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Abstract

In this paper, we investigate the spacelike hypersurfaces in anti-de Sit-
ter space H

n+1
1 (c) with nonzero constant k-th mean curvature Hk and two

distinct principal curvatures one of which is simple, and characterize such
hypersurfaces as hyperbolic cylinders.

1 Introduction

Let Mn+1
1 (c) be an (n + 1)-dimensional Lorentzian space form with constant sec-

tional curvature c, we separately call it de Sitter space S
n+1
1 (c), Lorentzian-Min-

kowski space Ln+1 or anti-de Sitter space H
n+1
1 (c), with respect to c > 0, c = 0 or

c < 0. Let M be an n-dimensional complete hypersurface in Mn+1
1 (c), we recall

that M is said to be spacelike if its induced metric is positive definite.
The study of spacelike hypersurfaces in Lorentzian space forms has got in-

creasing interest motivated by their importance in problems related to physics,
more specifically in the theory of general relativity. Concerning to the mathe-
matical viewpoint, such hypersurfaces appear in several uniqueness problems,
for instance, constant mean curvature spacelike hypersurfaces exhibit nice Bern-
stein’s type properties.
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In recent years, one of the principal research subjects already current in this
theory is to characterize complete spacelike hypersurfaces with constant mean
curvature (or constant scalar curvature) and two distinct principal curvatures
one of which is simple. For example, let M be an n-dimensional (n > 3) com-
plete maximal spacelike hypersurface with two distinct principal curvatures λ

(with multiplicity m) and µ in anti-de Sitter space H
n+1
1 (−1). If inf(λ − µ)2

>

0, Cao-Wei [2] proved that M is isometric to hyperbolic cylinder Hm(− n
m ) ×

Hn−m(− n
n−m), 1 6 m 6 n − 1. Wu [13] and Yang-Liu [16] extend that result

to the case of constant mean curvature with the restriction that one of the princi-
pal curvatures is simple (indeed Wu’s paper [13] includes the same result about
the case of constant scalar curvature).

In [4], Chu-Zhai investigated the similar problem for spacelike hypersurface

M in H
n+1
1 (−1) with constant scalar curvature n(n − 1)R (instead of constant

mean curvature) and two distinct principal curvatures one of which is simple.
Although Wu [13] pointed out that the condition inf(λ − µ)2

> 0, either for the
case of constant mean curvature or constant scalar curvature, can not be dropped
down, by replacing the condition inf(λ − µ)2

> 0 with the squared norm of the

second fundamental form S >
(n−1)(2−n−nR)

n−2 + n−2
2−n−nR or S 6

(n−1)(2−n−nR)
n−2 +

n−2
2−n−nR , Chu-Zhai also proved that M is isometric to hyperbolic cylinder

H
n−1( nR

n−2)× H
1( nR

2−n−nR).

Since the k-th mean curvature Hk, 1 6 k 6 n, are generalizations of the mean
curvature, scalar curvature and Gauss-Kronecker curvature, people may also ex-
pect that the similar results should hold for spacelike hypersurfaces of constant
k-th mean curvature (k > 2) and two distinct principal curvatures λ (with mul-
tiplicity n − 1) and µ satisfying inf(λ − µ)2

> 0. But this is not true, see also
[13]. However, Suh-Wei [11] and Yang [15] considered complete (k − 1)-maximal
spacelike hypersurface with two distinct principal curvatures λ (with multiplicity

n− 1) and µ in H
n+1
1 (−1), and proved that if inf(λ−µ)2

> 0, then S >
n(n2−2k+n)

k(n−k)
,

equality holds if and only if M = H1(c1)× Hn−1(c2), 1 6 k 6 n − 1.

