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Abstract

We study division algebras in an arbitrary linear Gr-category, i.e., a cate-
gory of finite-dimensional vector spaces graded by a group with associativity
constraint given by a 3-cocycle. When the 3-cocycle is non-coboundary, this
provides some interesting classes of nonassociative division algebras. In par-
ticular, when we work on Gr-categories over the field of real numbers, some
quasi-associative version of the quaternions and octonions appear.

1 Introduction

By a linear Gr-category we mean a category of finite-dimensional vector spaces
graded by a group with the natural tensor product of graded vector spaces. In
1975, the monoidal structures of Gr-categories were related to group cohomology
of degree 3 in the thesis of Hoàng Xuân Sı́nh [13]. Gr-categories are probably
the simplest class of monoidal categories, hence an excellent testing ground for
general ideas, methods and problems in monoidal categories, quantum groups
and related topics, see for instances [15, 10, 18].

The starting point of this note was our attempt to compute the Brauer group
of an arbitrary braided Gr-category. As is well-known, the crux of the classical
Brauer group theory of a field lies in the classification of central division algebras
over the field [17]. As for the Brauer groups of braided monoidal categories, the
problem in many cases naturally transfers to the classification of central division
algebras in the ground categories, see [20]. This subject matter will be treated in
future works.

We notice that algebras can be defined in any monoidal category without
regard to its braided structures, so it is natural to extend our investigation to
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general (not necessarily braided) Gr-categories. On the other hand, we feel that
the theory of division algebras in monoidal categories should be of independent
interest and it merits a separate consideration. Aside from their obvious connec-
tion to the theories of Brauer groups and module categories over monoidal cate-
gories [19], it seems also reasonable to expect that such division algebras would
have similar applications in quantum (specifically, nonassociative) geometry and
physics as their classical analogue quaternions, octonions and generalizations do,
see e.g. [11, 9, 6, 7, 1].

Throughout the note, we work over a field k with identity denoted by 1. Vec-
tor spaces, algebras, morphisms, and categories are over k unless otherwise speci-
fied. After recalling some basic definitions concerning Gr-categories and algebras
therein in Section 2, we provide in Section 3 the classification of division algebras
in a Gr-category via some triples consisting of associative division k-algebras,
almost group homomorphisms and 2-cocycles of groups. In Section 4, we give
a description of iso-classes of division algebras in a Gr-category mainly by some
cohomological data of finite groups. Some explicit examples, in particular, some
quasi-associative version of the quaternions and octonions, are given in Section 5.

2 Linear Gr-categories

Let G be a finite group with identity element ı. A normalized 3-cocycle ω on G
with coefficients in k

∗ := k \ {0} is a map

ω : G × G × G −→ k

∗

such that the following equalities hold for all e, f , g, h ∈ G:

ω(e, f , g)ω(e, f g, h)ω( f , g, h) = ω(e f , g, h)ω(e, f , gh), (2.1)

ω(ı, e, f ) = ω(e, ı, f ) = ω(e, f , ı) = 1. (2.2)

By C(G,k) we denote the category of finite-dimensional G-graded k-vector
spaces. The usual tensor product ⊗ over k is a bifunctor of C(G,k). Given a
3-cocycle ω on G, one can define an associativity constraint on C(G,k) by

ωU,V,W : (U ⊗ V)⊗ W −→ U ⊗ (V ⊗ W) (2.3)

(u ⊗ v)⊗ w 7→ ω(|u|, |v|, |w|)u ⊗ (v ⊗ w),

where |v| denotes the degree of a homogeneous element v ∈ V. The tensor func-
tor ⊗ and the associativity constraint ω provide a monoidal structure on C(G,k).
This is what we called a linear Gr-category. To emphasize the associativity iso-
morphism, we denote the monoidal category by C(G, ω,k). It is well-known that
the monoidal structures on C(G,k) are parameterized by H3(G,k∗), see [13] or
the more recent [8].

