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Abstract

In this paper we study piecewise linear (PWL) vector fields

F(x, y) =

{
F+(x, y) if x ≥ 0,
F−(x, y) if x ≤ 0,

where x = (x, y) ∈ R
2, F+(x) = A+x + b+ and F−(x) = A−x + b−, A+ =

(a+ij ) and A− = (a−ij ) are (2 × 2) constant matrices, b+ = (b+1 , b+2 ) ∈ R
2

and b− = (b−1 , b−2 ) ∈ R
2 are constant vectors in R

2. We suppose that the
equilibrium points are saddle or focus in each half-plane. We establish a
correspondence between the PWL vector fields and vectors formed by some
of the following parameters: sets on Σ (crossing, sliding or escaping), kind of
equilibrium (real or virtual), intersection of manifolds with Σ, stability and
orientation of the focus. Such vectors are called configurations. We reduce
the number of configurations by an equivalent relation. Besides, we analyze
for which configurations the corresponding PWL vector fields can have or
not closed sliding poly-trajectories.

1 Introduction

There exist a lot of papers contributing to study of minimal sets of vector fields,
such as, [6, 10]. In this context, piecewise linear (PWL) vector fields are studied
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by very researchers and serve as models for a great variety of engineering de-
vices and biology, see for instance [8]. The simplest case is when there are two
linearity regions delimited by a straight line. One of the pioneers in the study of
(PWL) systems was Filippov that established conventions about the vector field
in the region of discontinuity. After Filippov, others researches such as A. Gasull,
S. Huan, X. Yang, J. Llibre, E. Ponce, among others, worked in this context.

Linear vector fields do not have limit cycles, but there are many examples of
PWL vector fields with closed poly-trajectories (see Examples 3, 4 and 5). One of
the main problems in the qualitative theory of planar differential equations is to
identify the existence of the limit cycles and its number. This problem has been
studied recently in PWL, for instance, in [2, 9].

Denote Σ = {(0, y) ∈ R
2}, Σ

+ = {(x, y) ∈ R
2 : x > 0} and Σ

− = {(x, y) ∈
R

2 : x < 0}. Let ΩL be the space of vector fields F on R
2 defined by:

F(x, y) =

{
F+(x, y) if x ≥ 0,
F−(x, y) if x ≤ 0,

(1)

where, F+(x) = (F+
1 (x), F+

2 (x)) = A+x + b+ and F−(x) = (F−
1 (x), F−

2 (x)) =
A−x + b−, A+ = (a+ij ) and A− = (a−ij ) are (2 × 2) constant matrices and b+ =

(b+1 , b+2 ) ∈ R
2 and b− = (b−1 , b−2 ) ∈ R

2 are constant vectors in R
2.

We say that (1) is a piecewise linear (PWL) vector field and we denote F ∈ ΩL.
We write F = (F+ , F−), which we will accept to be bi-valued in the points of Σ.
Following Filippov’s terminology, we distinguish the following sets on Σ:

Σ
c = {(0, y) : F+

1 (0, y).F−
1 (0, y) > 0} (crossing set).

Σ
e = {(0, y) : F+

1 (0, y) > 0 and F−
1 (0, y) < 0} (escaping set).

Σ
s = {(0, y) : F+

1 (0, y) < 0 and F−
1 (0, y) > 0} (sliding set).

The boundary between the sets Σc, Σs and Σe is given by fold points. We say
that (0, y) ∈ Σ is a fold point for the PWL vector field (1) if F−

1 (0, y) = 0 and
a−12F−

2 (0, y) 6= 0, or F+
1 (0, y) = 0 and a+12F+

2 (0, y) 6= 0. The PWL vector field (1)
has at most two fold points. In fact, if a±12 = 0, then the vector field does not have
fold points. If a±12 6= 0 , then the equations F±

1 (0, y) = 0 imply the existence of
two fold points.

According to the convex method of Filippov, the trajectories of F ∈ ΩL on
Σe ∪ Σs satisfy the equation ẋ = λF−(x) + (1 − λ)F+(x), where λ is selected
so that the vector field is tangent to the escaping or sliding set, i.e., λ F−

1 (x) +
(1 − λ)F+

1 (x) = 0.

Then, for x = (0, y) ∈ Σ
e ∪ Σ

s we get λ(y) =
F+

1 (x)

F+
1 (x)− F−

1 (x)
, and so we have

ẋ = 0, ẏ = g(y) =
F+

1 (x)F−
2 (x)− F−

1 (x)F+
2 (x)

F+
1 (x)− F−

1 (x)
, x ∈ Σ

e ∪ Σ
s. (2)
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The corresponding vector field FΣ(y) = (0, g(y)) is called sliding vector field.

Here, we study PWL vector fields satisfying that the equilibrium points in
the left and in the right half-planes are saddle or focus, more specifically we
consider the following configurations: saddle-saddle, saddle-focus, focus-saddle, and
focus-focus. We say that vector field (1) is of the kind saddle-saddle if the sin-
gularities of F− and F+ are saddles. Analogously we define focus-saddle kind,
saddle-focus kind and focus-focus kind.

We classify PWL vector fields with respect to some parameters. For the saddle-
saddle case we have 4 parameters: sets on Σ (sliding, escaping or crossing), equi-
librium point (real, virtual), interception of the stable and unstable manifolds cor-
responding to the system F− with Σ and interception of the stable and unstable
manifolds corresponding to the system F+ with Σ. For the saddle-focus case we
have 5 parameters: we consider the first three parameters of saddle-saddle case
and add two parameters: orientation and stability of the focus. For the focus-
focus case we have 6 parameters: we remove the third parameter of saddle-focus
case and add two parameters for the focus of system F−: orientation and stability.

A configuration is a vector formed by the previous parameters. We define

the classes P1,P2,P
′

2, and P3 which are formed by saddle-saddle, saddle-focus,
focus-saddle and focus-focus configurations, respectively. We define three equiv-
alent relations R1, R2 and R3 and study the cardinalities of quotient spaces P1/R1,

(P2 ∪ P
′

2)/R2 and P3/R3. Besides, we analyze for which configurations of quo-
tient spaces the corresponding PWL vector fields can have or not closed sliding
poly-trajectories. For definition of closed sliding poly-trajectory, see Definition 5.

Remark about node case. The analysis of this case involves additional param-
eters which determine the relative positions of eigenspaces and Σ. It would be-
come the paper very large and we decide consider this case in a future paper.
There are many papers about PWL–systems with main goal being the search of
upper bounds for the number of periodic orbits. Most of them, see [3, 4] and [5]
for instance, consider systems of the kind saddle-saddle, saddle-focus and focus-
focus. In our work we give necessary conditions for such configurations present
sliding closed poly-trajectories.

The paper is organized as follows. In Section 2 we present the main results
and introduce the notations. In Sections 3 and 4 we prove the main results. In
Section 5 we present some results regarding to crossing poly-trajectories.

2 Statement of the Main Results

We classify the vector fields (1) with respect to the kind of equilibrium point
(saddle or focus) on each half-plane and with respect to the discontinuous set
(sliding, escape, crossing). Besides, if there exist equilibrium points of the kind
saddle, we analyze the intersection of Σ with the stable and instable manifolds.
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2.1 The Saddle-Saddle Case

We say that an equilibrium point p of kind saddle is real when it belongs to the
open half-plane where we have defined the corresponding linear differential sys-
tem and it is called virtual if belongs to the other open half-plane. Here, we are not
considering the case where the equilibrium point belongs to Σ. If the equilibrium
point belongs to Σ then it is impossible to get a closed sliding poly-trajectory and
one of our purposes is to study the appearance of closed sliding poly-trajectories.
The definition of poly-trajectory is given in Definition 5.

We introduce the following notations.

(a) C, S and E represent respectively the crossing, sliding and escaping sets in
the line of discontinuity. So we have for example, the following combina-
tions: C, CS, CSC. In our notation CSC means that Σ is given by

Σ = (−∞, a) ∪ (a, b) ∪ (b,+∞)

which (−∞, a) ∪ (b,+∞) ⊂ Σc, (a, b) ⊂ Σs and a, b are fold points. Analo-
gously for the other cases.

(b) R and V represent real and virtual equilibrium point, respectively. For
instance, if the equilibrium point p− of F− is real and the equilibrium point
p+ of F+ is virtual we denote RV.

(c) Ws
L and Wu

L represent respectively the stable and unstable manifolds on
the left half-plane and Ws

R and Wu
R represent respectively the stable and

unstable manifolds on the right half-plane, i.e., Wλ
L = Wλ

L(p−) ∩ Σ− and

Wλ
R = Wλ

R(p+) ∩ Σ+, for λ ∈ {s, u}.

(d) FL and FR represent the y-coordinate of the fold points of the vector fields
F− and F+, respectively. For commodity, we call FL and FR fold points be-
cause the x-coordinate of these fold points is equal to zero.

We consider the following parameters.

(n1) 39 possibilities for the regions on Σ (C, S, E, CC, etc), (3+3.3+3.3.3).

(n2) 4 possibilities for equilibrium points (RR, RV, VR, VV).

(n3) Relative position of the invariant manifolds in left half-plane with Σ. There
are 4 possible choices for the parameter n3:

Ws
L ∩ Σ = ∅, Wu

L ∩ Σ = ∅, Ws
L ∩ Σ < FL, Ws

L ∩ Σ > FL.

