and the second named author, respectively:

A spectrum \mathscr{X} of LB-spaces satisfies $\operatorname{Proj}^{1} \mathscr{X}=0$ if and only if there are Banach discs D_{n} in X_{n} with $\varrho_{m}^{n}\left(D_{m}\right) \subseteq D_{n}$ and

$$
\forall n \in \mathbb{N} \exists m \geq n \forall k \geq m: \varrho_{m}^{n}\left(X_{m}\right) \subseteq \varrho_{k}^{n}\left(X_{k}\right)+D_{n}
$$

The requirement $\varrho_{m}^{n}\left(D_{m}\right) \subseteq D_{n}$ is sometimes very easy to fulfil but in many cases it is very inconvenient. It can be omitted if either all steps X_{n} are LS-spaces (i.e., the inclusions $X_{n, N} \hookrightarrow X_{n, N+1}$ are compact) or if a slightly stronger condition of Palamodov-Retakh type is required. Denoting by $\varrho_{\infty}^{n}: \operatorname{Proj} \mathscr{X} \rightarrow X_{n}$ the obvious map we have:

A spectrum \mathscr{X} of LB-spaces satisfies $\operatorname{Proj}^{1} \mathscr{X}=0$ if and only if, for every $n \in \mathbb{N}$, there are a Banach discs D_{n} in X_{n} and $m \geq n$ with

$$
\varrho_{m}^{n}\left(X_{m}\right) \subseteq \varrho_{\infty}^{n}(\operatorname{Proj} \mathscr{X})+D_{n} .
$$

We refer to [Wen03] for the proofs of these characterization and much more information about derived functors. Typically, the decompositions required in conditions of Retakh-Palamodov type are quite easy to produce in the case of spaces of sequences (or matrices) since one can write $x=\chi x+(1-\chi) x$ where χ is the indicator function of a suitably chosen set. We want to exemplify this by giving a very short proof for the bornologicity of $s \hat{\otimes}_{\pi} s^{\prime}$ (which is similar to Vogt's proof of $\operatorname{Ext}^{1}(s, s)=0$ [Vog84, Lemma 2.1, p. 359]).
Proposition 1. The space $s \hat{\otimes}_{\pi} s^{\prime}$ is bornological.
Proof. We keep the notation $s \hat{\otimes}_{\pi} s^{\prime} \cong \bigcap_{n \in \mathbb{N}} Y_{n}=\bigcap_{n \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} Y_{n, N}$ from above and we will verify the Palamodov-Retakh condition for the unit balls D_{n} of $Y_{n, 0}$ which trivially satisfy $D_{n+1} \subseteq D_{n}$. For $n \in \mathbb{N}$ we take $m=n+1$ and fix $x \in Y_{n}$ as well as $k \geq n+1$. Since $x \in Y_{m, M}$ for some $M \in \mathbb{N}$ we have

$$
\|x\|_{m, M}=\sup _{i, j} i^{m} j^{-M}\left|x_{i, j}\right|=c<\infty .
$$

We set $y_{i, j}=x_{i, j}$ if $i<c j^{M}$ and $y_{i, j}=0$ else, as well as $z=x-y$. For $i<c j^{M}$ we have $z_{i, j}=0$ and for $i \geq c j^{M}$ we estimate

$$
i^{n} j^{-0}\left|z_{i, j}\right|=i^{m} j^{-M}\left|z_{i, j}\right| j^{M} / i \leq\|x\|_{m, M} / c=1
$$

which proves $z \in D_{n}$. It remains to show $y \in Y_{k, K}$ for K sufficiently large. Indeed, for $K=M(k-m+1)$ we have $y_{i, j}=0$ if $i \geq c j^{M}$ and if $i<c j^{M}$ we estimate

$$
i^{k} j^{-K}\left|y_{i, j}\right|=i^{m} j^{-M}\left|y_{i, j}\right| i^{k-m} j^{M-K} \leq\|x\|_{m, M} c^{k-m} j^{(k-m) M+M-K}=c^{k-m+1} .
$$

This proves $\|y\|_{k, K}<\infty$, as required.