An algebra in C = C(G, ω,k) is an object A with a multiplication morphism
m : A ⊗ A → A and a unit morphism u : k → A satisfying the associativity
and the unitary conditions of usual algebras but expressed in diagrams of the
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category C. More precisely, an algebra in C is a finite-dimensional G-graded space
A = ⊕g∈G Ag with a multiplication · such that

Ag · Ah ⊆ Agh, (2.4)

(a · b) · c = ω(|a|, |b|, |c|)a · (b · c) (2.5)

for all homogeneous elements a, b, c ∈ A. There is also a unit element 1 in A such
that

1 · a = a = a · 1 (2.6)

for all a ∈ A. Apparently, 1 ∈ Aı.
Algebras in linear Gr-categories were studied in [2], where they were called

group graded quasialgebras. These algebras form an interesting class of nonas-
sociative, but almost associative up to a 3-cocycle, algebras including the well-
known quaternions, octonions and higher Cayley algebras, see loc. cit. When the
group is Z2, or more generally a finite abelian group, some classification results
of simple algebras in the corresponding Gr-categories were obtained in [3, 4].

3 Division algebras in Gr-categories

Let C = C(G, ω,k) be a Gr-category. An algebra A in C is said to be a division
algebra if any nonzero homogeneous element has a left and a right inverse. A
division algebra A in C is said to be ample, if the homogeneous spaces Ag are
nonzero for all g ∈ G. Obviously it is enough to study ample division algebras in
C as non-ample ones will become ample in a Gr-category with smaller group and
the restriction of a 3-cocycle is again 3-cocycle.

Lemma 3.1. Let A = ⊕g∈G Ag be an ample division algebra in C.

1. Aı is an associative division k-algebra.

2. Aıag = Ag = ag Aı for any ag ∈ Ag \ {0}.

3. If ag ∈ Ag \ {0}, then ∃ al
g, ar

g ∈ Ag−1 such that al
gag = 1 = agar

g. Moreover,

ar
g = ω(g−1, g, g−1)al

g.

4. If ag ∈ Ag \ {0}, then φg : Aı → Aı, d 7→ agdar
g is an associative k-algebra

automorphism.

Proof. Trivial.

Remark 3.2. For an ample division algebra A in C, one can choose a set of elements
{ag|g ∈ G} with aı = 1 and ag ∈ Ag \ {0} such that A = ⊕g∈G Aıag.

Let A be an ample division algebra in C as above. From now on, we fix a set
{ag ∈ Ag|g ∈ G} of homogeneous elements of A as in Remark 3.2. Denote by D
the associative division k-algebra Aı. We have the associated map

φ : G → Aut(D), g 7→ φg.
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Note that agah ∈ Agh. Hence there is a unique element σ(g, h) in D∗ := D \ {0}
such that agah = σ(g, h)agh . In particular, σ is normalized:

σ(ı, g) = 1 = σ(g, ı), ∀g ∈ G.

This results in a 2-cochain on G with coefficients in the division algebra D :

G × G
σ
−→ D∗, (g, h) 7→ σ(g, h).

For each c ∈ D∗, define

Ad(c) : D → D, d 7→ cdc−1.

Clearly Ad(D) is the group Inn(D) of inner automorphisms of the division
k-algebra D.

Lemma 3.3. Keep the above conventions. We have

σ( f , g)σ( f g, h) = ω( f , g, h)φ f (σ(g, h))σ( f , gh), (3.1)

φ f ◦ φg = Ad(σ( f , g)) ◦ φ f g (3.2)

for all f , g, h ∈ G.

Proof. By straightforward computations, (3.1) is derived from

(a f · ag) · ah = ω( f , g, h)a f · (ag · ah),

while (3.2) is from the definitions of φ, σ and Lemma 3.1.

So far we have observed the main ingredients of an ample division algebra in
C, namely, an associative division k-algebra D, an almost group homomorphism
φ : G → Aut(D) and a normalized 2-cochain σ : G × G → D∗ satisfying (3.1)-
(3.2). From now on, we use (D, φ, σ) to denote these data and call it a good triple
in C.

Conversely, given a good triple (D, φ, σ) as above, we can construct an ample
division algebra in C as follows. Regard A = ⊕g∈GDag as a G-graded space with
Ag = Dag. Take aı = 1, the unit of D, while view ag with g 6= ı as a symbol.
Define a multiplication on A by

(xag) · (yah) = xφg(y)σ(g, h)agh (3.3)

for all x, y ∈ D and g, h ∈ G.

Lemma 3.4. The so-defined algebra A associated to the triple (D, φ, σ) is an ample divi-
sion algebra in C.