(n4) Relative position of the invariant manifolds in right half-plane with Σ. There
are 4 possible choices for the parameter n4:

Ws
R ∩ Σ = ∅, Wu

R ∩ Σ = ∅, Ws
R ∩ Σ < FR, Ws

R ∩ Σ > FR.

Denote

P1 = {(n1, n2, n3, n4) | n1 ∈ {1, .., 39}, n2, n3, n4 ∈ {1, .., 4}}.

Definition 1. A saddle-saddle configuration is a vector p = (n1, n2, n3, n4) ∈ P1.
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2.2 The Saddle-Focus (Focus-Saddle) case

We say that an equilibrium point of kind focus is real if it belongs to the open half-
plane where we have defined the corresponding linear differential system and it
is called virtual otherwise. If F+ (F−) has a real or virtual focus, then F+ (F−) has
a fold point.

The parameters (n1), (n2) and (n3) introduced on subsection 2.1 are the same.
Now n1 = m1, n2 = m2, n3 = m3 and consider the new parameters.

(m
′

3) Relative position of the invariant manifolds in right half-plane with Σ. There
are 4 possible choices for the parameter n3:

Ws
R ∩ Σ = ∅, Wu

R ∩ Σ = ∅, Ws
R ∩ Σ < FR, Ws

R ∩ Σ > FR.

(m4) Orientability of the focus in the right half-plane. m4 = −1 and m4 = +1,
represent the counterclockwise and clockwise orientation, respectively.

(m
′

4) Orientability of the focus in the left half-plane. m
′

4 = −1 and m
′

4 = +1,
represent the counterclockwise and clockwise orientation, respectively.

(m5) Stability of the focus in the right half-plane. m5 < 0 and m5 > 0, represent
attracting focus and repelling focus, respectively.

(m
′

5) Stability of the focus in the left half-plane. m
′

5 < 0 and m
′

5 > 0, represent
attracting focus and repelling focus, respectively.

Denote

P1
2 = {(m1, m2, m3, m4, m5) | m1 ∈ {1, .., 39}, m2, m3 ∈ {1, .., 4}, m4, m5

∈ {1, 2}}.

P2
2 = {(m1, m2, m

′

3, m
′

4, m
′

5) | m1 ∈ {1, .., 39}, m2, m
′

3 ∈ {1, .., 4}, m
′

4, m
′

5

∈ {1, 2}}.

Definition 2. A saddle-focus configuration is a vector p = (m1, m2, m3, m4,

m5) ∈ P1
2 . A focus-saddle configuration is a vector p

′
= (m1, m2, m

′

3, m
′

4, m
′

5)
∈ P2

2 . We denote P2 = P1
2 ∪ P2

2 .

2.3 The Focus-Focus Case

Now s1 = n1, s2 = n2 and consider the following new parameters.

(s3) Orientability of the focus in the left half-plane. s3 = −1 and s3 = +1,
represent the counterclockwise and clockwise orientation, respectively.

(s4) Stability of the focus in the left half-plane. s4 < 0 and s4 > 0, represent
attracting focus and repelling focus, respectively.
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(s5) Orientability of the focus in the right half-plane. s5 = −1 and s5 = +1,
represent the counterclockwise and clockwise orientation, respectively.

(s6) Stability of the focus in the right half-plane. s6 < 0 and s6 > 0, represent
attracting focus and repelling focus, respectively.

Denote

P3 = {(s1, s2, s3, s4, s5, s6) | s1 ∈ {1, .., 39}, s2 ∈ {1, .., 4}, s3, s4, s5, s6

∈ {1, 2}}.

Definition 3. A focus-focus configuration is a vector p = (s1, s2, s3, s4, s5, s6)
∈ P3.

We denote ϕp a flow on R
2 of a PWL vector field F = (F−, F+) satisfying that

the phase portrait of F presents the configuration p.

Definition 4. Let p, q ∈ Pi, i = 1, 2 or 3 be configurations and ϕp a flow with configu-
ration p. We say that p and q are related by Ri if

(i) the configuration corresponding to the flow ϕp(±t, x, y) is equal to q or

(ii) the configuration corresponding to the flow ϕ(t, x, y) = fλ(ϕp(±t, x, y)) is equal
to q for some λ = 1, 2, 3, where f1(x, y) = (−x, y), f2(x, y) = (x,−y) and
f3(x, y) = (−x,−y).

This definition does not depend of flow ϕp. We have that Ri is an equivalence

relation for i = 1..3, so we can define the quotient spaces P̂1 = P1/R1, P̂2 =

(P2 ∪ P
′

2)/R2 and P̂3 = P3/R3. Essentially, the equivalence relations introduced
above consider equal two configurations that are obtained from one another via
rigid motions or changes in orientation.

Theorem 1. Consider the following items.

(a) The cardinality of set P̂1 is 22, i.e. the set P̂1 has 22 saddle-saddle configurations.

(b) The cardinality of set P̂2 is 28, i.e. the set P̂2 has 28 saddle-focus (or focus-saddle)
configurations.

(c) The cardinality of set P̂3 is 28, i.e. the set P̂3 has 28 focus-focus configurations.

Now we present the definition of closed poly-trajectory and a theorem that
relates it with the configurations obtained in Theorem 1. Related problems about
closed poly-trajectories can be found in [1, 7].

Definition 5. Consider a PWL vector field F in the form (1).

1. A curve Γ is a closed poly-trajectory if Γ is closed and the following conditions
are satisfied.

• Γ contains arcs of at lest two of the vector fields F−|Σ− , F+|Σ+ and FΣ.
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• The transition between arcs of F− and arcs of F+ happens in crossing points
(and vice versa).

• The transition between arcs of F− (or F+) and arcs of FΣ happens through
either fold points or regular points in the sliding or escaping region, respecting
orientation.

2. Let Γ be a closed poly-trajectory of F. We say that

• Γ is a closed crossing poly-trajectory if Γ meets Σ just in crossing points
and (or) fold points.

• Γ is a closed sliding poly-trajectory if Γ contains at least one arc of FΣ. Γ

is called closed sliding poly-trajectory of F− if it contains arcs of F− and does
not contain arcs of F+. Analogous to F+.

3. Let Γ be a closed poly-trajectory. We say that Γ is hyperbolic if

• Γ is a crossing poly-trajectory and η
′
(p) 6= 1 where η is the first return map

defined on a segment N with p ∈ N ⋔ γ;

• Γ is a closed sliding poly-trajectory and all arcs of FΣ are sliding or all are
escaping.

Figure 1: Closed crossing poly-trajectory and closed sliding poly-trajectory, respectively.

Theorem 2 (Non-existence of closed sliding poly-trajectories). Consider the follow-
ing items.

(a) If a PWL vector field of kind saddle-saddle has a closed sliding poly-trajectory, then
its configuration is the one given by line 13 of Table 1.

(b) If a PWL vector field of kind saddle-focus has a closed sliding poly-trajectory, then
its configuration is given by one of lines 1, 6, 11, 17, 21 and 25-27 of Table 2.

(c) If a PWL vector field of kind focus-focus has a closed sliding poly-trajectory, then
its configuration is given by one of lines 3, 6, 10-12, 17, 20 and 23-26 of Table 3.
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Theorem 3. For each of the 20 configurations listed in Theorem 2 we find one or at most
two quadratic polynomials R(a±ij , b±j ) and S(a±ij , b±j ), i, j = 1, 2, whose signs determine

the set of parameters for which there exist closed sliding poly-trajectories.

Each configuration depends of the parameters (a±ij and b±j ). The existence of

sliding closed poly-trajectories depends of some inequalities which are related
with: equilibrium position (real or virtual), the sign of derivative of the sliding
vector field and the determinant of the matrices A±. Each one of these expres-
sions is a polynomial depending on a±ij and b±j .

3 Proof of Theorems 1 and 2

In this section we proof the main results of the paper. For commodity, we say
only the term configuration in the proofs of theorems 1, 2 and 3 instead of saddle-
saddle configuration, saddle-focus configuration and focus-focus configuration.

3.1 Proof of Theorem 1-(a)

Combining the possible choices for the parameters n1, n2, n3, n4, we have 2496
possible configurations.

Lemma 1. If the vector field (1) is of the kind saddle-saddle, then the cardinality of set
P1 is 88, ie, the set P1 has 88 saddle-saddle configurations.

Proof. We have:

(i) If Wλ1
Λ1

∩ Σ = ∅ and Wλ2
Λ2

∩ Σ = ∅ for Λ1 6= Λ2 ∈ {L, R}, λ1, λ2 ∈ {s, u}

then FΛ1 , FΛ2 do not have fold points. This reduces the number of configu-
rations to 1920.

(ii) If W
λ1
Λ1

∩Σ 6= ∅, Wλ2
Λ1

∩Σ 6= ∅ and Wλ3
Λ2

∩Σ = ∅ for Λ1 6= Λ2 ∈ {L, R}, λ1 6=

λ2, λ3 ∈ {s, u} then there exist only one fold point. This fact reduces the
number of configurations to 960.

(iii) If Wλ1
Λ1

∩ Σ 6= ∅ and Wλ2
Λ2

∩ Σ 6= ∅ for all Λ1, Λ2 ∈ {L, R}, λ1, λ2 ∈ {s, u}

then there exist one or two fold points. It reduces the number of configura-
tions to 912.

(iv) For the cases without fold points or with only one fold point, for each
choose of the parameters n2, n3 and n4, there is only one possible choice
for n1. It reduces the number of configurations to 496.

