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Abstract

A. Grothendieck proved at the end of his thesis that the space OM of
slowly increasing functions and the space O′

C of rapidly decreasing distri-
butions are bornological. Grothendieck’s proof relies on the isomorphy of
these spaces to a sequence space and we present the first proof that does not
utilize this fact by using homological methods and, in particular, the derived
projective limit functor.

1 Introduction and notation

In [Sch66, p. 243] L. Schwartz introduced the space of multipliers of temperate
distributions, i.e., the space of slowly increasing functions

OM = { f ∈ C∞(Rd) ; ∀α ∈ N
d
0 ∃N ∈ N : 〈x〉−N∂α f ∈ L∞},

where C∞(Rd) is the space of complex valued, infinitely differentiable functions

on R
d, 〈x〉 = 1+ |x|2, ∂α is the partial derivative, and L∞ is the Lebesgue space of

bounded functions. The dual O′
M of OM is the space of very rapidly decreasing

distributions.
Schwartz also introduced the space of convolutors of temperate distributions,

i.e., the space O′
C of rapidly decreasing distributions, which is the dual of the

space

OC = { f ∈ C∞(Rd) ; ∃N ∀α ∈ N
d
0 : 〈x〉−N∂α f ∈ L∞}
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of very slowly increasing functions. These spaces are related as in the diagram

OC ⊆ OM

∼ = ∼ =

O′
M ⊆ O′

C

where in both cases the Fourier transform can be taken as the isomorphism.

It is comparatively easy to see that the four spaces are nuclear and semi-
reflexive, that OM and O′

C are complete and that OC and O′
M are (LF)-spaces and

hence bornological. But the completeness of OC and O′
M and the bornologicity

of OM and O′
C are not trivial (which was even asserted by Grothendieck, [Gro55,

Chap. II, p. 130]). Since the dual of a bornological space is complete and the dual
of a complete nuclear space is bornological, these two problems are equivalent
(for the definitions of these topological properties and relations between them
see [Itō87, Section 424]).

Grothendieck proved that OM is bornological by showing that it is isomor-
phic to a complemented subspace of the sequence space s⊗̂πs′ [Gro55, Chap. II,
Lemme 18, p. 132] and verified “directly” that the space s⊗̂πs′ is bornological
[Gro55, Chap.II, Prop. 15, p. 125, Cor. 2, p. 128]. We will find out more about this
isomorphy in Section 2 and also give a homological proof of the bornologicity of
s⊗̂πs′.

In [Kuc85], J. Kučera claimed to have presented a new (and simple) proof for
the main properties of the space OM. That Kučera’s proof contains severe mis-
takes and that it is based on incorrect propositions is clarified in [Lar12], where
also the lack of a proof of the bornologicity of OM, that does not use the isomor-
phy OM

∼= s⊗̂πs′, is pointed out. In Section 3 we will give such a proof.

2 Projective limits and the space s⊗̂πs′

Since quotients (and, in particular, complemented subspaces) of bornological
spaces are bornological, it was sufficient for Grothendieck to prove that OM is
isomorphic to a complemented subspace of s⊗̂πs′, where s is the space of rapidly
decreasing sequences

s = {(xj)j∈N ∈ C
N ; ∀k : sup

j∈N

jk|xj| < ∞}

and s′ is its dual, the space of slowly increasing sequences

s′ = {(xj)j∈N ∈ C
N ; ∃k : sup

j∈N

j−k|xj| < ∞}.

By s⊗̂πs′ we denote the completed projective tensor product of these spaces.
E.g., by [Bar12, Remark 1, p. 321], this space s⊗̂πs′ is canonically isomorphic to

s⊗̂πs′ ∼= {x ∈ C
N ×N ; ∀n ∃N : sup

i,j

in j−N|xi,j| < ∞}.
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In [Val81], M. Valdivia proved that OM is even isomorphic to s⊗̂πs′ itself which
answered a question posed in [Gro55, Chap. II, p. 134]. C. Bargetz used this
fact, the bornologicity of s⊗̂πs′, and methods of the theory of topological tensor
products to obtain the isomorphy OC

∼= s⊗̂ιs
′ [Bar12, Prop. 1, p. 318].