Proof. The product (3.3) is k-bilinear and satisfies (2.4) by definition. Take the
unit 1A of A as the unit 1 of D. Clearly it satisfies (2.6). Finally, (2.5) follows from
(3.1)-(3.2): for all f , g, h ∈ G, x, y, z ∈ D we have:

[(xa f )(yag)](zah) = (xφ f (y)σ( f , g)a f g)(zah)

= xφ f (y)σ( f , g)φ f g(z)σ( f g, h)a f gh

= xφ f (y)Ad(σ( f , g)) ◦ φ f g(z)σ( f , g)σ( f g, h)a f gh

by (3.1)− (3.2) = xφ f (y)φ f ◦ φg(z)ω( f , g, h)φ f (σ(g, h))σ( f , gh)a f gh

= ω( f , g, h)xφ f (yφg(z)σ(g, h))σ( f , gh)a f gh

= ω( f , g, h)(xa f )[(yag)(zah)].
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To summarize, we have

Proposition 3.5. In a Gr-category C, ample division algebras are in 1-1 correspondence
with good triples.

4 Isomorphism classes

In this section, we classify the isomorphism classes of ample division algebras in
C = C(G, ω,k) by means of good triple data. Let A and A′ be two ample division
algebras in C. If there is an invertible morphism F : A → A′ in C which satisfies

F(1A) = 1A′ , F(a ·A b) = F(a) ·A′ F(b), ∀a, b ∈ A, (4.1)

then we say A and A′ are isomorphic as ample division algebras in C. For con-
venience, we will also say that the corresponding good triples of A and A′ are
isomorphic according to Proposition 3.5. From now on we always write A =
⊕g∈GDag and A′ = ⊕g∈GD′a′g, and their corresponding good triples as (D, φ, σ)

and (D′, φ′, σ′) respectively.

Lemma 4.1. Assume that F : A → A′ is an isomorphism of ample division algebras in
C. Then

1. α = F|D : D → D′ is an isomorphism of associative division k-algebras, and

2. there exists a set of nonzero elements {d′g}g∈G in D′ such that

d′ı = 1A′ ,

α(φg(y))α(σ(g, h))d′gh = d′gφ′
g(α(y)d

′
h)σ

′(g, h), ∀y ∈ D, g, h ∈ G. (4.2)

Conversely, given an isomorphism α : D → D′ of division k-algebras and a set of
elements {d′g ∈ D′∗|g ∈ G} satisfying (4.2), there is an isomorphism of ample division
algebras in C given by

F : A → A′, xag 7→ α(x)d′ga′g, ∀x ∈ D, g ∈ G. (4.3)

Proof. Assume that F : A → A′ is an isomorphism. The claim (1) is obvious by
definition. For (2), note that F preserves degree, hence F(ag) = d′ga′g for some

d′g ∈ D′∗. Then (4.2) is a direct consequence of (4.1) by letting a = xag, b =
yah, ∀x, y ∈ D, g, h ∈ G.

The converse follows a direct verification of (4.1), which is clearly guaranteed
by (4.2) and goes as follows:

F(xag ·A yah) = F(xφg(y)σ(g, h)agh)

= α(xφg(y)σ(g, h))d′gh a′gh

by (4.2) = α(x)d′gφ′
g(α(y)d

′
h)σ

′(g, h)a′gh

= [α(x)d′ga′g] ·A′ [α(y)d′ha′h]

= F(xag) ·A′ F(yah)

for all x, y ∈ D, g, h ∈ G.
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Let (D, φ, σ) be a good triple. Following Lemma 4.1, a division algebra isomor-
phism α : D → D′ can induce a good triple datum on D′ so that the isomorphism
α can be extended to an isomorphism of ample division algebras.

Corollary 4.2. Let A be the ample division algebra in C corresponding to a good triple
(D, φ, σ). Suppose that α : D → D′ is an isomorphism of division k-algebras. Let
φ′

g = α ◦ φg ◦ α−1, ∀g ∈ G and σ′ = α ◦ σ. Then the triple (D′, φ′, σ′) is good and

the associated ample division algebra A′ is isomorphic to A in C with an isomorphism
F : A → A′ satisfying F|D = α.