(v) For the configurations with two fold points, with parameters n2 assuming
RV or VR, and n3 and n4 given by Ws

Λ1
∩Σ > FΛ1

, Ws
Λ2

∩Σ < FΛ2
, Λ1, Λ2 ∈

{L, R}, Λ1 6= Λ2 there is only one possible choice for n1. The same with n2

assuming RR or VV, and n3 and n4 given by Ws
Λ1

∩ Σ > FΛ1
, Ws

Λ2
∩ Σ >

FΛ2
or Ws

Λ1
∩ Σ < FΛ1

, Ws
Λ2

∩ Σ < FΛ2
, Λ1, Λ2 ∈ {L, R}, Λ1 6= Λ2. It
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Figure 2: Lines 13 of Table 1.

reduces the number of configurations to 288. For the other cases with two
fold points, for each choose of the parameters P2, P3 and n4 there are two
possible choice for n1. So we can to reduce the number of configurations to
88 as wanted.

Proof of Theorem 1-(a). According Lemma 1 we have that the cardinality of P1 is 88.
These configurations may be reduced to 44 configurations considering the item
(i) of relation R1, for instance the configurations

E RR Wu
L ∩ Σ = ∅ Wu

R ∩ Σ = ∅

S RR Ws
L ∩ Σ = ∅ Ws

R ∩ Σ = ∅

are equivalents. Thus by relation R1 we consider the lines of Table 1. We can still
reduce to 22 configurations (see Table 1). In fact, the configurations correspond-
ing to the lines 27, 28, 30, 31, 34, 35, 36, 37, 38, 39, 41, 42, 43, 40 and 44 are equiva-
lents to configurations corresponding to the lines 26, 3, 29, 6, 7, 8, 33, 10, 32, 9, 15,
24, 16, 13 and 87 respectively, by relation R1 (use f3(x, y) = (−x,−y)), and the
configurations corresponding to the lines 3, 6, 9, 10, 12, 16 and 19 are equivalents
to configurations 26, 29, 32, 33, 23, 24 and 25 respectively also by relation R1 (use
f1(x, y) = (x,−y)). �

3.2 Proof of Theorem 1-(b)

Combining the possible choices for the parameters m1, m2, m3, m4, m5, we have
2496 possible configurations.

Lemma 2. If the vector field (1) is of the kind saddle-focus, then cardinality of set P2 is
112, i.e., the set P2 has 112 saddle-focus configurations.

Proof. We have:

(i) If Wλ
L ∩ Σ = ∅, λ ∈ {s, u}, then there is only a fold point to F. It reduces the

number of combinations to 1536.
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SADDLE - SADDLE
1 E RR Wu

L ∩ Σ = ∅ Ws
L ∩ Σ 6= ∅ Wu

R ∩ Σ = ∅ Ws
R ∩ Σ 6= ∅

2 C RR Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ = ∅ Ws

R ∩ Σ = ∅

3 EC RR Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ > FR Wu

R ∩ Σ < FR

4 S VV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Wu
R ∩ Σ = ∅ Ws

R ∩ Σ 6= ∅

5 C VV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ = ∅ Wu

R ∩ Σ 6= ∅

6 SC VV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ > FR Wu

R ∩ Σ < FR

7 C VR Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Wu
R ∩ Σ = ∅ Ws

R ∩ Σ 6= ∅

8 S VR Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ = ∅ Wu

R ∩ Σ 6= ∅

9 CS VR Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ > FR Wu

R ∩ Σ < FR

10 CE VR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Wu
R ∩ Σ = ∅ Ws

R ∩ Σ 6= ∅

11 CC RR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

12 CEC RR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

13 ES RV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

14 ES RR Ws
L ∩ Σ > FL WL ∩ Σ < FL Ws

R ∩ Σ > FR Wu
R ∩ Σ < FR

15 CC RV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ > FR Wu

R ∩ Σ < FR

16 CEC RV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ > FR W

s[u
R ∩ Σ < FR

17 ES VV Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

18 CC VV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

19 CEC VV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

20 ECS RR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ > FR Wu

R ∩ Σ < FR

21 ECS VV Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

22 SCE RV Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL Ws
R ∩ Σ > FR Wu

R ∩ Σ < FR

23 CSC RR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

24 CSC RV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ > FR Wu

R ∩ Σ < FR

25 CSC VV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

26 CE RR Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

27 EC RR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Wu
R ∩ Σ = ∅ Ws

R ∩ Σ 6= ∅

28 CE RR Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL Wu
R ∩ Σ = ∅ Ws

R ∩ Σ 6= ∅

29 CS VV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

30 SC VV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Wu
R ∩ Σ = ∅ Ws

R ∩ Σ 6= ∅

31 CS VV Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL Wu
R ∩ Σ = ∅ Ws

R ∩ Σ 6= ∅

32 SC VR Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

33 EC VR Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL Wu
R ∩ Σ = ∅ Ws

R ∩ Σ 6= ∅

34 C RV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Wu
R ∩ Σ = ∅ Ws

R ∩ Σ 6= ∅

35 E RV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ = ∅ Wu

R ∩ Σ 6= ∅

36 CE RV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ > FR Wu

R ∩ Σ < FR

37 EC RV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

38 CS RV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Wu
R ∩ Σ = ∅ Ws

R ∩ Σ 6= ∅

39 SC RV Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL Wu
R ∩ Σ = ∅ Ws

R ∩ Σ 6= ∅

40 SE VR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

41 CC VR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ > FR Wu

R ∩ Σ < FR

42 CEC VR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ > FR Wu

R ∩ Σ < FR

43 CSC VR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ > FR Wu

R ∩ Σ < FR

44 SCE VR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL Ws
R ∩ Σ < FR Wu

R ∩ Σ > FR

Table 1: Possible configurations for the saddle-saddle case using the item (i) of relation R1.
The lines 1 − 22 represent the configurations of Theorem 1-(a). The highlighted line presents the
necessary configuration to the existence of closed sliding poly-trajectories.
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(ii) If Ws
L ∩ Σ 6= ∅ and Wu

L ∩ Σ 6= ∅, then there exist one or two fold points. It
reduces the number of combinations to 1440.

(iii) For the case with only one fold point, for each choose of the parameters
m2, m3, m4 and m5, there is only one possible choice for m1. It reduces the
number of combinations to 928.

(iv) For the configurations with two fold points, for parameters m2 assuming
RR or RV, and m3, m4 and m5 given by Ws

L ∩Σ < FL, − , > 0, or Ws
L ∩Σ <

FL, − , < 0, or Ws
L ∩ Σ > FL, + , > 0, or Ws

L ∩ Σ > FL, + , < 0, there is
only one possible choice for m1. The same for m2 assuming RR or RV, m3,
m4 and m5 given by Ws

L ∩ Σ > FL, − , > 0, or Ws
L ∩ Σ > FL, − , < 0, or

Ws
L ∩ Σ < FL, + , > 0, or Ws

L ∩ Σ < FL, + , < 0. It reduces the number
of combinations to 512. For the other cases with two fold points, for each
choose of the parameters m2, m3 m4 and m5 there are two possible choice for
m1. So we can reduce the number combinations to 112 as desired.

With similar tools used in the proof of Lemma 2, we prove the following
lemma.

Lemma 3. If the vector field (1) is of the kind focus-saddle, then the cardinality of set P2

is 112.

Proof of Theorem 1-(b). These 224 cases given in Lemmas 2,3 may be reduced
to 112 configurations considering that the phase portraits corresponding to the
saddle-focus case are equivalents to the focus-saddle case by item (ii) of relation
R2 (use f3(x, y) = (−x,−y)). Without loss of generality, we consider the saddle-
focus case. The 112 configurations corresponding the saddle-focus case given in
Lemma 2 may be reduced to 56 considering the item (i) of relation R2 (see Table
2). Moreover, the lines 29, 30, 31, 32, 33, 34, 35, 36, 39, 41, 40, 44, 46, 45, 47, 49,
48, 52, 54, 53, 20, 21, 42, 43, 50, 51, 55 and 56 are equivalents to the 28 first lines of
Table 2 respectively, by item (ii) of relation R2 (use f1(x, y) = (x,−y)).