3 The new proof

Now we want to prove $\operatorname{Proj}^{1} \mathscr{X}=0$ for the spectrum $\mathscr{X}=\left(X_{n}\right)_{n \in \mathbb{N}}$ in (1) in order to obtain that \mathcal{O}_{M} is bornological. Splitting up a given function $f \in X_{m}$ as $f=\chi f+(1-\chi) f$ with a cut-off function χ (as in the proof of Proposition 1) does not work in this case. But we will see how f can be "split up" in the following proof of Grothendieck's result.
Proposition 2. The space \mathcal{O}_{M} is bornological.
Proof. To obtain $\operatorname{Proj}^{1} \mathscr{X}=0$ we will show

$$
\begin{equation*}
\forall n \exists m, N: X_{m} \subseteq \mathcal{O}_{\mathrm{M}}+B_{n, N} \tag{3}
\end{equation*}
$$

where $B_{n, N}$ is the unit ball of $X_{n, N}$. This condition means that we have to approximate every $f \in X_{m}$ with respect to the norm $\|\cdot\|_{n, N}$ by elements of \mathcal{O}_{M}. To achieve such an approximation we use a kernel $K \in \mathcal{O}_{M}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ satisfying

$$
\begin{aligned}
& K \geq 0, \int_{\mathbb{R}^{d}} K(t, x) d t=1 \text { for all } x \in \mathbb{R}^{d}, \text { and } \\
& \operatorname{supp} K(\cdot, x) \subseteq \prod_{j=1}^{d}\left[x_{j}, x_{j}+\varepsilon\langle x\rangle^{-\mu}\right]=: A_{x} \text { for all } x \in \mathbb{R}^{d}
\end{aligned}
$$

where we will see later how ε and μ have to be chosen in dependence on $f \in X_{m}$. We can obtain such a kernel by defining

$$
K(t, x)=\varepsilon^{-d}\langle x\rangle^{\mu d} \varphi\left(\varepsilon^{-1}\langle x\rangle^{\mu}(t-x)\right)
$$

for a positive test function $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$ with support in $[0,1]^{d}$ and $\int_{\mathbb{R}^{d}} \varphi(t) d t=1$ (the conditions above can be checked easily and $K \in \mathcal{O}_{\mathrm{M}}$ since every derivative of K can be estimated by a polynomial).

We start with the one-dimensional case $d=1$ where we can take $m=n+1$ and $N=0$. So let $f \in X_{n+1, M}$ for some $M \in \mathbb{N}$. We want to find $g \in \mathcal{O}_{M}$ such that $f-g \in B_{n, 0}$. At first we set

$$
g_{n}(x)=\int_{\mathbb{R}} f^{(n)}(t) K(t, x) d t
$$

and show that this is a good approximation to $f^{(n)}$. Since for $l \in \mathbb{N}_{0}$

$$
\left|g_{n}^{(l)}(x)\right|=\left|\int_{A_{x}} f^{(n)}(t) \partial_{x}^{l} K(t, x) d t\right| \leq \int_{A_{x}}|P(t)||Q(t, x)| d t \leq|R(x)|
$$

for some polynomials P, Q, R, the function g_{n} is contained in \mathcal{O}_{M}. Furthermore we can estimate in virtue of Taylor's formula

$$
\left|f^{(n)}(t)-f^{(n)}(x)\right| \leq|t-x|\langle\xi(t, x)\rangle^{M}\|f\|_{n+1, M}
$$

with a point $\xi(t, x)$ between t and x. For ε small enough the inequality $\langle\xi(t, x)\rangle \leq$ $2\langle x\rangle$ holds for every $x \in \mathbb{R}$ and $t \in A_{x}$. We obtain

$$
\begin{align*}
\left|g_{n}(x)-f^{(n)}(x)\right| & =\left|\int_{\mathbb{R}}\left(f^{(n)}(t)-f^{(n)}(x)\right) K(t, x) d t\right| \\
& \leq \int_{A_{x}}\left|f^{(n)}(t)-f^{(n)}(x)\right| K(t, x) d t \\
& \leq \int_{A_{x}}|t-x|\langle\xi(t, x)\rangle^{M}\|f\|_{n+1, M} K(t, x) d t \tag{4}\\
& \leq \varepsilon 2^{M}\langle x\rangle^{M-\mu}\|f\|_{n+1, M} \int_{A_{x}} K(t, x) d t \\
& =\varepsilon 2^{M}\langle x\rangle^{M-\mu}\|f\|_{n+1, M} .
\end{align*}
$$

Now if

$$
T: \mathcal{O}_{\mathrm{M}}(\mathbb{R}) \rightarrow \mathcal{O}_{\mathrm{M}}(\mathbb{R}), h \mapsto\left(x \mapsto \int_{0}^{x} h(t) d t\right)
$$

we can set

$$
g(x)=\sum_{j=0}^{n-1} \frac{f^{(j)}(0)}{j!} x^{j}+\left(T^{n} g_{n}\right)(x) .
$$