Proof. By assumption, one has for all f , g, h ∈ G,

σ′( f , g)σ′( f g, h) = α(σ( f , g)σ( f g, h))

by (3.1) = α(ω( f , g, h)φ f (σ(g, h))σ( f , gh))

= ω( f , g, h)α ◦ φ f ◦ α−1(α ◦ σ(g, h))α ◦ σ( f , gh)

= ω( f , g, h)φ′
f (σ

′(g, h))σ′( f , gh), and

φ′
f ◦ φ′

g = α ◦ φ f ◦ α−1 ◦ α ◦ φg ◦ α−1

by (3.2) = α ◦ Ad(σ( f , g)) ◦ φ f g ◦ α−1

= α ◦ Ad(σ( f , g)) ◦ α−1 ◦ φ′
f g

= Ad(α ◦ σ( f , g)) ◦ φ′
f g

= Ad(σ′( f , g)) ◦ φ′
f g.

Therefore, (D′, φ′, σ′) is a good triple and hence there is a corresponding ample
division algebra A′ in C by Proposition 3.5.

To extend α to an isomorphism F as in (4.3), we let d′g = 1D′ , ∀g ∈ G. Then by
the assumption we have:

α(φg(y))α(σ(g, h))d′gh = α ◦ φg ◦ α−1(α(y))α ◦ σ(g, h)1D′

= 1D′φ′
g(α(y)1D′ )σ′(g, h)

= d′gφ′
g(α(y)d

′
h)σ

′(g, h)

for all y ∈ D, g, h ∈ G. Hence, F is the desired isomorphism according to Lemma
4.1.

In the following, we wish to give a complete list of iso-classes of ample di-
vision algebras in C by imposing appropriate restrictions on the good triples
(D, φ, σ). First of all, by Corollary 4.2 we can fix D for every good triple (D, φ, σ)
as any division k-algebra isomorphic to D possesses a good triple isomorphic
to (D, φ, σ). With D fixed, we then look for the conditions imposed on the map
φ : G → Aut(D).

Assume that a homomorphism φ′ : G → Aut(D) is given by
φ′

g = Ad(cg) ◦ φg, ∀g ∈ G, where cg ∈ D∗ and Ad(cg) ∈ Inn(D). We set cı to

be 1D so that φ′
ı = IdD . Suppose that there is a map σ : G × G → D∗ such that

(D, φ, σ) is a good triple. Define σ′ : G × G → D∗ by

σ′(g, h) = cgφg(ch)σ(g, h)c−1
gh , ∀g, h ∈ G. (4.4)
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Lemma 4.3. The triple (D, φ′, σ′) is good and it is isomorphic to (D, φ, σ).

Proof. By direct verification, one has

σ′( f , g)σ′( f g, h) = c f φ f (cg)σ( f , g)c−1
f g c f gφ f g(ch)σ( f g, h)c−1

f gh

= c f φ f (cg)Ad(σ( f , g)) ◦ φ f g(ch)σ( f , g)σ( f g, h)c−1
f gh

by (3.1)− (3.2) = c f φ f (cg)φ f ◦ φg(ch)ω( f , g, h)φ f (σ(g, h))σ( f , gh)c−1
f gh

= ω( f , g, h)Ad(c f ) ◦ φ f (cgφg(ch)σ(g, h))c f σ( f , gh)c−1
f gh

by (4.4) = ω( f , g, h)φ′
f (σ

′(g, h))φ′
f (cgh)c f σ( f , gh)c−1

f gh

= ω( f , g, h)φ′
f (σ

′(g, h))c f φ f (cgh)σ( f , gh)c−1
f gh

by (4.4) = ω( f , g, h)φ′
f (σ

′(g, h))σ′( f , gh), and

φ′
f ◦ φ′

g(d) = Ad(c f ) ◦ φ f ◦ Ad(cg) ◦ φg(d)

= c f φ f (cg)φ f ◦ φg(d)φ f (c
−1
g )c−1

f

by (3.2) = c f φ f (cg)Ad(σ( f , g)) ◦ φ f g(d)φ f (c
−1
g )c−1

f

= c f φ f (cg)σ( f , g)φ f g(d)σ( f , g)−1φ f (c
−1
g )c−1

f

= c f φ f (cg)σ( f , g)c−1
f g φ′

f g(d)c f gσ( f , g)−1φ f (c
−1
g )c−1

f

by (4.4) = Ad(σ′( f , g)) ◦ φ′
f g(d)