The main idea proving such kinds of results is motivated by Otsuki’s work
[8], where, Otsuki studied the minimal hypersurfaces in a unit (n + 1)-sphere
Sn+1(1) (n > 3) with two distinct principal curvatures and proved that if the
multiplicities of the two principal curvatures are both greater than 1, then they
are Clifford minimal hypersurfaces. As for the case when the multiplicity of one
of the two principal curvatures is n − 1, it corresponds to an ordinary differential
equation. Otsuki’s method is generalized by many authors to study hypersur-
faces with constant k-th mean curvature and two distinct principal curvatures in
Riemannian space forms (see e.g., [6], [9], [12]) or spacelike hypersurfaces in de
Sitter space (see e.g., [5], [7], [10], [14]).

In this paper, we are interested in characterizing complete spacelike hypersur-
faces with non-zero constant k-th mean curvature Hk and two distinct principal
curvatures λ and µ (which is assumed to be simple) immersed in anti-de Sitter

space H
n+1
1 (c) by analysing the behavior of its k-th mean curvature. Roughly

speaking, we characterize such hypersurfaces as hyperbolic cylinders, according
to Hk > 0 for 1 6 k 6 n, or Hk < 0 for 3 6 k 6 n.
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This paper consists of five sections. In Section 2 we first recall the structure
equations and basic formulas as well as an key ordinary differential equation (see
Eq.(7) in Section 2 and Eq.(11) in Section 5). Then some key lemmas are given in
Section 3. Section 4 is devoted to state and prove our main theorems according
to the constant k-th mean curvature Hk > 0 for 1 6 k 6 n − 1, or Hk < 0 for
3 6 k 6 n − 1. The case of k = n is discussed in Section 5 individual.

2 Preliminaries

Let R
n+2
2 be Rn+2 equipped with the indefinite inner product 〈·, ·〉 defined by

〈x, y〉 = −x1y1 + x2y2 + · · ·+ xn+1yn+1 − xn+2yn+2,

for x = (x1, · · · , xn+1, xn+2), y = (y1, · · · , yn+1, yn+2) ∈ Rn+2. Then, for c < 0,
we have the (n + 1)-dimensional anti-de Sitter space

H
n+1
1 (c) =

{

x ∈ R
n+2 : 〈x, x〉 =

1

c

}

.

Suppose that M be an n-dimensional spacelike hypersurface of H
n+1
1 (c). For any

p ∈ M, we choose a local pseudo-Riemannian orthonormal frame field {e1, · · · ,

en+1} in H
n+1
1 (c) around p such that e1, · · · , en are tangent to M and en+1 is the

unit timelike normal vector field. Take the corresponding dual coframe {ω1, · · · ,
ωn+1} with the matrix of connection one forms being ωij. A well-known ar-
gument [3] shows that the forms ωin+1 may be expressed as ωin+1 = ∑j hijωj,
hij = hji. The second fundamental form and the mean curvature of M are given

by B = ∑i,j hijωi ⊗ ωj and H = 1
n ∑i hii respectively. Then the structure equations

of M are

dωi =
n

∑
j=1

ωij ∧ ωj, ωij + ωji = 0,

dωij =
n

∑
k=1

ωik ∧ ωkj −
1

2

n

∑
k,l=1

Rijklωk ∧ ωl.

The Gauss equations are given by

Rijkl = c(δikδjl − δilδjk)− (hikhjl − hilhjk). (1)

For 1 6 k 6 n, the k-th mean curvature Hk of M is defined by
(

n

k

)

Hk = ∑
16i1<···<ik6n

λi1 · · · λik
, (2)

where (n
k) = n!

k!(n−k)!
, λi(1 6 i 6 n) are the principal curvatures of M. In par-

ticular, when k = 1, H1 = H is nothing but the mean curvature of M; while
k = 2, a simple calculation by using Gauss equations (1) of M yields H2 = c − R,
where R is the normalized scalar curvature of M. When k = n, Hn is the well-
known Gauss-Kronecker curvature. So we know that the k-th mean curvature Hk

generalizes the mean curvature, scalar curvature and Gauss-Kronecker curvature
naturally.