Then $g \in \mathcal{O}_{\mathrm{M}}$ and since

$$
\left(T^{n} f^{(n)}\right)(x)=f(x)-\sum_{j=0}^{n-1} \frac{f^{(j)}(0)}{j!} x^{j},
$$

integrating (4) (the integral starting at 0) yields

$$
\left|g^{(l)}(x)-f^{(l)}(x)\right| \leq 1, x \in \mathbb{R}^{d}, l \leq n
$$

for ε small enough and μ large enough. Hence $g-f \in B_{n, 0}$ and the proof is complete for the one-dimensional case.

Now we will prove the two-dimensional case $d=2$. We set $m=2 n+1$ and $N=n-1$ in (3). So let $f \in X_{2 n+1, M}$ for some M. With the help of a kernel $K \in \mathcal{O}_{M}\left(\mathbb{R}^{2} \times \mathbb{R}^{2}\right)$ like above, we set

$$
g_{n}(x)=\int_{\mathbb{R}^{2}} \partial^{(n, n)} f(t) K(t, x) d t
$$

in order to approximate $\partial^{(n, n)} f$ by g_{n}. Similar to the one-dimensional case we have

$$
\left|\partial^{(n, n)} f(t)-\partial^{(n, n)} f(x)\right| \leq c \cdot|t-x|\langle\xi(t, x)\rangle^{M}\|f\|_{2 n+1, M}
$$

and $\langle\xi(t, x)\rangle \leq 2\langle x\rangle$ for $t \in A_{x}$ and ε small enough and thus

$$
\begin{align*}
\left|g_{n}(x)-\partial^{(n, n)} f(x)\right| & \leq c \int_{A_{x}}|t-x|\langle\xi(t, x)\rangle^{M}\|f\|_{2 n+1, M} K(t, x) d t \tag{5}\\
& \leq \tilde{c} \varepsilon\langle x\rangle^{M-\mu}\|f\|_{2 n+1, M}
\end{align*}
$$

Let us denote T_{j} the integral with respect to the j-th component (the integral starting at 0). Applying $T_{1} \circ T_{2} n$-times to $\partial^{(n, n)} f(x)$ yields

$$
\begin{aligned}
& \left(T_{1}^{n} T_{2}^{n} f\right)(x)= \\
& \quad f(x)+\sum_{\alpha<(n, n)} \partial^{\alpha} f(0,0) \frac{x^{\alpha}}{\alpha!}-\sum_{j=0}^{n-1} \partial^{(j, 0)} f\left(0, x_{2}\right) \frac{x_{1}^{j}}{j!}-\sum_{j=0}^{n-1} \partial^{(0, j)} f\left(x_{1}, 0\right) \frac{x_{2}^{j}}{j!}
\end{aligned}
$$

As in the one-dimensional case we can choose $g_{0}^{1}, \ldots g_{n-1}^{1}, g_{0}^{2}, \ldots, g_{n-1}^{2} \in \mathcal{O}_{M}(\mathbb{R})$ such that $\left\|g_{j}^{1}-\partial^{(0, j)} f(\cdot, 0)\right\|_{n, 0} \leq \varepsilon$ and $\left\|g_{j}^{2}-\partial^{(j, 0)} f(\cdot, 0)\right\|_{n, 0} \leq \varepsilon$. Defining

$$
g(x)=\left(T_{1}^{n} T_{2}^{n}\right) g_{n}(x)-\sum_{\alpha<(n, n)} \partial^{\alpha} f(0,0) \frac{x^{\alpha}}{\alpha!}+\sum_{j=0}^{n-1} g_{j}^{2}\left(x_{2}\right) \frac{x_{1}^{j}}{j!}+\sum_{j=0}^{n-1} g_{j}^{1}\left(x_{1}\right) \frac{x_{2}^{j}}{j!}
$$

and applying $T_{1}^{n} T_{2}^{n}$ to (5) yields

$$
\begin{aligned}
& |g(x)-f(x)| \leq \\
& \quad \varepsilon+\sum_{j=0}^{n-1}\left(\left|g_{j}^{1}\left(x_{1}\right)-\partial^{(0, j)} f\left(x_{1}, 0\right)\right| \frac{\left|x_{2}\right|^{j}}{j!}+\left|g_{j}^{2}\left(x_{2}\right)-\partial^{(j, 0)} f\left(0, x_{2}\right)\right| \frac{\left|x_{1}\right|^{j}}{j!}\right)
\end{aligned}
$$