Figure 3: Lines 1, 6 and 11 of Table 2.
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SADDLE - FOCUS
1 SC RR Ws

L ∩ Σ = ∅ Wu
L ∩ Σ 6= ∅ n4 = −1 m5 > 0

2 CE RR Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ m4 = −1 m5 > 0
3 SC RV Ws

L ∩ Σ = ∅ Wu
L ∩ Σ 6= ∅ m4 = −1 m5 > 0

4 CE RV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ m4 = −1 m5 > 0
5 CE VR Ws

L ∩ Σ = ∅ Wu
L ∩ Σ 6= ∅ m4 = −1 m5 > 0

6 SC VR Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ m4 = −1 m5 > 0
7 CE VV Ws

L ∩ Σ = ∅ Wu
L ∩ Σ 6= ∅ m4 = −1 m5 > 0

8 SC VV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ m4 = −1 m5 > 0
9 CC RR Ws

L ∩ Σ > FL Wu
L ∩ Σ < FL m4 = −1 m5 > 0

10 CEC RR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL m4 = −1 m5 > 0
11 CSC RR Ws

L ∩ Σ > FL Wu
L ∩ Σ < FL m4 = −1 m5 > 0

12 CC RV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL m4 = −1 m5 > 0
13 CEC RV Ws

L ∩ Σ > FL Wu
L ∩ Σ < FL m4 = −1 m5 > 0

14 CSC RV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL m4 = −1 m5 > 0
15 CC VR Ws

L ∩ Σ < FL Wu
L ∩ Σ > FL m4 = −1 m5 > 0

16 CEC VR Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL n4 = −1 m5 > 0
17 CSC VR Ws

L ∩ Σ < FL Wu
L ∩ Σ > FL m4 = −1 m5 > 0

18 CC VV Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL m4 = −1 m5 > 0
19 CEC VV Ws

L ∩ Σ < FL Wu
L ∩ Σ > FL m4 = −1 m5 > 0

20 CSC VV Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL m4 = −1 m5 > 0
21 ES RR Ws

L ∩ Σ > FL Wu
L ∩ Σ < FL n4 = +1 m5 > 0

22 ECS RR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL m4 = +1 m5 > 0
23 SE RV Ws

L ∩ Σ < FL Ws
L ∩ Σ > FL m4 = −1 m5 > 0

24 SCE RV Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL n4 = −1 m5 > 0
25 SE VR Ws

L ∩ Σ > FL Wu
L ∩ Σ < FL m4 = −1 m5 > 0

26 SCE VR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL m4 = −1 m5 > 0
27 SE VV Ws

L ∩ Σ > FL Wu
L ∩ Σ < FL m4 = −1 m5 > 0

28 SCE VV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL m4 = −1 m5 > 0
29 CS RR Ws

L ∩ Σ = ∅ Wu
L ∩ Σ 6= ∅ m4 = +1 m5 > 0

30 EC RR Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ m4 = +1 m5 > 0
31 CS RV Ws

L ∩ Σ = ∅ Wu
L ∩ Σ 6= ∅ m4 = +1 m5 > 0

32 EC RV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ m4 = +1 m5 > 0
33 EC VR Ws

L ∩ Σ = ∅ Wu
L ∩ Σ 6= ∅ m4 = +1 m5 > 0

34 CS VR Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ m4 = +1 m5 > 0
35 EC VV Ws

L ∩ Σ = ∅ Wu
L ∩ Σ 6= ∅ m4 = +1 m5 > 0

36 CS VV Wu
L ∩ Σ = ∅ Ws

L ∩ Σ 6= ∅ m4 = +1 m5 > 0
37 SE RR Ws

L ∩ Σ < FL Wu
L ∩ Σ > FL m4 = −1 m5 > 0

38 SCE RR Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL m4 = −1 m5 > 0
39 CC RR Ws

L ∩ Σ < FL Wu
L ∩ Σ > FL m4 = +1 m5 > 0

40 CSC RR Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL m4 = +1 m5 > 0
41 CEC RR Ws

L ∩ Σ < FL Wu
L ∩ Σ > FL m4 = +1 n5 > 0

42 ES RV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL m4 = +1 n5 > 0
43 ECS RV Ws

L ∩ Σ > FL Wu
L ∩ Σ < FL m4 = +1 m5 > 0

44 CC RV Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL m4 = +1 m5 > 0
45 CSC RV Ws

L ∩ Σ < FL Wu
L ∩ Σ > FL m4 = +1 m5 > 0

46 CEC RV Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL m4 = +1 m5 > 0
47 CC VR Ws

L ∩ Σ > FL Wu
L ∩ Σ < FL m4 = +1 m5 > 0

48 CSC VR Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL m4 = +1 m5 > 0
49 CEC VR Ws

L ∩ Σ > FL Wu
L ∩ Σ < FL m4 = +1 m5 > 0

50 ES VR Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL m4 = +1 m5 > 0
51 ECS VR Ws

L ∩ Σ < FL Wu
L ∩ Σ > FL m4 = +1 m5 > 0

52 CC VV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL m4 = +1 m5 > 0
53 CSC VV Ws

L ∩ Σ > FL Wu
L ∩ Σ < FL m4 = +1 m5 > 0

54 CEC VV Ws
L ∩ Σ > FL Wu

L ∩ Σ < FL m4 = +1 m5 > 0
55 EC VV Ws

L ∩ Σ < FL Wu
L ∩ Σ > FL m4 = +1 m5 > 0

56 ECS VV Ws
L ∩ Σ < FL Wu

L ∩ Σ > FL m4 = +1 m5 > 0

Table 2: Possible configurations for the saddle-focus case using the item (i) of relation R2. The
lines 1 − 28 represent the configurations of Theorem 1-(b). The highlighted lines present the nec-
essary configurations to the existence of closed sliding poly-trajectories.
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Figure 4: Lines 17, 21 and 25 of Table 2.

Figure 5: Lines 26 and 27 of Table 2.

3.3 Proof of Theorem 1-(c)

Combining the possible choices for the parameters s1, s2, s3, s4, s5 and s6, we have
2496 possible configurations.

Lemma 4. If the vector field (1) is of the kind focus-focus, then the cardinality of set P3

is 160, i.e., the set P3 has 160 focus-focus configurations. These configurations are listed
in Table 3.

Proof. We have

(i) As we said before, (F−, F+) has a fold point. It reduces the number of con-
figurations to 2304.

(ii) For the cases with only one fold point, for each choose of the parameters
s2, s3, s4, s5 and s6, there is only one possible choice for s1. It reduces the
number of configurations to 1792.

(iii) For the configurations with two fold points, for parameters s2 assuming
RR, RV, VR or VV, and s3, s4, s5 and s6 given by +1,> 0,−,> 0, or +1,<
0,−,> 0, or −1,> 0,+,> 0, or −1,< 0,+,> 0, or −1,> 0,+,< 0, or
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Figure 6: Lines 3, 6 and 10 of Table 3.

Figure 7: Lines 11, 12 and 17 of Table 3.

−1,< 0,+,< 0, or +1,< 0,−,< 0, or +1,> 0,−,< 0, we have only one
possible choice to s1. This reduces the number of configurations to 960. For
the other cases with two fold points, for each choice of the parameters s2, s3

s4, s5 and s6 there are two possible choices for s1. So we can reduce the
number combinations to 160 as desired.

Proof of Theorem 1-(c). These 160 configurations given in Lemma 4, may be re-
duced to 80 configurations considering the item (i) of relation R3 (see Table 3).
The configurations corresponding to the lines 49, 51, 50, 55, 57, 56, 58, 59, 60, 41,
42, 47, 48, 45, 46, 69, 70, 72, 74, 73, 78, 80, 61, 62, 63, 64, 67, 68, 52, 54, 53, 43, 44, 71,
79, 75, 76, 77, 65 and 66 are related with the first 40 lines of Table 3 by relation R3.
Moreover, the configurations corresponding to the lines 4, 5, 6, 12, 13, 17, 18, 19,
20, 22, 25 and 26 are related with the configurations corresponding to the lines 29,
30, 31, 32, 33, 34, 36, 37, 38, 35, 39 and 40 by relation R3.
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FOCUS - FOCUS
1 CC RR s1 = −1 s2 > 0 s3 = −1 s4 > 0
2 CEC RR s1 = −1 s2 > 0 s3 = −1 s4 > 0
3 CSC RR s1 = −1 s2 > 0 s3 = −1 s4 > 0
4 CC RV s1 = −1 s2 > 0 s3 = −1 s4 > 0
5 CEC RV s1 = −1 s2 > 0 s3 = −1 s4 > 0
6 CSC RV s1 = −1 s2 > 0 s3 = −1 s4 > 0
7 CC VV s1 = −1 s2 > 0 s3 = −1 s4 > 0
8 CSC VV s1 = −1 s2 > 0 s3 = −1 s4 > 0
9 CEC VV s1 = −1 s2 > 0 s3 = −1 s4 > 0