42 J. Liu – Y. Wei

Now, we assume that M be a spacelike hypersurface in H
n+1
1 (c) with constant

k-th mean curvature Hk 6= 0 and two distinct principal curvatures λ (with mul-
tiplicity n − 1) and µ. By virtue of the definition of Hk, we have from (2) that

(n
k)Hk = (n−1

k )λk + (n−1
k−1)λ

k−1µ, equivalently,

λk−1((n − k)λ + kµ) = nHk. (3)

Notice our assumption Hk 6= 0, (3) implies λ 6= 0. Choose a proper direction,
such that λ > 0, then λk

> 0 and

µ =
nHk − (n − k)λk

kλk−1
, (4)

λ − µ = n
λk − Hk

kλk−1
6= 0. (5)

On the other hand, we know from [17, Theorem 1.3] (see also [13]) that M is
the locus of a family of moving submanifolds Mn−1

1 (s) (where s is the arc length

parameter of the integral curve corresponding to µ), and λk, Hk satisfy the fol-
lowing differential equation of order 2:

d2w

ds2
+ w

ckλk−2 + (n − k)λk − nHk

kλk−2
= 0, (6)

where w(s) = |λk − Hk|
− 1

n , s ∈ (−∞,+∞). Let PHk
(t) = ckt

k−2
k + (n − k)t − nHk,

t > 0. Note that λk
> 0, then (6) can be rewritten as

d2w

ds2
+ w

PHk
(λk)

kλk−2
= 0. (7)

3 Key Lemmas

In order to prove our main theorems in Section 4, we need the following lem-
mas. In this section, we always assume that the k-th mean curvature Hk, for some
1 6 k 6 n − 1, is a non-zero constant. The case of k = n will be discussed in
Section 5 individual.

Lemma 3.1. For t > 0, c < 0, n > 3, let PHk
(t) = ckt

k−2
k + (n − k)t − nHk.

Case 1 When Hk > 0 with 1 6 k 6 n − 1, then PHk
(t) has a unique positive

real root t1. Furthermore, PHk
(t) 6 0 (resp. > 0) for t ∈ (0, t1] (resp. t ∈

[t1,+∞)).

Case 2 When Hk < 0 with 3 6 k 6 n − 1.

(1) If Hk <
2c
n (

c(k−2)
k−n )

k−2
2 , then PHk

(t) > 0 for t ∈ (0,+∞).

(2) If Hk = 2c
n (

c(k−2)
k−n )

k−2
2 , then PHk

(t) = 0 has a unique positive real root,
denoted by t2, and PHk

(t) reaches its minimal value at t2, PHk
(t) > 0

for t ∈ (0,+∞).
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(3) If Hk >
2c
n (

c(k−2)
k−n )

k−2
2 , then PHk

(t) = 0 has two distinct positive real
roots t3, t4 (here and in the sequel we assume t3 < t4). At that time,

PHk
(t) reaches its minimal value at t0 = ( c(k−2)

k−n )
k
2 > 0, and t3 < t0 <

t4. Furthermore, PHk
(t) > 0 for t ∈ (0, t3] ∪ [t4,+∞), PHk

(t) 6 0 for
t ∈ [t3, t4].

Proof. A straightforward computation gives
dPHk

(t)

dt = c(k − 2)t−
2
k + (n − k),

and
d2PHk

(t)

dt2 = − 2(k−2)
k ct−

2+k
k .

Case 1 When Hk > 0, the conclusions for k = 1, 2 are obvious. For 3 6 k 6

n − 1, it is clear that
d2PHk

(t)

dt2 > 0, which implies that
dPHk

(t)

dt is a strictly monotone

increasing function of t. Let
dPHk

(t)

dt = 0, we get t0 = ( c(k−2)
k−n )

k
2 > 0. Thus, if

0 < t < t0 (resp. t > t0), then
dPHk

(t)

dt < 0 (resp. > 0), and PHk
(t) is a strictly

monotone decreasing function (resp. increasing function). Since lim
t→0+

PHk
(t) =

−nHk < 0, lim
t→+∞

PHk
(t) = +∞, from the monotonic property of PHk

(t), we infer

that PHk
(t) = 0 has a unique positive real root and the result follows.