The descriptions of the spaces OM and s⊗̂πs′ already indicate how they can
be written as projective limits of LB-spaces (countable inductive limits of Banach
spaces)

OM =
⋂

n∈N

Xn =
⋂

n∈N

⋃

N∈N

Xn,N, (1)

s⊗̂πs′ =
⋂

n∈N

Yn =
⋂

n∈N

⋃

N∈N

Yn,N , (2)

where Xn,N and Yn,N are the Banach spaces

Xn,N = { f ∈ Cn(Rd) ; ‖ f‖n,N = sup
x∈R

d,|α|≤n

〈x〉−N |∂α f (x)| < ∞},

Yn,N = {x ∈ C
N ×N ; ‖x‖n,N = sup

i,j

in j−N|xi,j| < ∞}.

These representations as projective limits of LB-spaces are not only natural but
also extremely useful since there are very good criteria for checking bornologic-

ity. They are related to the derived projective limit functor Proj1X (which can be
defined as the cokernel of the map ∏ Xn → ∏ Xn, (xn)n 7→ (xn − ̺n

n+1(xn+1))n

where ̺n
m are the connecting maps of the projective spectrum X , in our cases, ̺n

m

are just inclusions). Indeed, an unpublished theorem of D. Vogt (his proof repro-
duced in [Wen03, Th. 3.3.4]) says that Proj X is bornological whenever

Proj1 X = 0. Moreover, there is a variety of evaluable conditions ensuring

Proj1 X = 0. We are going to apply the following results of Palamodov-Retakh
[Pal71] and the second named author, respectively:

A spectrum X of LB-spaces satisfies Proj1 X = 0 if and only if there
are Banach discs Dn in Xn with ̺n

m(Dm) ⊆ Dn and

∀ n ∈ N ∃ m ≥ n ∀ k ≥ m : ̺n
m(Xm) ⊆ ̺n

k (Xk) + Dn.

The requirement ̺n
m(Dm) ⊆ Dn is sometimes very easy to fulfil but in many cases

it is very inconvenient. It can be omitted if either all steps Xn are LS-spaces
(i.e., the inclusions Xn,N →֒ Xn,N+1 are compact) or if a slightly stronger con-
dition of Palamodov-Retakh type is required. Denoting by ̺n

∞ : Proj X → Xn the
obvious map we have:

A spectrum X of LB-spaces satisfies Proj1 X = 0 if and only if, for
every n ∈ N, there are a Banach discs Dn in Xn and m ≥ n with

̺n
m(Xm) ⊆ ̺n

∞(Proj X ) + Dn.



890 J. Larcher – J. Wengenroth

We refer to [Wen03] for the proofs of these characterization and much more in-
formation about derived functors. Typically, the decompositions required in con-
ditions of Retakh-Palamodov type are quite easy to produce in the case of spaces
of sequences (or matrices) since one can write x = χ x + (1 − χ)x where χ is the
indicator function of a suitably chosen set. We want to exemplify this by giving
a very short proof for the bornologicity of s⊗̂πs′ (which is similar to Vogt’s proof

of Ext1(s, s) = 0 [Vog84, Lemma 2.1, p. 359]).

Proposition 1. The space s⊗̂πs′ is bornological.

Proof. We keep the notation s⊗̂πs′ ∼=
⋂

n∈N Yn =
⋂

n∈N

⋃

N∈N Yn,N from above
and we will verify the Palamodov-Retakh condition for the unit balls Dn of Yn,0

which trivially satisfy Dn+1 ⊆ Dn. For n ∈ N we take m = n + 1 and fix x ∈ Yn

as well as k ≥ n + 1. Since x ∈ Ym,M for some M ∈ N we have

‖x‖m,M = sup
i,j

im j−M|xi,j| = c < ∞.

We set yi,j = xi,j if i < cjM and yi,j = 0 else, as well as z = x − y. For i < cjM we

have zi,j = 0 and for i ≥ cjM we estimate

in j−0|zi,j| = im j−M|zi,j| jM/i ≤ ‖x‖m,M/c = 1

which proves z ∈ Dn. It remains to show y ∈ Yk,K for K sufficiently large. Indeed,
for K = M(k − m + 1) we have yi,j = 0 if i ≥ cjM and if i < cjM we estimate

ik j−K|yi,j| = im j−M|yi,j|i
k−m jM−K ≤ ‖x‖m,Mck−m j(k−m)M+M−K = ck−m+1.