for all d ∈ D, f , g, h ∈ G. That is, the triple (D, φ′, σ′) is good.
Let A = ⊕g∈GDag and A′ = ⊕g∈GDa′g denote the associated ample division

algebras to (D, φ, σ) and (D, φ′, σ′) respectively. Define F : A → A′ by letting
F|D = IdD and F(ag) = c−1

g a′g, ∀g ∈ G. Then for all y ∈ D, g, h ∈ G we have

c−1
g φ′

g(α(y)c
−1
h )σ′(g, h) = c−1

g cgφg(yc−1
h )c−1

g cgφg(ch)σ(g, h)c−1
gh

= φg(y)σ(g, h)c−1
gh

use “α = Id ” = α(φg(y))α(σ(g, h))c−1
gh .

Now (4.2) of Lemma 4.1 holds, so F is an isomorphism.

Consider Out(D) := Aut(D)/ Inn(D), the group of outer automorphisms of
an associative division k-algebra D. Let

π : Aut(D) → Out(D), α 7→ α

denote the canonical map. Note that the almost group map φ in a good triple
(D, φ, σ) becomes a group homomorphism φ = π ◦ φ : G → Out(D) thanks to
(3.2).The previous lemma indicates that we need only to take one representative
φ : G → Aut(D) of the induced group homomorphism φ. So, there is no harm to
understand the map φ in a good triple (D, φ, σ) as a group homomorphism from
G to Out(D).

Two almost group homomorphisms φ, φ′ : G → Aut(D) are said to be conju-

gate if there exists τ ∈ Aut(D) such that φ′
g = τ ◦ φg ◦ τ−1, ∀g ∈ G. We denote
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the set of conjugacy classes by C(G, Aut(D)). Furthermore, we show that φ in
(D, φ, σ) can be even restricted to just one representative of each conjugacy class.

Lemma 4.4. Suppose that (D, φ, σ) is a good triple, and φ′ : G → Aut(D) an almost

group homomorphism satisfying φ′
g = τ ◦ φg ◦ τ−1, ∀g ∈ G for some τ ∈ Aut(D).

Then there exists σ′ ∈ Aut(D) such that (D, φ′, σ′) is a good triple and is isomorphic to
(D, φ, σ). Conversely, if the good triples (D, φ, σ) and (D, φ′, σ′) are isomorphic, then φ
and φ′ are conjugate.

Proof. By assumption, there is a set {cg ∈ D∗|g ∈ G} such that Ad(cg) ◦ φ′
g =

τ ◦ φg ◦ τ−1, ∀g ∈ G. By Lemma 4.3, we can assume that cg = 1D, ∀g ∈ G
without loss of generality. Now let σ′ = τ ◦ σ, then we have

σ′( f , g)σ′( f g, h) = τ(σ( f , g)σ( f g, h))

by (3.1) = ω( f , g, h)τ(φ f (σ(g, h))σ( f , gh))

= ω( f , g, h)Ad(τ) ◦ φ f (τ ◦ σ(g, h))τ ◦ σ( f , gh)

= ω( f , g, h)φ′
f (σ

′( f , g))σ′( f , gh), and

φ′
f ◦ φ′

g = Ad(τ) ◦ (φ f ◦ φg)

by (3.2) = Ad(τ) ◦ (Ad(σ( f , g)) ◦ φ f g)

= Ad(τ ◦ σ( f , g)) ◦ Ad(τ) ◦ φ f g

= Ad(σ′( f , g)) ◦ φ′
f g

for all f , g, h ∈ G. This proves that (D, φ′, σ′) is a good triple.
Now let A = ⊕g∈GDag and A′ = ⊕g∈GDa′g denote respectively the associated

ample division algebras of (D, φ, σ) and (D, φ′, σ′). Define F : A → A′ by letting
F|D = τ and F(ag) = a′g, ∀g ∈ G. The rest of the proof is a routine verification of
(4.2). For all f , g, h ∈ G, one has

τ(φg(y))τ(σ(g, h)) = τ ◦ φg ◦ τ−1(τ(y))τ ◦ σ(g, h)

= φ′
g(τ(y))σ

′(g, h).

This proves that F is an isomorphism.
For the last claim, note that there exist α ∈ Aut(D) and a set {dg ∈ D∗|g ∈ G}

such that (4.2) holds by Lemma 4.1. By letting h = ı, the equality of (4.2) becomes

α(φg(y))dg = dgφ′
g(α(y)), ∀y ∈ D, ∀g ∈ G.