Case 2 When Hk < 0 with 3 6 k 6 n − 1, we also know that
d2PHk

(t)

dt2 > 0, and

PHk
(t) has the same monotonicity as Case 1. So PHk

(t) attains its minimum at t0.
It is easy to check that

PHk
(t0) = 2c

(c(k − 2)

k − n

)
k−2

2
− nHk.

On the other hand, lim
t→0+

PHk
(t) = −nHk > 0, lim

t→+∞
PHk

(t) = +∞, the conclu-

sions follow immediately from the continuous property and monotone property
of PHk

(t).

Lemma 3.2. For t > 0, n > 3, let f (t) = 1

k2t
2k−2

k

{

(n − 1)k2t2 + ((n − k)t −

nHk)
2
}

, then

f (ti) = (n − 1)t
2
k
i + c2t

− 2
k

i , i = 1, 2, 3, 4,

where ti is the positive real roots of the equation PHk
(t) = 0 obtained in Lemma

3.1. Furthermore,

(1) If Hk > 0 for 1 6 k 6 n − 1, then f (t) is a monotone increasing (resp.
decreasing) function for t > Hk (resp. 0 < t 6 Hk).

(2) If Hk < 0 for 3 6 k 6 n − 1, denote t′0 = n(1−k)Hk

n−2k+k2 . Then t′0 > 0 and f (t) is

monotone increasing (resp. decreasing) of t for t > t′0 (resp. 0 < t 6 t′0).

Proof. Notice that PHk
(ti) = 0, i = 1, . . . , 4, so

f (ti) =
1

k2t
2k−2

k
i

{

(n − 1)k2t2
i +

(

(ckt
k−2

k
i + (n − k)ti − nHk)− ckt

k−2
k

i

)2
}

=
1

k2t
2k−2

k
i

{

(n − 1)k2t2
i + (−ckt

k−2
k

i )2
}

= (n − 1)t
2
k
i + c2t

− 2
k

i .
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Furthermore, it is easy to check that

d f (t)

dt
=

2t
2−3k

k

k3
n(t − Hk)

(

(n − 2k + k2)t − n(1 − k)Hk

)

.

Put
g(t) = (t − Hk)

(

(n − 2k + k2)t − n(1 − k)Hk

)

, t > 0.

(1) If Hk > 0, the conclusions are clear as k = 1. While k > 2,
dg(t)

dt =

2n(k2 − 2k + n)t + n(k − 2)(n − k)Hk > 0, which implies that g(t) is a strictly
monotone increasing function. Notice that g(Hk) = 0, so Hk is the only zero

point of g(t). Henceforth, if 0 < t 6 Hk, then g(t) 6 0 and
d f (t)

dt 6 0, it follows

that f (t) is a decreasing function; if t > Hk, then g(t) > 0 and
d f (t)

dt > 0, this
means f (t) is an increasing function.

(2) If Hk < 0, then t − Hk 6= 0 because of t > 0. Hence g(t) = 0 if and only

if t = n(1−k)Hk

n−2k+k2 . Denote t′0 = n(1−k)Hk

n−2k+k2 , it is clear that t′0 > 0 because of Hk < 0

and k > 3. By monotone property and concavity of g(t), we complete the proof
of Lemma 3.2.

The following two lemmas deal with two cases: for 3 6 k 6 n − 1 and the

constant k-th mean curvature 2c
n (

c(k−2)
k−n )

k−2
2 < Hk < 0 or Hk = 2c

n (
c(k−2)

k−n )
k−2

2 ,
separately. The conclusions are used to prove our main Theorems 4.3 and 4.4 in
Section 4.

Lemma 3.3. With t′0 = n(1−k)Hk

n−2k+k2 > 0 given in Lemma 3.2. By t3, t4 (t3 < t4)

denote the positive real roots of PHk
(t) = 0 for Hk >

2c
n (

c(k−2)
k−n )

k−2
2 proved in

Lemma 3.1.
(1) If t′0 6 t3, then λk > t′0.

(2) If t′0 > t4, then λk 6 t′0.