This proves ‖y‖k,K < ∞, as required.

3 The new proof

Now we want to prove Proj1X = 0 for the spectrum X = (Xn)n∈N in (1) in
order to obtain that OM is bornological. Splitting up a given function f ∈ Xm as
f = χ f + (1− χ) f with a cut-off function χ (as in the proof of Proposition 1) does
not work in this case. But we will see how f can be “split up” in the following
proof of Grothendieck’s result.

Proposition 2. The space OM is bornological.

Proof. To obtain Proj1X = 0 we will show

∀n ∃m, N : Xm ⊆ OM +Bn,N (3)

where Bn,N is the unit ball of Xn,N. This condition means that we have to
approximate every f ∈ Xm with respect to the norm ‖ · ‖n,N by elements of OM.

To achieve such an approximation we use a kernel K ∈ OM(Rd ×R
d) satisfying

K ≥ 0,
∫

R
d

K(t, x) dt = 1 for all x ∈ R
d, and

supp K(·, x) ⊆
d

∏
j=1

[xj, xj + ε〈x〉−µ] =: Ax for all x ∈ R
d
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where we will see later how ε and µ have to be chosen in dependence on f ∈ Xm.
We can obtain such a kernel by defining

K(t, x) = ε−d〈x〉µd ϕ(ε−1〈x〉µ(t − x))

for a positive test function ϕ ∈ C∞(Rd) with support in [0, 1]d and
∫

R
d ϕ(t)dt = 1

(the conditions above can be checked easily and K ∈ OM since every derivative
of K can be estimated by a polynomial).

We start with the one-dimensional case d = 1 where we can take m = n + 1
and N = 0. So let f ∈ Xn+1,M for some M ∈ N. We want to find g ∈ OM such
that f − g ∈ Bn,0. At first we set

gn(x) =
∫

R

f (n)(t)K(t, x) dt

and show that this is a good approximation to f (n). Since for l ∈ N0

∣

∣

∣
g
(l)
n (x)

∣

∣

∣
=

∣

∣

∣

∣

∫

Ax

f (n)(t)∂l
xK(t, x) dt

∣

∣

∣

∣

≤
∫

Ax

|P(t)| |Q(t, x)| dt ≤ |R(x)|

for some polynomials P, Q, R, the function gn is contained in OM. Furthermore
we can estimate in virtue of Taylor’s formula

∣

∣

∣
f (n)(t)− f (n)(x)

∣

∣

∣
≤ |t − x|〈ξ(t, x)〉M‖ f‖n+1,M

with a point ξ(t, x) between t and x. For ε small enough the inequality 〈ξ(t, x)〉 ≤
2〈x〉 holds for every x ∈ R and t ∈ Ax. We obtain

|gn(x)− f (n)(x)| =

∣

∣

∣

∣

∫

R

(

f (n)(t)− f (n)(x)
)

K(t, x) dt

∣

∣

∣

∣

≤
∫

Ax

∣

∣

∣
f (n)(t)− f (n)(x)

∣

∣

∣
K(t, x) dt

≤
∫

Ax

|t − x|〈ξ(t, x)〉M‖ f‖n+1,MK(t, x) dt

≤ ε 2M 〈x〉M−µ‖ f‖n+1,M

∫

Ax

K(t, x) dt

= ε 2M 〈x〉M−µ‖ f‖n+1,M.

(4)

Now if

T : OM(R) → OM(R), h 7→

(

x 7→
∫ x

0
h(t) dt

)

,

we can set

g(x) =
n−1

∑
j=0

f (j)(0)

j!
xj + (Tngn)(x).

Then g ∈ OM and since

(Tn f (n))(x) = f (x)−
n−1

∑
j=0

f (j)(0)

j!
xj,
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integrating (4) (the integral starting at 0) yields

|g(l)(x)− f (l)(x)| ≤ 1, x ∈ R
d, l ≤ n

for ε small enough and µ large enough. Hence g − f ∈ Bn,0 and the proof is
complete for the one-dimensional case.