10 SE RR s1 = +1 s2 > 0 s3 = −1 s4 > 0
11 SCE RR s1 = +1 s2 > 0 s3 = −1 s4 > 0
12 SE RV s1 = +1 s2 > 0 s3 = −1 s4 > 0
13 SCE RV s1 = +1 s2 > 0 s3 = −1 s4 > 0
14 SE VV s1 = +1 s2 > 0 s3 = −1 s4 > 0
15 SCE VV s1 = +1 s2 > 0 s3 = −1 s4 > 0
16 CC RR s1 = −1 s2 < 0 s3 = −1 s4 > 0
17 CEC RR s1 = −1 s2 < 0 s3 = −1 s4 > 0
18 CC RV s1 = −1 s2 < 0 s3 = −1 s4 > 0
19 CSC RV s1 = −1 s2 < 0 s3 = −1 s4 > 0
20 CEC RV s1 = −1 s2 < 0 s3 = −1 s4 > 0
21 CC VV s1 = −1 s2 < 0 s3 = −1 s4 > 0
22 CSC VV s1 = −1 s2 < 0 s3 = −1 s4 > 0
23 SE RR s1 = +1 s2 < 0 s3 = −1 s4 > 0
24 SCE RR s1 = +1 s2 < 0 s3 = −1 s4 > 0
25 SE RV s1 = +1 s2 < 0 s3 = −1 s4 > 0
26 SCE RV s1 = +1 s2 < 0 s3 = −1 s4 > 0
27 SE VV s1 = +1 s2 < 0 s3 = −1 s4 > 0
28 SCE VV s1 = +1 s2 < 0 s3 = −1 s4 > 0
29 CC VR s1 = −1 s2 > 0 s3 = −1 s4 > 0
30 CEC VR s1 = −1 s2 > 0 s3 = −1 s4 > 0
31 CSC VR s1 = −1 s2 > 0 s3 = −1 s4 > 0
32 SE VR s1 = +1 s2 > 0 s3 = −1 s4 > 0
33 SCE VR s1 = +1 s2 > 0 s3 = −1 s4 > 0
34 CSC RR s1 = −1 s2 < 0 s3 = −1 s4 > 0
35 CEC VV s1 = −1 s2 < 0 s3 = −1 s4 > 0
36 CC VR s1 = −1 s2 < 0 s3 = −1 s4 > 0
37 CEC VR s1 = −1 s2 < 0 s3 = −1 s4 > 0
38 CSC VR s1 = −1 s2 < 0 s3 = −1 s4 > 0
39 SE VR s1 = +1 s2 < 0 s3 = −1 s4 > 0
40 SCE VR s1 = +1 s2 < 0 s3 = −1 s4 > 0
41 ES RR s1 = −1 s2 > 0 s3 = +1 s4 > 0
42 ECS RR s1 = −1 s2 > 0 s3 = +1 s4 > 0
43 ES RV s1 = −1 s2 > 0 s3 = +1 s4 > 0
44 ECS RV s1 = −1 s2 > 0 s3 = +1 s4 > 0
45 ES VV s1 = −1 s2 > 0 s3 = +1 s4 > 0
46 ECS VV s1 = −1 s2 > 0 s3 = +1 s4 > 0
47 ES VR s1 = −1 s2 > 0 s3 = +1 s4 > 0
48 ECS RV s1 = −1 s2 > 0 s3 = +1 s4 > 0
49 CC RR s1 = +1 s2 > 0 s3 = +1 s4 > 0
50 CSC RR s1 = +1 s2 > 0 s3 = +1 s4 > 0
51 CEC RR s1 = +1 s2 > 0 s3 = +1 s4 > 0
52 CC RV s1 = +1 s2 > 0 s3 = +1 s4 > 0
53 CSC RV s1 = +1 s2 > 0 s3 = +1 s4 > 0
54 CEC RV s1 = +1 s2 > 0 s3 = +1 s4 > 0
55 CC VR s1 = +1 s2 > 0 s3 = +1 s4 > 0
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56 CSC VR s1 = +1 s2 > 0 s3 = +1 s4 > 0
57 CEC VR s1 = +1 s2 > 0 s3 = +1 s4 > 0
58 CC VV s1 = +1 s2 > 0 s3 = +1 s4 > 0
59 CSC VV s1 = +1 s2 > 0 s3 = +1 s4 > 0
60 CEC VV s1 = +1 s2 > 0 s3 = +1 s4 > 0
61 ES RR s1 = −1 s2 < 0 s3 = +1 s4 > 0
62 ECS RR s1 = −1 s2 < 0 s3 = +1 s4 > 0
63 ES RV s1 = −1 s2 < 0 s3 = +1 s4 > 0
64 ECS RV s1 = −1 s2 < 0 s3 = +1 s4 > 0
65 ES VR s1 = −1 s2 < 0 s3 = +1 s4 > 0
66 ECS VR s1 = −1 s2 < 0 s3 = +1 s4 > 0
67 ES VV s1 = −1 s2 < 0 s3 = +1 s4 > 0
68 ECS VV s1 = −1 s2 < 0 s3 = +1 s4 > 0
69 CC RR s1 = +1 s2 < 0 s3 = +1 s4 > 0
70 CSC RR s1 = +1 s2 < 0 s3 = +1 s4 > 0
71 CEC RR s1 = +1 s2 < 0 s3 = +1 s4 > 0
72 CC RV s1 = +1 s2 < 0 s3 = +1 s4 > 0
73 CSC RV s1 = +1 s2 < 0 s3 = +1 s4 > 0
74 CEC RV s1 = +1 s2 < 0 s3 = +1 s4 > 0
75 CC VR s1 = +1 s2 < 0 s3 = +1 s4 > 0
76 CSC VR s1 = +1 s2 < 0 s3 = +1 s4 > 0
77 CEC VR s1 = +1 s2 < 0 s3 = +1 s4 > 0
78 CC VV s1 = +1 s2 < 0 s3 = +1 s4 > 0
79 CSC VV s1 = +1 s2 < 0 s3 = +1 s4 > 0
80 CEC VV s1 = +1 s2 < 0 s3 = +1 s4 > 0

Table 3: Possible configurations for the focus-focus case using the item (i) of relation R3. The
lines 1 − 28 represent the configurations of Theorem 1-(c). The highlighted lines present the nec-
essary configurations to the existence of closed sliding poly-trajectories.

Figure 8: Lines 20, 23 and 24 of Table 3.
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Figure 9: Lines 25 and 26 of Table 3.

3.4 Proof of Theorem 2

Let F be a vector field given by (1), p0 and p1, be the equilibrium points and, ϕ

and ψ be the flows of F− and F+ respectively. Suppose that Ws
L = G−1

1 ({0}),

Wu
L = G−1

2 ({0}), Ws
R = G−1

3 ({0}) and Wu
R = G−1

4 ({0}), where Gi : R
2 → R,

i = 1, ..4, are smooth functions and 0 is a regular value of Gi.

Consider the following lemma.

Lemma 5. PWL vector fields with configurations given on lines 1, 3, 4, 6, 8-10, 12, 16,
17, 19-22 of Table 1 do not have closed sliding poly-trajectories.

Proof. The vector fields corresponding to configurations given on lines 1, 3, 4, 6,
8 − 10, 12, 16, 17, 19 − 22 of Table 1 do not have closed sliding poly-trajectories
because they satisfy the following sentences, which provide the impossibility of
a periodic motion, more specifically:

• For lines 1, 8 and 10, i = 3 or 4 we have

lim
t→+∞

Gi−2(ϕ(±t, p)) = 0 or lim
t→+∞

ϕ(±t, p) → p0, and

lim
t→+∞

Gi(ψ(±t, p)) = 0 or lim
t→+∞

ψ(±t, p) → p1, p ∈ Σ
s ∪ Σ

e.
(3)

• For lines 4, 6, 17, 19 and 21 we have

lim
t→+∞

G1(ϕ(−t, p)) = 0 or lim
t→+∞

G2(ϕ(t, p)) = 0, and

lim
t→+∞

G3(ψ(−t, p)) = 0 or lim
t→+∞

G4(ψ(t, p)) = 0 , p ∈ Σ
s ∪ Σ

e.
(4)

• For lines 3, 9, i = 3 or 4, we have

lim
t→+∞

Gi−2(ϕ(±t, p)) = 0 or lim
t→+∞

ϕ(±t, p) = p0, and

lim
t→+∞

Gi(ψ(±t, p)) = 0 or lim
t→+∞

ψ(±t, p) = p1 or

ψ(±t1, p) ∈ Σ
c, p ∈ Σ

s ∪ Σ
e, t1 > 0.

(5)
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• For line 12 we have

lim
t→+∞

G2(ϕ(t, p)) = 0 or lim
t→+∞

ϕ(t, p) = p0 or, ϕ(t1, p) ∈ Σ
c and

ψ(t2, ϕ(t1, p)) ∈ Σ
c or lim

t→+∞
G4(ψ(t, ϕ(t, p))) = 0, t1, t2 > 0, p ∈ Σ

e.
(6)

lim
t→+∞

G4(ψ(t, p)) = 0 or lim
t→+∞

ψ(t, p) = p1 or, ψ(s1, p) ∈ Σ
c and

ϕ(s2, ψ(s1, p)) ∈ Σ
c or lim

t→+∞
G2(ϕ(t, ψ(t, p))) = 0, s1, s2 > 0 p ∈ Σ

e.
(7)

• For line 16 we have

lim
t→+∞

G4(ψ(t, p)) = 0 or lim
t→+∞

G3(ψ(−t, p)) = 0, p ∈ Σ, and

lim
t→+∞

G2(ϕ(t, p)) = 0 or ϕ(t1, p) ∈ Σ
c or lim

t→+∞
ϕ(t, p) = p0,

p ∈ Σ
e, t1 > 0.

(8)

• For line 20 we have

lim
t→+∞

G4(ψ(t, p)) = 0 or lim
t→+∞

ψ(t, p) = p1 or ψ(t1, p) ∈ Σ
s or,

ψ(t2, p) ∈ Σ
c and ϕ(t3, ψ(t2, p)) ∈ Σ

s, p ∈ Σ
e, t1, t2, t3 > 0.

(9)

lim
t→+∞

G2(ϕ(t, p)) = 0 or lim
t→+∞

ϕ(t, p) = p0 or ϕ(s1, p) ∈ Σ
s,

p ∈ Σ
e, s1 > 0.

(10)

• For line 22 we have

lim
t→+∞

G4(ψ(t, p)) = 0 or lim
t→+∞

G3(ψ(−t, p)) = 0, p ∈ Σ, and

ϕ(t1, p) ∈ Σ
c or ϕ(t1, p) ∈ Σ

s or lim
t→+∞

G2(ϕ(t, p)) = 0 or

lim
t→+∞

ϕ(t, p) = p0, p ∈ Σ
e, t1 > 0.

(11)

The times ti, si, given in (5)-(11) are the first return times on Σ for ϕ or ψ.

Lemma 6. A PWL vector field with configuration given on line 14 of Table 1, does not
have closed sliding poly-trajectories.