Proof. If t′0 6 t3, we assume on the contrary that λk
< t′0, then λk

< t3 and

PHk
(λk) > 0 from Case 2(3) of Lemma 3.1, thus (7) yields d2w

ds2 < 0, i.e. dw
ds is

a strictly monotone decreasing function of s, and it has at most one zero point

for s ∈ (−∞,+∞). If dw
ds has no zero point, then w(s) is a monotone function of

s ∈ (−∞,+∞); if dw
ds has one zero point s0 ∈ (−∞,+∞), then w(s) is a monotone

function on both (−∞, s0] and [s0,+∞). Since w(s) is bounded (cf. [12] or [13]),
we know that both lim

s→−∞
w(s) and lim

s→+∞
w(s) exist and

lim
s→−∞

dw(s)

ds
= lim

s→+∞

dw(s)

ds
= 0.

This is impossible because dw(s)
ds is a strictly monotone decreasing function. We

aim at λk > t′0. Taking similar arguments for the case t′0 > t4, we complete the
proof.

Applying the same method as in the proof of Lemma 3.3, together with Case
2(2) of Lemma 3.1, we have

Lemma 3.4. With t2 the positive real root of PHk
(t) = 0 for Hk = 2c

n (
c(k−2)

k−n )
k−2

2

proved in Lemma 3.1. Then λk > t′0 (resp. 6) as t′0 6 t2 (resp. >).
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4 Main theorems

In this section, we will characterize complete spacelike hypersurface in H
n+1
1 (c)

with non-zero constant k-th mean curvature Hk and two distinct principal cur-
vatures, one of which is simple. Since the lemmas used in the proof processing
are slightly different between two situations Hk > 0 and Hk < 0, so we state and
prove our results separately.

4.1 The case of Hk > 0

Theorem 4.1. Let M be an n-dimensional (n > 3) complete spacelike hypersur-

face in anti-de Sitter space H
n+1
1 (c) with constant k-th (1 6 k 6 n − 1) mean

curvature Hk > 0 and two distinct principal curvatures, one of which is simple.
If the squared norm S of the second fundamental form of M satisfies

S > (n − 1)t
2
k
1 + c2t

− 2
k

1 (8)

or

S 6 (n − 1)t
2
k
1 + c2t

− 2
k

1 , (9)

then M is isometric to the Riemannian product Hn−1(c1)× H1(c2) for some con-
stants c1 < 0, c2 < 0 with 1

c1
+ 1

c2
= 1

c , and t1 is the positive real root of PHk
(t) = 0

given in Lemma 3.1.

Proof. Since PHk
(Hk) = ckH

k−2
k

k − kHk < 0, it follows from Case 1 of Lemma

3.1 that Hk < t1. We also assert that λk
> Hk. In fact, if on the contrary λk

< Hk

(because of λk 6= Hk from (5)), then λk
< t1. Review the process of the proof of

Lemma 3.1(1), it is not difficult to find that PHk
(λk) < 0. Now (7) implies d2w

ds2 > 0,

i.e. dw
ds is a strictly monotone increasing function of s. Similar to the proof of

Lemma 3.3 we get a contradiction which implies the assertion λk
> Hk holds.

Put t = λk into f (t) defined in Lemma 3.2, together with (4), it is easy to verify
that f (λk) = S. In the following, keep in mind that Hk < t1 as we have proved at
the beginning of the proof of Theorem 4.1.

Case 1 If the assumption (8) in Theorem 4.1 holds, i.e., S = f (λk) > f (t1), we
know from Lemma 3.2(1) that λk > t1, thus Lemma 3.1(Case 1) tells us PHk

(λk) >

0. So we have d2w
ds2 6 0 from (7), this means that dw

ds is a monotone decreasing

function of s. Therefore, w(s) must be monotonic when s tends to infinity. On
the other hand, since w(s) is bounded (cf. [12]), we find that both lim

s→−∞
w(s) and

lim
s→+∞

w(s) exist and we have

lim
s→−∞

dw(s)

ds
= lim

s→+∞

dw(s)

ds
= 0.