This says that Ad(dg) ◦ φ′
g = α ◦ φg ◦ α−1, ∀g ∈ G. That is, φg = α ◦ φg ◦ α−1,

hence φ and φ′ are conjugate.

With D fixed in an iso-class and φ in a conjugacy class, we are now able to
work out the restrictions on σ.

Lemma 4.5. Two good triples (D, φ, σ) and (D, φ, σ′) are isomorphic if and only if there
exist α ∈ Aut(D) and a set {dg}g∈G in D∗ such that

α ◦ φg ◦ α−1 = Ad(dg) ◦ φg, ∀g ∈ G, (4.5)

σ′(g, h) = φg(d
−1
h )d−1

g α ◦ σ(g, h)dgh , ∀g, h ∈ G. (4.6)
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Proof. Follows from Lemmas 4.1 and 4.4.

Let Σ(D, φ) denote the set of σ’s such that (D, φ, σ) forms a good triple. We
remark that the set Σ(D, φ) might be empty. Denote by Aut(D, φ) the centralizer
subgroup of the subgroup {φg|g ∈ G} of Out(D), namely,

Aut(D, φ) = {α ∈ Out(D)|α ◦ φg = φg ◦ α, ∀g ∈ G}.

Lemma 4.5 says that the group Aut(D, φ) acts on the set Σ(D, φ) by (4.5). Now,
we are in the position to state the main result of this section.

Theorem 4.6. The isomorphism classes of ample division algebras in C(G, ω,k) are
in 1-1 correspondence with the good triples (D, φ, σ) where D represents an iso-class
of associative division k-algebras, φ : G → Aut(D) represents a conjugacy class in
C(G, Out(D)), and σ : G × G → D∗ represents an Aut(D, φ)-orbit of Σ(D, φ).

5 Examples

We have reduced the construction and the classification of ample division
algebras in a Gr-category to some good triples. Now we apply this idea to give
explicit classification results for some concrete finite groups and 3-cocycles.

Case 1. The field k is algebraically closed. If D is a finite-dimensional associative
division algebra over k, then D = k, and Aut(D) = Out(D) = {Id

k

}. Let G
be a finite group, and ω a 3-cocycle on G. Ample division algebras in C(G, ω,k)
are in 1-1 correspondence with the maps σ : G × G → k

∗ such that ω = ∂σ,
where ∂ denotes the differential map. If ω is not a coboundary, then there is no
ample division algebra in C(G, ω,k). If ω is a coboundary, then σ can be chosen
in the normalized 2-cochains such that ω = ∂σ. According to Proposition 4.6,
the iso-classes of ample division algebras in C(G, ω,k) are in 1-1 correspondence
to triples (k, Id, σ), where Id : G → {Id

k

}, g 7→ Id
k

, ∀g ∈ G and σ represents
a second cohomology class by Lemma 4.5. Therefore, the iso-classes of ample
division algebras in C(G, ω,k) are parametrized by the second cohomology group
H2(G,k∗).

Case 2. The field k is R, the real numbers. By the well-known theorem of Frobe-
nius, there are 3 iso-classes of finite-dimensional associative division algebras
over R, namely, R itself, complex numbers C, and quaternions H. Take a finite
group G and a 3-cocycle ω on G with coefficients in R∗.

(i) D = R, or H. By the well-known theorem of Noether-Skolem,
Aut(D) = Inn(D). Hence there is only one choice for group homomorphisms
G → Out(D) = {IdD}. Then we can take

φ : G → Aut(D), g 7→ IdD, ∀g ∈ G.

By (3.2), for all f , g ∈ G, the elements σ( f , g) ∈ D should lie in the center of D,
that is R, and by (3.1) σ should satisfy ω = ∂σ. Again, if ω is not a coboundary,
then there is no ample division algebra in C(G, ω, R); if ω is a coboundary, then
the iso-classes of ample division algebras in C(G, ω, R) with D = R or H are
parametrized by the second cohomology group H2(G, R∗).
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(ii) D = C. In this case, Aut(C) = Out(C) = {Id, κ}, where κ is the complex
conjugation. If φ : G → Aut(C), g 7→ Id is the trivial homomorphism, then we
are in a similar situation as (i). If ω is not a coboundary, then there is no ample di-
vision algebra in C(G, ω, R). If ω is a coboundary, say ω = ∂ς, then (3.1) becomes
∂σ = ∂ς and we have σς−1 ∈ Z2(G, C∗), the group of 2-cocycles. By Lemma 4.5,
the iso-classes of ample division algebras in C(G, ω, R) with D = C are in 1-1
correspondence with the cohomology classes of σ, hence are parametrized by the
second cohomology group H2(G, C∗).