for μ large enough which implies

$$
|g(x)-f(x)| \leq \varepsilon+\varepsilon \sum_{j=0}^{n-1} \frac{\left|x_{2}\right|^{j}}{j!}+\varepsilon \sum_{j=0}^{n-1} \frac{\left|x_{1}\right|^{j}}{j!} \leq \varepsilon c\langle x\rangle^{n-1}
$$

for some $c>1$. Since similar estimates also hold for $\left|\partial^{\alpha} g(x)-\partial^{\alpha} f(x)\right|,|\alpha| \leq n$, we obtain $g-f \in B_{n, n-1}$ and the proof is complete for $d=2$.

The general case $d \in \mathbb{N}$ is very similar. Inductively we want to show

$$
X_{d n+1} \subseteq \mathcal{O}_{\mathrm{M}}+B_{n,(d-1)(n-1)}
$$

and start by approximating $\partial^{(n, \ldots, n)} f$ by $g_{n}(x):=\int_{R^{d}} \partial^{(n, \ldots, n)} f(t) K(t, x) d t$. Then we integrate the estimate of $g_{n}-\partial^{(n, \ldots, n)} f n$-times with respect to each component. The integral $T_{1}^{n} \cdots T_{d}^{n} \partial^{(n, \ldots, n)} f$ contains f as a summand and terms that are the product of a derivative of f that only depends on less than d components and a polynomial in less than d components with exponents less than n. But we can estimate the functions that only depend on less than d variables by the induction hypothesis and hence we can obtain $g \in \mathcal{O}_{\mathrm{M}}$ with $g-f \in B_{n,(d-1)(n-1)}$.

References

[Bar12] Christian Bargetz, A sequence space representation of L. Schwartz' space \mathcal{O}_{C}, Arch. Math. (Basel) 98 (2012), no. 4, 317-326. MR 2914348
[Gro55] Alexander Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955). MR $0075539(17,763 c)$
[Itō87] Kiyosi Itō (ed.), Encyclopedic dictionary of mathematics. Vol. I-IV, second ed., MIT Press, Cambridge, MA, 1987, Translated from the Japanese. MR 901762 (89b:00033)
[Kuc85] Jan Kucera, The spaces \mathcal{O}_{M} and \mathcal{O}_{C} are ultrabornological. A new proof, Internat. J. Math. Math. Sci. 8 (1985), no. 4, 813-816. MR 821639 (87e:46054)
[Lar12] Julian Larcher, Some remarks concerning the spaces of multipliers and convolutors, \mathcal{O}_{M} and \mathcal{O}_{C}^{\prime}, of Laurent Schwartz, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 106 (2012), no. 2, 407-417. MR 2978922
[Pa171] Victor P. Palamodov, Homological methods in the theory of locally convex spaces, Uspehi Mat. Nauk 26 (1971), no. 1(157), 3-65. MR 0293365 (45 \#2442)
[Sch66] Laurent Schwartz, Théorie des distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, entièrement corrigée, refondue et augmentée, Hermann, Paris, 1966. MR 0209834 (35 \#730)
[Val81] Manuel Valdivia, A representation of the space \mathcal{O}_{M}, Math. Z. 177 (1981), no. 4, 463-478. MR 624226 (82i:46057)
[Vog84] Dietmar Vogt, Some results on continuous linear maps between Fréchet spaces, Functional analysis: surveys and recent results, III (Paderborn, 1983), North-Holland Math. Stud., vol. 90, North-Holland, Amsterdam, 1984, pp. 349-381. MR 761391 (86i:46075)
[Wen03] Jochen Wengenroth, Derived functors in functional analysis, Lecture Notes in Mathematics, vol. 1810, Springer-Verlag, Berlin, 2003. MR 1977923 (2004d:46090)

Institut für Mathematik, Universität Innsbruck,
A-6020 Innsbruck, Austria
email:julian.larcher@uibk.ac.at
Universität Trier, FB IV - Mathematik, 54286 Trier, Germany
email:wengenroth@uni-trier.de

[^0]: Received by the editors in April 2014.
 Communicated by F. Bastin.
 2010 Mathematics Subject Classification : Primary 46M18 • 46F05 ; Secondary 46A08 • 46A45.
 Key words and phrases : derived projective limit functor • slowly increasing functions • rapidly decreasing distributions • sequence space representations.