By the monotonicity of dw(s)
ds , we see that dw

ds ≡ 0, thus w(s) is a constant. Then,

according to w(s) = |λk − Hk|
− 1

n and (4), we infer that λ and µ are constants
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on M. Therefore, the results due to Abe-Koike-Yamaguchi [1] lead to M be an
isoparametric hypersurface and isometric to the hyperbolic cylinder Hn−1(c1)×
H1(c2), where c1 < 0, c2 < 0, 1

c1
+ 1

c2
= 1

c .

Case 2 If the assumption (9), instead of (8), in Theorem 4.1 holds, i.e., S =
f (λk) 6 f (t1), we obtain from Lemma 3.2(1) again that λk 6 t1, thus PHk

(λk) 6 0

by Lemma 3.1. In this case, d2w
ds2 > 0 and dw

ds is a monotone increasing function of
s (while it is a monotone decreasing function in Case 1). The remain discussions
are the same as that of Case 1. We complete the proof of Theorem 4.1.

4.2 The case of Hk < 0

Theorem 4.2. There is no complete spacelike hypersurface in H
n+1
1 (c) (n > 4)

with two distinct principal curvatures λ(multiplicity n − 1), µ and constant k-th

mean curvature Hk <
2c
n (

c(k−2)
k−n )

k−2
2 for 3 6 k 6 n − 1.

Proof. If there exists such a hypersurface M with Hk <
2c
n (

c(k−2)
k−n )

k−2
2 , then

Lemma 3.1 tells us PHk
(t) = 0 has no real root and PHk

(t) > 0. Especially,

PHk
(λk) > 0 and then d2w

ds2 < 0 by virtue of (7). Henceforth, dw
ds is a strictly

monotone decreasing function of s. Analogous to the proof of Lemma 3.3, a con-

tradiction to the strictly monotonicity of
dw(s)

ds occurs, which finishes the proof of
Theorem 4.2.

Based upon the conclusion of Theorem 4.2, we only need to consider the case

Hk > 2c
n (

c(k−2)
k−n )

k−2
2 . According to Lemma 3.1, the function PHk

(t) has only one

real positive zero point as Hk = 2c
n (

c(k−2)
k−n )

k−2
2 , while it has only two distinct real

positive zero points for Hk >
2c
n (

c(k−2)
k−n )

k−2
2 . We will state and prove our results

with these two situations separately.

Theorem 4.3. Let M be an n-dimensional (n > 4) complete spacelike hypersur-

face in H
n+1
1 (c) with constant k-th (3 6 k 6 n − 1) mean curvature Hk and two

distinct principal curvatures one of which is simple. Assume that 2c
n (

c(k−2)
k−n )

k−2
2 <

Hk < 0. If the squared norm S of the second fundamental form of M satisfies

S > max
i=3,4

{

(n − 1)t
2
k
i + c2t

− 2
k

i

}

or

S 6 min
i=3,4

{

(n − 1)t
2
k
i + c2t

− 2
k

i

}

,

then M is isometric to the Riemannian product Hn−1(c1)×H1(c2), where c1 < 0,
c2 < 0, 1

c1
+ 1

c2
= 1

c , and t3, t4 are two distinct positive real roots of the equation

PHk
(t) = 0.

Proof. Recall that t′0 = n(1−k)Hk

n−2k+k2 > 0 given in Lemma 3.2 and S = f (λk). We

first prove that λ and µ are constants on M.
Case 1 When t′0 6 t3, then λk > t′0 according to Lemma 3.3(1) and f (t3) <

f (t4) by means of Lemma 3.2(2). Thus, if S > max
i=3,4

{

(n − 1)t
2
k
i + c2t

− 2
k

i

}

, then
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f (λk) = S > (n − 1)t
2
k
4 + c2t

− 2
k

4 = f (t4). Consequently, λk > t4 from the mono-

tonicity of f (t), and then PHk
(λk) > 0 from Case 2(3) of Lemma 3.1. So we derive

that d2w
ds2 6 0 from (7), this means that dw

ds is a monotone decreasing function of s.