Proof. If there exists a closed sliding poly-trajectory, then it is given by Figure 10
((A) or (B)). Without loss of generality we suppose that the fold point of F− and
F+ is (0, 0). So, b−1 = b+1 = 0. We have

a−11a−22 − a−12a−21 < 0, a+11a+22 − a+12a+21 < 0.

The equilibrium points of F− and F+ are given respectively by

x∓ =
a∓12b∓2

a∓11a∓22 − a∓21a∓12

, y∓
a∓11b∓2

a∓11a∓22 − a∓21a∓12
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and satisfy x− < 0, x+ > 0. We have that a+12y < 0, a−12y > 0, y < 0. Thus,
a−12 < 0, a+12 > 0 and b−2 , b+2 < 0. The sliding vector field is given by

ẋ = 0, g(y) =
(a+12a−22 − a−12a+22)y + a+12b−2 − a−12b+2

a+12 − a−12

, y 6= 0, (12)

and since a+12a−22 − a−12a+22 6= 0, it has an equilibrium point given by y0 =
a−12b+2 − a+12b−2
a+12a−22 − a−12a+22

.

The derivation of g(y) is given by g
′
(y) =

a+12a−22 − a−12a+22

a+12 − a−12

.

(i) If a+12a−22 − a−12a+22 > 0 (resp.< 0), then y0 > 0 (resp.< 0) and g
′
(y) > 0

(resp.< 0).

(ii) If a+12a−22 − a−12a+22 = 0, then g(y) < 0 for all y 6= 0.

So the flow on Σ is given in Figure 10 ((C), (D) and (E)). In any case it is im-
possible the existence of a closed sliding poly-trajectory. In fact, consider an orbit
of F∓ with the orientation given in Figure 10 ((A) or (B)), connecting y1, y2 ∈ Σ,
y1y2 < 0 and observe that the orientation is not compatible with the cases on
Figure 10 ((C), (D) and (E)).

Proof of Theorem 2-(a). The proof of item (a) is an immediate consequence of Lem-
mas 5 and 6.

Lemma 7. PWL vector fields with configurations given on lines 2-4, 5, 7-10, 12-16,
17-20, 22, 24, and 28 of Table 2, do not have closed sliding poly-trajectories.

Proof. The proof is similar to Lemma 5.

Lemma 8. A PWL vector field with configuration given on line 23 of Table 2, does not
have closed sliding poly-trajectories.

(A) (B) (C) (D) (E)

Figure 10: The figures (A) and (B) represent the possible closed sliding poly-trajectories
given by a PWL vector field with configuration given on line 14 of Table 1. The figures (C),
(D) and (E) represent the possible flows on Σ for a+12a−22 − a−12a+22 > 0, a+12a−22 − a−12a+22 < 0
and a+12a−22 − a−12a+22 = 0, respectively.
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Proof. If there is a closed sliding poly-trajectory, then it is given in Figure 11. As
in the Lemma 6, we have b−1 = b+1 = 0, a−12 > 0, a+12 < 0, b−2 > 0, b+2 > 0, and the
sliding vector field is given in (12).

(i) If a+12a−22 − a−12a+22 > 0, then y0 > 0 and g′(y) < 0.

(ii) If a+12a−22 − a−12a+22 < 0, then y0 < 0 and g′(y) > 0.

(iii) If a+12a−22 − a−12a+22 = 0, then g(y) > 0 for all y 6= 0.

The flow on Σ is given in Figure 11 ((C), (D) and (E)). In any case it is impossible
the existence of a closed sliding poly-trajectory because the orientation on Σ is
not compatible with the orientation in Figure 11 ((A) and (B)).

Proof of Theorem 2-(b). The proof of item (b) is an immediate consequence of Lem-
mas 7 and 8.

Lemma 9. PWL vector fields with configurations given on lines 2, 3, 5, 8, 9, 13, 15, 19,
22 and 28 of Table 3, do not have closed sliding poly-trajectories.

Proof. The proof is similar to Lemma 5.

Lemma 10. A PWL vector field with configuration given on line 14 or 27 of Table 3, does
not have closed sliding poly-trajectories.

Proof. The proof is analogous to the Lemma 8.

Proof of Theorem 2-(c). The proof of item (c) is an immediate consequence of Lem-
mas 9 and 10.

(A) (B) (C) (D) (E)

Figure 11: The figures (A) and (B) represent the possible closed sliding poly-trajectories
for a PWL vector field with configuration given on line 23 of Table 2. The figures (C), (D)
and (E) represent the flows on Σ for a PWL vector field with configuration given on line
23 of Table 2, for items (i), (ii) and (iii), respectively.
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4 Proof of Theorem 3.

In this section we proof the Theorem 3. We obtain conditions for the PWL vector
fields corresponding to line 13 of Table 1, lines 1, 6, 11, 17, 21, 25 − 27 of Table
2 and lines 3, 6, 10 − 12, 20, 23 − 26 of Table 3 have or not closed sliding poly-
trajectories.

Proposition 1. Consider a PWL vetor field with configuration given on line 13 of table 1.

(a) If a−12b+2 − a+12b−2 < 0, then it has a family of closed sliding poly-trajectories.

(b) If a−12b+2 − a+12b−2 ≥ 0, then it does not have closed sliding poly-trajectories.

Proof. If there is any closed sliding poly-trajectory, then it is like the one given on
Figure 10 (A). As in the proof of Lemma 6, we have b−1 = b+1 = 0, a−12 < 0, a+12 > 0,
b−2 < 0, b+2 > 0, and the sliding vector field, y0 and g′(y) are the same.

Suppose that a−12b+2 − a+12b−2 < 0 (resp. > 0).

(i) (resp. iv) If a+12a−22 − a−12a+22 < 0, then y0 > 0 (resp. < 0) and g′(y) < 0.

(ii) (resp. v) If a+12a−22 − a−12a+22 > 0, then y0 < 0 (resp. > 0) and g′(y) > 0.

(iii) (resp. vi) If a+12a−22 − a−12a+22 = 0, then g(y) > 0 (resp. < 0) for all y 6= 0.

Suppose that a−12b+2 − a+12b−2 = 0.

(vii) (resp. viii) If a+12a−22 − a−12a+22 < 0 (resp. > 0), then g(y) < 0 (resp. > 0) for
y > 0 and g(y) > 0 (resp. < 0) for y < 0.

If a+12a−22 − a−12a+22 = a−12b+2 − a+12b−2 = 0, then the sliding vector field is iden-
tically zero and this implies the non-existence of closed sliding poly-trajectories.
It is possible the existence of a family of closed sliding poly-trajectories for item
(i) (resp. (ii)), since the arcs of F− meet Σ in points less (resp. greater) than y0.
Obviously, for item (iii) always it is possible the existence of a family of closed
sliding poly-trajectories because the orientation on Σ is the same given in Fig-
ure 10 (A). For items (iv), (v), (vi), (vii) and (viii) it is not possible the existence
of closed sliding poly-trajectories because the orientation on Σ is not compatible
with the one given in Figure 10 (A). Note that we obtain a family of closed sliding
poly-trajectories instead of isolated closed sliding poly-trajectories because they
do not satisfy item (3) of Definition 5.

Similar arguments are used to proof the following Propositions 2 − 20.

Proposition 2. Consider a PWL vetor field with configuration given on line 1 of Table 2.

(a) If a+12b−2 − a+22b−1 ≥ 0, then it has a hyperbolic closed sliding poly-trajectory.

(b) If a+12b−2 − a+22b−1 < 0, then it can have or not a hyperbolic closed sliding poly-
trajectory.

Proposition 3. A PWL vector field with configuration given on line 6 of Table 2 can
have or not a hyperbolic closed sliding poly-trajectory.
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Figure 12: Cases corresponding to items (i), (ii), (iii), (iv), (v), (vi), (vii) and (viii), respec-
tively.

(A) (B) (C) D)

Figure 13: The figures (A), (C) and (D) present the possible closed sliding poly-trajectory
for a PWL vector field with configuration given on line 1 of Table 2 and the flows on Σ

corresponding to items (a) and (b), respectively. The figures (A) and (B) also represent the
possible closed sliding poly-trajectories for a PWL vector field with configuration given
on line 11 of Table 2.

If there is a closed sliding poly-trajectory, then it is given on Figure 13 (A).

Proposition 4. Consider a PWL vector field with configuration given on line 11 of Ta-
ble 2. Let a = a+12a−22 − a−12a22 and b = a+12b−2 − a−12b+2 − a+22b−1 . If a ≤ 0 or b ≥ 0, then
it can have or not a hyperbolic closed sliding poly-trajectory.

Proposition 5. Consider a PWL vector field with configuration given on line 17 of Ta-
ble 2. Thus it can have or not a hyperbolic closed sliding poly-trajectory.

If there is a closed sliding poly-trajectory, then it is given in Figure 13 (A).

Proposition 6. Consider a PWL vector field with configuration given on line 21 of
Table 2.

(a) If a−12b+2 − a+12b−2 < 0 and a+12a−22 − a−12a+22 ≤ 0, then it has two families of closed
sliding poly-trajectories and a hyperbolic closed sliding poly-trajectory.

(b) If a−12b+2 − a+12b−2 < 0 and a+12a−22 − a−12a+22 > 0, then it has two families of closed
sliding poly-trajectories and it can have more one family of closed sliding poly-
trajectories and a hyperbolic closed sliding poly-trajectory.