Now we will prove the two-dimensional case d = 2. We set m = 2n + 1 and
N = n − 1 in (3). So let f ∈ X2n+1,M for some M. With the help of a kernel

K ∈ OM(R2 ×R
2) like above, we set

gn(x) =
∫

R
2

∂(n,n) f (t)K(t, x) dt

in order to approximate ∂(n,n) f by gn. Similar to the one-dimensional case we
have

∣

∣

∣
∂(n,n) f (t)− ∂(n,n) f (x)

∣

∣

∣
≤ c · |t − x|〈ξ(t, x)〉M‖ f‖2n+1,M

and 〈ξ(t, x)〉 ≤ 2〈x〉 for t ∈ Ax and ε small enough and thus

|gn(x)− ∂(n,n) f (x)| ≤ c
∫

Ax

|t − x|〈ξ(t, x)〉M‖ f‖2n+1,MK(t, x) dt

≤ c̃ ε 〈x〉M−µ‖ f‖2n+1,M.

(5)

Let us denote Tj the integral with respect to the j-th component (the integral start-

ing at 0). Applying T1 ◦ T2 n-times to ∂(n,n) f (x) yields

(Tn
1 Tn

2 f )(x) =

f (x) + ∑
α<(n,n)

∂α f (0, 0)
xα

α!
−

n−1

∑
j=0

∂(j,0) f (0, x2)
x

j
1

j!
−

n−1

∑
j=0

∂(0,j) f (x1, 0)
x

j
2

j!
.

As in the one-dimensional case we can choose g1
0, . . . g1

n−1, g2
0, . . . , g2

n−1 ∈ OM(R)

such that ‖g1
j − ∂(0,j) f (·, 0)‖n,0 ≤ ε and ‖g2

j − ∂(j,0) f (·, 0)‖n,0 ≤ ε. Defining

g(x) = (Tn
1 Tn

2 )gn(x)− ∑
α<(n,n)

∂α f (0, 0)
xα

α!
+

n−1

∑
j=0

g2
j (x2)

x
j
1

j!
+

n−1

∑
j=0

g1
j (x1)

x
j
2

j!

and applying Tn
1 Tn

2 to (5) yields

|g(x)− f (x)| ≤

ε +
n−1

∑
j=0

(

∣

∣

∣
g1

j (x1)− ∂(0,j) f (x1, 0)
∣

∣

∣

|x2|
j

j!
+

∣

∣

∣
g2

j (x2)− ∂(j,0) f (0, x2)
∣

∣

∣

|x1|
j

j!

)

for µ large enough which implies

|g(x)− f (x)| ≤ ε + ε
n−1

∑
j=0

|x2|
j

j!
+ ε

n−1

∑
j=0

|x1|
j

j!
≤ ε c 〈x〉n−1
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for some c > 1. Since similar estimates also hold for |∂αg(x) − ∂α f (x)|, |α| ≤ n,
we obtain g − f ∈ Bn,n−1 and the proof is complete for d = 2.

The general case d ∈ N is very similar. Inductively we want to show

Xdn+1 ⊆ OM +Bn,(d−1)(n−1)

and start by approximating ∂(n,...,n) f by gn(x) :=
∫

Rd ∂(n,...,n) f (t)K(t, x) dt. Then

we integrate the estimate of gn − ∂(n,...,n) f n-times with respect to each compo-

nent. The integral Tn
1 · · · Tn

d ∂(n,...,n) f contains f as a summand and terms that are
the product of a derivative of f that only depends on less than d components and
a polynomial in less than d components with exponents less than n. But we can
estimate the functions that only depend on less than d variables by the induction
hypothesis and hence we can obtain g ∈ OM with g − f ∈ Bn,(d−1)(n−1).
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spaces, Functional analysis: surveys and recent results, III (Paderborn,
1983), North-Holland Math. Stud., vol. 90, North-Holland, Amsterdam,
1984, pp. 349–381. MR 761391 (86i:46075)



894 J. Larcher – J. Wengenroth

[Wen03] Jochen Wengenroth, Derived functors in functional analysis, Lecture Notes
in Mathematics, vol. 1810, Springer-Verlag, Berlin, 2003. MR 1977923
(2004d:46090)

Institut für Mathematik, Universität Innsbruck,
A-6020 Innsbruck, Austria
email:julian.larcher@uibk.ac.at

Universität Trier, FB IV – Mathematik,
54286 Trier, Germany
email:wengenroth@uni-trier.de