Similar to the proof of Theorem 4.1, we conclude that w(s) is a constant on M, so
do λ and µ.

Case 2 When t′0 > t4, we know λk 6 t′0 from Lemma 3.3(2), and f (t4) < f (t3)
because of f (t) be a decreasing function for 0 < t 6 t′0 by Lemma 3.2(2). The

assumption S > max
i=3,4

{

(n − 1)t
2
k
i + c2t

− 2
k

i

}

is equivalent to S = f (λk) > f (t3).

Therefore, λk 6 t3 by means of Lemma 3.2(2) again, we get PHk
(λk) > 0 from

Case 2(3) of Lemma 3.1. So we have d2w
ds2 6 0 from (7). Taking similar arguments

as Case 1, we show that λ and µ are constants on M.

Case 3 When t3 6 t′0 6 t4, there are two subcases: λk 6 t′0 and λk > t′0.

If λk 6 t′0, using the assumption S = f (λk) > (n − 1)t
2
k
3 + c2t

− 2
k

3 = f (t3),

combining with Lemma 3.2(2), we obtain λk 6 t3. Therefore, PHk
(λk) > 0 from

Case 2(3) of Lemma 3.1. If λk > t′0, making use of the assumption S = f (λk) >

(n − 1)t
2
k
4 + c2t

− 2
k

4 = f (t4) and Lemma 3.2(2) once more, we have λk > t4. Hence

PHk
(λk) > 0 from Case 2(3) of Lemma 3.1. The rest of proof is just the same as

Case 1.

Summarizing, if the assumption S > max
i=3,4

{

(n− 1)t
2
k
i + c2t

− 2
k

i

}

holds, we prove

that λ and µ are constants on M. Similarly, replacing the assumption S > max
i=3,4

{

(n−

1)t
2
k
i + c2t

− 2
k

i

}

with S 6 min
i=3,4

{

(n − 1)t
2
k
i + c2t

− 2
k

i

}

, we can also prove that λ and

µ are constants on M. The same arguments as that of Theorem 4.1 complete the
proof of Theorem 4.3.

Theorem 4.4. Let M be an n-dimensional (n > 4) complete spacelike hyper-

surface in H
n+1
1 (c) with constant k-th (3 6 k 6 n − 1) mean curvature Hk =

2c
n (

c(k−2)
k−n )

k−2
2 and two distinct principal curvatures, one of which is simple. If the

squared norm S of the second fundamental form of M satisfies

S > (n − 1)t
2
k
2 + c2t

− 2
k

2

or

S 6 (n − 1)t
2
k
2 + c2t

− 2
k

2 ,

then M is isometric to the Riemannian product Hn−1(c1)× H1(c2) for some con-
stants c1 < 0, c2 < 0 with 1

c1
+ 1

c2
= 1

c , and t2 is the positive real root of the

equation PHk
(t) = 0.

Proof. By using the same methods as the proof of Theorem 4.3, together with
Lemma 3.4, Lemma 3.2(2) and Case 2(2) of Lemma 3.1, we complete the proof of
Theorem 4.4.
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5 The case of k = n

The remain case to characterize hypersurfaces in H
n+1
1 (c) with non-zero constant

k-th mean curvature Hk is that of k = n, i.e. non-zero constant Gauss-Kronecker
curvature Hn. Making a careful analysis of Theorem 4.1, we find that the as-
sumption “Hk > 0”, k = 1, . . . , n − 1, ensures actually the existence of the zero
point of the function PHk

(t). However, if the constant Hn > 0, then the equation
PHn(t) = 0 really has no real positive root. In this section, we considered the case
k = n and proved that: if Gauss-Kronecker curvature Hn is a non-zero constant,
then Hn < 0, which ensures again the function PHn(t) has a unique zero point,
and the main idea of the proof developed there can also follow. As a result, we
finally characterize such hypersurfaces as hyperbolic cylinders, see Theorem 5.4
below.