Now assume that φ : G → Aut(C) is a group homomorphism such that
φ(G) = {Id, κ}. This is possible whenever G is an abelian group of even order.
As a coboundary on G will essentially lead us to the associative case treated in
[16], we only consider non-coboundary 3-cocycles on G.

In order to get explicit classification results, some concrete groups must be
chosen. In the following, we are mainly concerned about some possible nonasso-
ciative analogues of the quaternions and octonions. For this purpose, it is natural
to consider the groups Z2, Z2n, Zn

2 (with n small) which are possible gradation
groups for the quaternions and octonions, see e.g. [2, 12].

Proposition 5.1. Assume that G = Z2 = 〈g|g2 = ı〉. Let ω be the only non-coboundary
3-cocycle, i.e., ω(g, g, g) = −1. Then there is only one, up to isomorphism, ample
division algebra in C(Z2, ω, R) which is an nonassociative analogue of the quaternions.

Proof. Since ω is not a coboundary, the associative division R-algebra in a good
triple can only be C and the homomorphism φ : Z2 → Aut(C) must be given by
φg = κ. Now σ should satisfy

σ(ga, gb)σ(gagb, gc) = ω(ga, gb, gc)φga(σ(gb, gc))σ(ga , gbgc),

where a, b, c ∈ {0, 1}. If one of a, b, c is 0, then the above equation holds automat-
ically. Now let a = b = c = 1. Then we have

σ(g, g) = −σ(g, g).

This implies σ(g, g) ∈ iR where i2 = −1. By Lemma 4.5, we only need to take
σ(g, g) = i as any other choice will give an isomorphic ample division algebra in
C(Z2, ω, R).

The division algebra corresponding to the triple (C, φ, σ) is A = C ⊕ Cu such
that u2 = i. As an R-space, it has basis {1, i, u, iu}. The multiplication of basis
elements is given by the following table:

1 i u iu
1 1 i u iu
i i −1 iu −u
u u −iu i 1
iu iu u −1 i

.
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Remark 5.2. The nonassociative quaternions in the above proposition was discovered
before by a completely different method, see [5]. Note that it is a fully division algebra,
i.e., any nonzero (nonhomogeneous) element has a left and a right inverse. Let a + bu be
an arbitrary nonzero element with a, b ∈ C. If b = 0, then the inverse is a−1. If b 6= 0,
then

(a + bu)(
a

|a|2 − |b|2i
−

b

|a|2 + |b|2i
u) = 1 = (

a

|a|2 − |b|2i
−

b

|a|2 − |b|2i
u)(a + bu).

Let Z2n = 〈g|g2n = ı〉 and consider the group homomorphism

φ : Z2n → Aut(C), gr 7→

{

Id, if r is even;
κ, if r is odd.

The following general formula for 3-cocycles on a cyclic group with coefficients
in an algebraically closed field is well-known:

ωa(g
r, gs, gt) = ζa[ s+t

2n ]r, (5.1)

where ζ is a primitive 2n-th root of unity, a ∈ [0, 2n − 1] is an integer, and [x]
denotes the integer part of x, see e.g. [14]. Choose a nontrivial 3-cocycle ωa, i.e.,
a 6= 0. As the coefficients are in R∗, there is only one choice, namely, a = n and
the 3-cocycle is given by

ω(gr , gs, gt) = (−1)[
s+t
2n ]r.

If (C, φ, σ) is a good triple in C(Z2n, ω, R), then by (3.1) we have

σ(gr, gs)σ(gr+s, gt) =

{

σ(gs, gt)σ(gr , gs+t), if r is even;

(−1)[
s+t
2n ]σ(gs, gt)σ(gr , gs+t), if r is odd.