(c) If a−12b+2 − a+12b−2 = 0 and a+12a−22 − a−12a+22 < 0 , then it has only a hyperbolic
closed sliding poly-trajectory.
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(A) (B) (C) (D)

y
0

S

0

y
L

y
1

(E)

Figure 14: The figures (A), (B) and (C) represent the flows on Σ for a PWL vector field
with configuration given on line 6 of Table 2, for a+22b−1 − a+12b−2 > 0, a+22b−1 − a+12b−2 < 0
and a+22b−1 − a+12b−2 = 0, respectively. The figures (D) and (E) represent the flows on Σ for
a PWL vector field with configuration given on lines 11 and 17 of Table 2.

(d) If a−12b+2 − a+12b−2 > 0 and a+12a−22 − a−12a+22 < 0, or a−12b+2 − a+12b−2 > 0 and
a+12a−22 − a−12a+22 > 0, or a−12b+2 − a+12b−2 > 0 and a+12a−22 − a−12a+22 = 0, or a−12b+2 −
a+12b−2 = 0 and a+12a−22 − a−12a+22 > 0, then it does not have closed sliding poly-
trajectories.

If there is a closed sliding poly-trajectory, then it is given in Figure 15 and the
flows on Σ are given in Figure 12 for each item of Proposition 1.

Proposition 7. Consider a PWL vector field with configuration given on line 25 of
Table 2.

(a) If a+12a−22 − a−12a+22 ≥ 0, then it has a family of closed sliding poly-trajectories and a
hyperbolic poly-trajectory.

(b) If a+12a−22 − a−12a+22 < 0, then it can have a family of closed sliding poly-trajectories
and a hyperbolic poly-trajectory.

Proposition 8. Consider a PWL vector field with configuration given on line 26 of
Table 2. Let a = a+12a−22 − a−12a22 and b = a+12b−2 − a−12b+2 − a+22b−1 .

(a) If a < 0 or, a ≥ 0 and b < 0, then it can have or not a hyperbolic closed sliding
poly-trajectory.

(b) For all other signals of a and b, it has a hyperbolic closed sliding poly-trajectory.

If there is a closed sliding poly-trajectory, then it is given on Figure 13 (A).

Proposition 9. Consider a PWL vector field with configuration given on line 27 of
Table 2.

(a) If a−12b+2 − a+12b−2 < 0, then it has a family of closed sliding poly-trajectories.

(b) If a−12b+2 − a+12b−2 ≥ 0, then it does not have closed sliding poly-trajectories.

If there is any closed sliding poly-trajectory, then it is like given on Figure 11
(B).
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(A) (B) (C)

Figure 15: The figures (A) and (B) represent the possible closed sliding poly-
trajectories for a PWL vector field with configuration given on line 21 of Table
2 and figure (C) represent the possible closed sliding poly-trajectories for a PWL
vector field with configuration given on line 25 of Table 2.

(A) (B) (C) (D) (E)

Figure 16: The figures (A), (B) and (C) represent the flows on Σ for a PWL vector field
given on line 25 of Table 2 for a+12a−22 − a−12a+22 > 0, a+12a−22 − a−12a+22 < 0 and a+12a−22 − a−12a+22 =
0, respectively. The figures (D) and (E) represent the flows on Σ for line 26 of Table 2 for
a < 0 and, a ≥ 0 and b > 0, respectively.

Proposition 10. Consider a PWL vector field with configuration given on line 3 of
Table 3. Let a = a+12a−22 − a−12a+22 and b = a+12b−2 − a−12b+2 − a+22b−1 .

(a) If a < 0 or, a ≥ 0 and b < 0, then it can have one or two hyperbolic closed sliding
poly-trajectories.

(b) For all other signals of a and b, only F+ can have a hyperbolic closed sliding poly-
trajectory.

The flow on Σ is given in Figure 14 ((E)).

Proposition 11. Consider a PWL vector field with configuration given on line 6 of
Table 3. Let a = a+12a−22 − a−12a22 and b = a+12b−2 − a−12b+2 − a+22b−1 . If a ≥ 0 or b ≥ 0,
then it can have a hyperbolic closed sliding poly-trajectory.

Proposition 12. Consider a PWL vetor field with configuration given on line 10 of
Table 3.

(a) If a+12a−22 − a−12a+22 ≥ 0, then it has two families of closed sliding poly-trajectories
and two hyperbolic closed sliding poly-trajectories.
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Figure 17: Flows on Σ for a PWL with configuration given on line 27 of Table 2. The
three first figures correspond to item (a) and the last five figures correspond to item (b).

(A) (B) (C)

Figure 18: The figures (A) and (B) represent the possible closed sliding poly-trajectories
for a PWL vector field with configuration given on lines 3 and 6 of Table 3. The figure (C)
represent the flow on Σ for a PWL vector field with configuration given on line 6 of Table
3.

(b) If a+12a−22 − a−12a+22 < 0, then it can have one or two families of closed sliding poly-
trajectories and one or two hyperbolic closed sliding poly-trajectories.

Proposition 13. Consider a PWL vector field with configuration given on line 11 of
Table 3. Let a = a+12a−22 − a−12a22 and b = a+12b−2 − a−12b+2 − a+22b−1 .

(a) If a ≥ 0 and b ≥ 0, then it has a hyperbolic closed sliding poly-trajectory.

(b) For any other signals of a and b, it can have a hyperbolic closed sliding poly-
trajectory.

If there is a closed sliding poly-trajectory, then it is given on Figure 13 (A). The
flow on Σ corresponding to item (a) is given in Figure 13 (C) and one correspond-
ing to item (b) is given in Figure 13 (D) and Figure 14 (A).

Proposition 14. Consider a PWL vector field with configuration given on line 12 of
Table 3.

(a) If a−12b+2 − a+12b−2 < 0 and a+12a−22 − a−12a+22 < 0, then it has a family of closed sliding
poly-trajectories and it can have more one family of closed sliding poly-trajectories
and a hyperbolic closed sliding poly-trajectory.

(b) If a−12b+2 − a+12b−2 < 0 and a+12a−22 − a−12a+22 ≥ 0, then it has two families of closed
sliding poly-trajectories and a hyperbolic closed sliding poly-trajectory.



678 J.R. de Moraes – P.R. da Silva

Figure 19: Possible closed sliding poly-trajectories for a PWL vector field with configu-
ration given on line 10 of Table 3 and flows on Σ. The second and third figure correspond
to item (a) and the last corresponds to item (b).

(c) If a−12b+2 − a+12b−2 = 0 and a+12a−22 − a−12a+22 > 0, then it has only a hyperbolic closed
sliding poly-trajectory.

(d) If a−12b+2 − a+12b−2 > 0, or a−12b+2 − a+12b−2 = 0 and a+12a−22 − a−12a+22 < 0, then it
does not have closed sliding poly-trajectories.

The flows on Σ are given in Figure 17.

(A) (B)
S

(C) (D)

Figure 20: The figures (A), (B) and (C) represent the possible closed sliding poly-
trajectories for a PWL vector field with configuration given on lines 12, 20 and 23 of
Table 3. The figure (D) represents the flow on Σ for a PWL vector field with configuration
given on line 20 of Table 3.

Proposition 15. Consider a PWL vector field with configuration given on line 17 of
Table 3. Let a = a+12a−22 − a−12a+22 and b = a+12b−2 − a−12b+2 − a+22b−1 .

(a) If a > 0, or a ≤ 0 and b < 0, or a < 0 and b > 0, then it can have or not a
hyperbolic closed sliding poly-trajectory.

(b) If a = 0 and b ≥ 0 or, a < 0 and b = 0, then it does not have closed sliding
poly-trajectories.

Proposition 16. Consider a PWL vector field with configuration given on line 20 of
Table 3. Let a = a+12a−22 − a−12a+22 and b = a+12b−2 − a−12b+2 − a+22b−1 . If a ≤ 0 or b ≤ 0,
then it can have a hyperbolic closed sliding poly-trajectory.
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(A) (B) (C) (D) (E)

Figure 21: The figures (A) and (B) represent the possible closed sliding poly-trajectories
for a PWL vector field with configuration given on line 17 of Table 3. The figures (C), (D)
and (E) represent the flows on Σ for a PWL vector field corresponding to this line.

Proposition 17. Consider a PWL vector field with configuration given on line 23 of
Table 3.

(a) If a+12a−22 − a−12a+22 > 0 or a+12a−22 − a−12a+22 < 0, then it has at lest one family of
closed sliding poly-trajectories and one hyperbolic closed sliding poly-trajectory.

(b) If a+12a−22 − a−12a+22 = 0, then it has two families of closed sliding poly-trajectories
and two hyperbolic closed sliding poly-trajectories.

The flows on Σ are given on Figure 16 (A), (B) and (C). The Figures (A) and
(B) corresponding to item (a) and the Figure (B) corresponding to item (b).

Proposition 18. Consider a PWL vector field with configuration given on line 24 of
Table 3. Let a = a+12a−22 − a−12a+22.

(a) If a > 0, then it has at lest one hyperbolic closed sliding poly-trajectory.

(b) If a < 0, then it can have or not one or two hyperbolic closed sliding poly-trajectories.

(c) If a = 0, then it has two hyperbolic closed sliding poly-trajectories.

Proposition 19. Consider a PWL vector field with configuration given on line 25 of
Table 3.