When k = n, the formulas (4), (5) reduces to, respectively

µ =
Hn

λn−1
, λ − µ =

λn − Hn

λn−1
6= 0.

The second order differential equation (6) becomes

d2w

ds2
+ w

cλn−2 − Hn

λn−2
= 0, (10)

where w(s) = |λn − Hn|
− 1

n , s ∈ (−∞,+∞). Let PHn(t) = ct
n−2

n − Hn, t > 0, then
(10) can be rewritten as

d2w

ds2
+ w

PHn(λ
n)

λn−2
= 0. (11)

Using the same analysis as Lemmas 3.1 and 3.2, we have the following lemmas
for k = n.

Lemma 5.1. For t > 0, c < 0, n > 3, let PHn(t) = ct
n−2

n − Hn, where Hn = const..
If Hn > 0, then PHn(t) = 0 has no real root and PHn(t) < 0; if Hn < 0, then
PHn(t) = 0 has a unique positive real root t̄. Furthermore, PHn(t) > 0 for 0 < t 6
t̄, and PHn(t) 6 0 for t > t̄.

Lemma 5.2. For t > 0, Hn = const. < 0, n > 3, let f (t) = 1

t
2n−2

n

{

(n− 1)t2 + H2
n

}

,

then f (t̄) = (n − 1)t̄
2
n + c2 t̄−

2
n , where t̄ is the unique positive real root of PHn(t) =

0. Furthermore, f (t) is a monotone increasing function for t > −Hn, while it is a
monotone decreasing function for 0 < t 6 −Hn.

Lemma 5.3. With the unique positive real root t̄ of PHn(t) = 0 given in Lemma
5.1, we have

(1) If Hn > −(−c)
n
2 , then −Hn > t̄ and λn 6 −Hn.

(2) If Hn 6 −(−c)
n
2 , then −Hn 6 t̄ and λn > −Hn.

Proof. Since
dPHn(t)

dt = c(n−2)
n t−

2
n < 0, so PHn(t) is a strictly monotone decreas-

ing function of t. Notice that

PHn(−Hn) = c(−Hn)
n−2

n − Hn = (−Hn)
n−2

n (c + (−Hn)
2
n ).
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If Hn > −(−c)
n
2 , then PHn(−Hn) 6 0 and −Hn > t̄. Assume on the contrary

that λn
> −Hn, then λn

> t̄, PHn(λ
n) < PHn(t̄) = 0 from Lemma 5.1. Therefore,

(11) implies d2w
ds2 > 0, i.e. dw

ds is strictly monotone increasing. Analogous to the
proof of Lemma 3.3, a contradiction occurs which forces that λn 6 −Hn. Another
case can be proved similarly.

Theorem 5.4. Let M be an n-dimensional (n > 3) complete spacelike hyper-

surface in H
n+1
1 (c) with constant Gauss-Kronecker curvature Hn 6= 0 and two

distinct principal curvatures λ (with multiplicity n − 1) and µ. The following
holds:

(1) There is no such hypersurfaces with Hn > 0.
(2) When Hn < 0, if the squared norm S of the second fundamental form of

M satisfies

S > (n − 1)t̄
2
n + c2 t̄−

2
n ,

or

S 6 (n − 1)t̄
2
n + c2 t̄−

2
n ,

then M isometric to the Riemannian product Hn−1(c1)× H1(c2), where c1 < 0,
c2 < 0, 1

c1
+ 1

c2
= 1

c , and t̄ is a unique positive real root of the equation PHn(t) = 0

for t > 0.
Proof. Taking similar processing to the proof of Theorem 4.2, we can achieve

our nonexistence conclusion. In order to characterize spacelike hypersurfaces
with Hn < 0, using Lemma 5.3 we need to analysis under the case either

−(−c)
n
2 6 Hn < 0 or Hn 6 −(−c)

n
2 , and taking the same arguments as in the

proof of Theorem 4.1, together with Lemmas 5.1, 5.2, we finish the proof of The-
orem 5.4.
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