(5.2)

Note that σ takes values in C∗ by the assumption on φ and (3.2). By (5.2), the

restriction of σ to the subgroup Z
(2)
2n = {g2r|0 ≤ r ≤ n − 1} is a 2-cocycle. It is

well-known that H2(Z
(2)
2n , C∗) = 0, hence we can set σ(gr, gs) = 1 whenever r and

s are even. It would be interesting to give a general solution for such σ. However,
this seems to be out of reach for general n. In the following we give the result for
n = 2.

Proposition 5.3. Assume that σ : Z4 × Z4 → C∗ satisfies (5.2) and σ(ı, gi) =
σ(gi, ı) = σ(g2, g2) = 1 for 0 ≤ i ≤ 3. Then σ is determined by a pair of complex
numbers a = σ(g2, g) and b = σ(g3, g) such that (ab)2 ∈ iR. The values of σ at other
elements are

σ(g, g) = ab, σ(g, g2) = −
ab

b
, σ(g, g3) = −b,

σ(g2, g3) =
1

a
, σ(g3, g2) =

b

ab
, σ(g3, g3) = −

b

a
.
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The proof is straightforward, but tedious with computations. As mentioned
above, the resulting division algebras can be viewed as some variations of the
octonions.

Finally, we consider the Klein 4-group K = Z2 × Z2 = 〈g1〉 × 〈g2〉. A general
formula for 3-cocycles on K is given in [14] as follows:

ωa,b,c(g
i1
1 gi2

2 , g
j1
1 g

j2
2 , gk1

1 gk2
2 ) = (−1)a[

j1+k1
2 ]i1+b[

j1+k1
2 ]i2+c[

j2+k2
2 ]i2 ,

where a, b, c, i1, i2, j1, j2, k1, k2 ∈ {0, 1}. The only 3-coboundary is ω0,0,0. Let φ :
K → Aut(C) be the group homomorphism given by gi 7→ κ, i = 1, 2. If (C, φ, σ)
is a good triple in C(K, ωa,b,c, R), then by (3.1) one has

σ(gi1
1 gi2

2 , g
j1
1 g

j2
2 )σ(g

i1+j1
1 g

i2+j2
2 , gk1

1 gk2
2 ) = (5.3)

(−1)a[
j1+k1

2 ]i1+b[
j1+k1

2 ]i2+c[
j2+k2

2 ]i2κi1+i2(σ(g
j1
1 g

j2
2 , gk1

1 gk2
2 ))σ(gi1

1 gi2
2 , g

j1+k1

1 g
j2+k2

2 ) .

From this equation, it is easy to see that if (a, b, c) = (1, 1, 1), (a, b, c) = (1, 0, 0),
(a, b, c) = (0, 1, 0), or (a, b, c) = (0, 0, 1), one has

σ(g1g2, g1g2) = −σ(g1g2, g1g2),

hence σ(g1g2, g1g2) = 0. This implies that there is no good triple in these cases.
In the following we consider the case ω = ω1,0,1. For brevity, write

σ(g1, g2) = x, σ(g2, g1) = y.

Applying (5.3) to the triple (g1, g1, g1), one has σ(g1, g1) = −σ(g1, g1). Hence,
σ(g1, g1) ∈ iR. Similarly, one has σ(g2, g2) ∈ iR. Assume that

σ(g1, g1) = pi, σ(g2, g2) = qi,

where p, q ∈ R∗. Now applying (5.3) to the triple (g1, g1, g2), one gets

σ(g1, g1) = σ(g1, g2)σ(g1, g1g2).

This implies σ(g1, g1g2) = pi
x . Again, applying (5.3) to the triple (g1g2, g1, g1),

one obtains σ(g1g2, g1)σ(g2, g1) = −σ(g1, g1) and σ(g1g2, g1) = −pi
y . Finally one

applies (5.3) to the triple (g1, g2, g1), and obtains

σ(g1, g2)σ(g1g2, g1) = σ(g2, g1)σ(g1, g1g2).

It follows that x
−pi

y = y
pi
x , hence xx + yy = 0 and x = y = 0. That is absurd.

Therefore, there is no good triple, hence no ample division algebra in this case
either. Similarly, one has the same conclusion for ω1,1,0 and ω0,1,1.

For other group homomorphisms φ : K → Aut(C) such that φ(G) = {Id, κ},
we have the same conclusion via a similar procedure as above.

Proposition 5.4. If ω is not a coboundary, then there is no ample division algebra in
C(K, ω, R).
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