(a) If a−12b+2 − a+12b−2 < 0 and a+12a−22 − a−12a+22 ≤ 0, then it has two families of closed
sliding poly-trajectories and a hyperbolic closed sliding poly-trajectory.

(b) If a−12b+2 − a+12b−2 < 0 and a+12a−22 − a−12a+22 > 0, then it has a family of closed sliding
poly-trajectories and it can have more one family of closed sliding poly-trajectories
and a hyperbolic closed sliding poly-trajectory.

(c) If a−12b+2 − a+12b−2 = 0 and a+12a−22 − a−12a+22 < 0, then it has only a hyperbolic closed
sliding poly-trajectory.

(d) If a−12b+2 − a+12b−2 > 0 or, a−12b+2 − a+12b−2 = 0 and a+12a−22 − a−12a+22 > 0, then it
does not have closed sliding poly-trajectories.
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(A) (B) (C) (D) (E)

Figure 22: The figures (A) and (B) represent the possible closed sliding poly-trajectories
for a PWL vector field with configuration given on lines 24 and 25 of Table 3, respec-
tively. The figures (C), (D) and (E) represent the flows on Σ for a PWL vector field with
configuration given on line 24 of Table 3, for a > 0, a < 0 and a = 0, respectively.

The flows on Σ are given in Figure 17. The first and third figure correspond to
item (a), the second figure corresponds to item (b), the seventh figure corresponds
to item (c) and the remaining figures correspond to item (d).

Proposition 20. Consider a PWL vector field with configuration given on line 26 of
Table 3. Let a = a+12a−22 − a−12a+22 and b = a+12b−2 − a−12b+2 − a+22b−1 .

(a) If a > 0, or a < 0 and b > 0, or a = 0 and b < 0 then it can have or not a
hyperbolic closed sliding poly-trajectory.

(b) If a < 0 and b ≤ 0, or a = 0 and b > 0 then it has a hyperbolic closed sliding
poly-trajectory.

Figure 23: Possible closed sliding poly-trajectory for a PWL vector field with configura-
tion given on line 26 of Table 3 and flows on Σ. The second and third figure correspond
to item (a) and the last figure corresponds to item (b).

Proof of Theorem 3. The proof of Theorem 3 is immediate consequence of Proposi-
tions 1 − 20.

Now, we present two examples which the PWL vector fields have closed slid-
ing poly-trajectories.
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Example 1. Consider the PWL vector field given by

F(x, y) =

{
(−y + 1, x + y − 2) if x ≥ 0,
(y + 1,−x − y − 2) if x ≤ 0.

It corresponds to configuration given on line 24 of Table 3 with Σs = {(0, y) :
y > 1}, Σc = {(0, y) : −1 < y < 1} and Σe = {(0, y) : y < −1}. We have
two fold points (0,−1), (0, 1) and a+12 = −1, a−12 = 1, a+22 = 1 and a−22 = −1.
So, a = a+12a−22 − a−12a+22 = 0. By Proposition 18, there is two closed sliding poly-

trajectories. In fact, the sliding vector field is given by FΣ(y) = (0,−1). Thus,
the flow on Σ is given on Figure 22 (E) and the orbit which has α-limit (1, 0), has
ω-limit (1,0), the orbit which has ω-limit (−1, 0), has α-limit (−1, 0), as presented
on Figure 22 ((B)).

Example 2. Consider the PWL vector field given by

F(x, y) =

{
(−y, x + y + 1) if x ≥ 0,
(y,−x − y − 2) if x ≤ 0.

It corresponds to configuration given on line 25 of Table 3 with Σs = {(0, y) :
y > 0} and Σe = {(0, y) : y < 0}. We have a fold point (0, 0) and a+12 = −1, a−12 =
1, a+22 = 1, a−22 = −1, b+2 = 1 and b−2 = −2. So, a+12a−22 − a−12a+22 = 0 and a−12b+2 −
a+12b−2 = −1 < 0. By Proposition 19, F− has a closed sliding poly-trajectory and
F+ has a family of closed sliding poly-trajectories. In fact, the sliding vector field
is given by FΣ(y) = (0,−1/2). Thus, the flow on Σ is given on Figure 17 (third)
and the consequence is immediate.

5 Known Examples of Crossing Poly-Trajectories

Now, we present a list of known examples of crossing poly-trajectory for the
saddle-saddle, saddle-focus and focus-focus cases. This examples were obtained
recently.

Example 3 (J. C. Arts, J. Llibre, J. C. Medrado and M. A. Teixeira, 2011). In [3] the
authors proved that vector field (1) with

F+(x, y) =

(
a+ 1 + b+

1 + c+ d+

)(
x − 1 − α+

y − β+

)
,

F−(x, y) =

(
a− 1 + b−

1 + c− d−

)(
x + 1 − α−

y − β−

)

satisfying 0 ≤ |a±|, |b±|, |c±|, |d±|, |α±|, |β±| ≪ 1 and with two real saddles, has
at most 2 hyperbolic crossing poly-trajectories.

Example 4 (J. Llibre, M. A. Teixeira and J. Torregrossa, 2012). In [5] the authors
proved that vector field (1) with

F+(x, y) =
(

1−δ
π log

(
11(5−3ε)
14(3ε+5)

)
x + y,−x + 1−δ

π log
(

11(5−3ε)
14(3ε+5)

)
y
)

,

F−(x, y) =

(
3

2
(1 + ε)x + y −

3

10
, 4x −

3

2
(1 − ε)y +

67

10

)
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satisfying 0 < δ ≪ ε ≪ 1, is of kind saddle-focus and has 2 hyperbolic crossing
poly-trajectories.

Example 5 (J. Llibre and E. Ponce, 2011). In [4] the authors proved that the system

{
A+X, if x ≥ 1,
A−X, if x < 1,

where X = (x, y)T with

A+ =

(
19
500 − 1

10
1

10
19
500

)
, and A− =

(
1 −5

377
1000 − 13

10

)

has 3 crossing poly-trajectories.

The configurations of the PWL vector fields of the previous examples are
given in Propositions 21, 22 and 23.

Proposition 21. The configuration of Example 3 is given on line 11 (by using item (i) of
relation R1) or 12 (by using f1(x, y) = (x,−y) in item (ii) of relation R1) of Table 1.

Proof. Using the change of coordinates as shown in the paper [3], we have the
following vector field

F+(x, y) =

(
0 1
1 d1

)(
x − 1 − α

y

)

F−(x, y) =

(
0 1
1 d2

)(
x + 1

y

)
.

It has a crossing poly-trajectory and 2 real saddles. Moreover the manifolds
determined by the eigenvalues of the linear part of F−, F+ are not parallel to Σ.
We have F−

1 (x, y) = F+
1 (x, y) = y, so there is a fold point FL = FR = (0, 0). A

simple computer gives Σ
c = {(0, y) : y ∈ R \ {0}}. So, the parameters n1 and

n2 are given by CC and RR respectively. Because F−(0, y), F(0, y) > 0 for y > 0
and F−(0, y), F(0, y) < 0 for y < 0, n3, n4, n5 and n6 are given respectively by
Wu

L ∩ Σ > FL, Ws
L ∩ Σ < FL, Wu

L ∩ Σ < FR and Ws
L ∩ Σ > FR.

The second hyperbolic crossing poly-trajectory is obtained adding (ε3, 0) to
F+ and subtracting to F−, with ε > 0 sufficiently small. The calculations are
analogous and we obtain the same parameters n2, n3, n4, n4 and n6. Now we have
a escaping region given by,

Σ
e = {(0, y) : −ε3

< y < ε3}.

Then, the parameter n1 is given by CEC.
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Proposition 22. The configuration of Example 4 is given on line 13 of Table 2 (by using
item (i) of relation R2).

Proof. As the authors presented in [5], for 0 < δ ≪ ε ≪ 1 the vector field (1) with
F+ and F− given in Example 4 has a virtual stable focus at (0, 0), with eigenvalues
given by

(1 − δ) log

(
11(5 − 3ε)

14(3ε + 5)

)
± i,

and has a real saddle at the equilibrium point

(
9ε + 125

5(9ε2 − 25)
,−

3(67ε + 75)

5(9ε2 − 25)

)

with eigenvalues (3ε ± 5)/2. The manifolds are given by the straight lines
y = x + 14/(5 − 3ε) and y = −4x − 11/(5 + 3ε). We have F−

1 (0, y) = y − 3/10
and F+

1 (0, y) = y and thus Σc = {(0, y) : y > 3/10 or y < 0}, Σe = {(0, y) :
0 < y < 3/10}. Thus, the parameters m1, m2, m3, m4, m5 and m6 are given by CC,
RV, Wu

L ∩ Σ > FL, Ws
L ∩ Σ < FL, +1 and < 0, respectively.

Proposition 23. The configuration of Example 5 is given on line 20 of Table 3.

Proof. We have that F−
1 (1, y) = 1 − 5y and F+

1 (1, y) = 19/500 − 1/10y and thus
Σc = {(1, y) : y < 1/5 or y > 19/50}, Σe = {(1, y) : 1/5 < y < 19/50}. Clearly
(0, 0) is a virtual unstable focus for the system ˙X = A+X and a real stable focus
for the system ˙X = A−X. In fact, the eigenvalues of A− and A+ are given by

19

500
±

1

10
i, −

3

20
±

3

4
i.

So, the parameters s1, s2, s3, s4, s5 and s6 are given respectively by CEC, RV,
−1, < 0, −1, > 0.
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