On ¢-biflat and ¢-biprojective Banach algebras
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Abstract

In this paper, we introduce the new notions of ¢-biflatness, ¢-biprojectivity,
¢-Johnson amenability and ¢-Johnson contractibility for Banach algebras,
where ¢ is a non-zero homomorphism from a Banach algebra A into C. We
show that a Banach algebra A is ¢-Johnson amenable if and only if it is ¢-
inner amenable and ¢-biflat. Also we show that ¢-Johnson amenability is
equivalent with the existence of left and right ¢-means for A. We give some
examples to show differences between these new notions and the classical
ones. Finally, we show that L!(G) is ¢-biflat if and only if G is an amenable
group and A(G) is ¢-biprojective if and only if G is a discrete group.

1 Introduction

For the background theory of amenability of Banach algebras, see B. E. Johnson
[11]. A Banach algebra A is amenable (contractible) if every continuous deriva-
tion from A into a dual Banach A-module X* (Banach A-module X) is inner, for
every Banach A-module X. Also in [12], Johnson showed that a Banach alge-
bra A is amenable if and only if A has a virtual diagonal, that is, there exists an
m e (A®yA)* such thata-m = m-aand 77°*(m)a = a for every a € A, where
m: A®p A — Ais the product morphism, specified by 71(a ® b) = ab.

There are some important homological notions which have direct relation
with amenability and contractibility, such as biflatness and biprojectivity. Indeed,
A is called biflat (biprojective), if there exists a bounded A-module morphism
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p:A—= (AR, A)™ (0: A= A®p A)such that 7** o p is the canonical embed-
ding of A into A** (p is a right inverse for 77), see [17]. In fact, a Banach algebra A
is amenable if and only if A is biflat and has a bounded approximate identity.

Recently E. Kaniuth et al. in [13] have introduced and studied the notion of
¢-amenability for Banach algebras. For a multiplicative linear functional ¢ on
A, A is called ¢-amenable if every continuous derivation from A into the dual
Banach A-module X* is inner, for every Banach A-module X such thata-x =
¢(a)x. They showed that ¢-amenability of A is equivalent with the existence
of a bounded net (a4 )qes in A such that aa, — ¢(a)a, — 0 and ¢(a,) — 1, for
every a € A. Later on, this notion even has been generalized in [9], [14] and [15].
Motivated by these considerations, A. Jabbari ef al. in [10], have introduced the ¢-
version of inner amenability, which is equivalent with the existence of a bounded
net (a4 )qer in A such that aa, —a,a — 0and ¢(a,) = 1, for every a € A.

The content of this paper is as follows. After recalling some background no-
tations and definitions, we will define new notions of ¢-Johnson amenability,
¢-biflatness and ¢-biprojectivity for Banach algebras and with some character-
izations and some examples, we will show the differences between these new
notions and the classical ones. It will be shown that A is ¢-Johnson amenable if
and only if A is ¢-biflat and ¢-inner amenable. Also, it will be shown that L' (G)
is ¢-biflat if and only if G is an amenable group. Also we will show that A(G) is
¢-biprojective if and only if G is a discrete group. The paper concludes with some
examples about semigroup algebras.

We recall that if X is a Banach A-module, then with the following actions X*
is also a Banach A-module:

<a-fx>=<f,x-a>, <f-ax>=<f,x-a> (acAxeX feA").

The projective tensor product of A by A is denoted by A ®, A. The Banach alge-
bra A ®, A is a Banach A-module with the following actions

a-(b®c)=ab®c, (b®c)-a=b®ca (a,b,ceA).

Throughout this paper, A(A) denotes the character space of A, that is, all non-
zero multiplicative linear functionals on A. Let ¢ € A(A). Then ¢ has a unique
extension on A** denoted by ¢ and defined by ¢(F) = F(¢) for every F € A**.
Clearly this extension remains to be a character on A**.

Now we will give the definition of our new notions.

Definition 1.1. A Banach algebra A is called ¢-Johnson amenable, if there exists an
element m € (A ®, A)*™* such thata-m = m-a and ¢ o 7**(m) = 1, for every
a € A, where ¢ is defined as above. Also, A is called a ¢-Johnson contractible
Banach algebra, if there exists an element m € A ®, A such thata-m = m -a and
pom(m)=1,foreverya € A.

Definition 1.2. Let A be a Banach algebra and ¢ € A(A). A is called ¢-biprojective,
if there exists a bounded A-module morphism p: A — A ®, A such thatpo 7o
p = ¢. Also A is called ¢-biflat if there exists a bounded A-module morphism
p:A— (A®pA)** such that p o 1™ 0 p = ¢.
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2 Elementary properties

In this section, we prove some elementary lemmas to characterize the ¢-Johnson
amenability, the ¢-biflatness and the ¢-biprojectivity of Banach algebras.

Lemma 2.1. Let A be a Banach algebra and ¢ € A(A). The Banach algebra A is
¢-Johnson amenable if and only if there exists a bounded net (my)qey in A ®, A such
thata -my — my -a — 0 and ¢ o t(my) — 1, for every a € A.

Proof. Let A be ¢-Johnson amenable. Then there exists an m € (A ®, A)** such
thata-m = m-a and ¢ o m**(m) = 1. So by Goldstine’s theorem m is a w*-
accumulation point of a bounded net (112, )41 € A ®p A. Since 77** is w*-continu-

ous, hence 7t(m,) w, * (m), t(my) () — ¢ o w** (m), therefore ¢ o w(m,) — 1.
Since m, 5 m, for every ¥ € (A®,A)*, we have my(a-¢) — m(a-¢) and
my (P -a) — m(yp -a). Therefore my - a(yp) — m-a(y), thatis, m, - a “s m-a.
Similarly, one can show that a - m, w—*> a - m. It is easy to verify that a - my — m, -

a % 0. Consequently, one can assume that by Mazur’s theorem, this limit holds
even in the norm topology.

Conversely, let (1, ),c1 € A ®p Abe abounded net such thata - my, —m,-a —
0 and ¢ o 7t(m,) — 1, for every a € A. After passing to a subnet if necessary, let

*

m € (A®p A)*™ be a w*-cluster point of the net (114 )ses. Since a - my —my - a =
0, one can easily show thata -m = m - a, for every a € A. Also the w*-continuity
of 7**, reveals that ¢ o 77**(m) = 1 and the proof is complete. |

Recall that A is a left (right) ¢-amenable Banach algebra, if there exists a
bounded net (1, )4e in A, such that ||am, — ¢(a)my|| — 0 (||mga — p(a)my|| —
0), respectively and ¢(m,) = 1. For further details see [13].

Proposition 2.2. Suppose that A is a Banach algebra and ¢ € A(A). A is left and right
¢p-amenable if and only if A is ¢-Johnson amenable.

Proof. Suppose that (14 )acs and (mg)pe; are bounded nets in A such that ¢ (m, ) =
¢(mg) = 1, which satisfy ||lam, — ¢p(a)my|| — 0 and ||mga — ¢(a)mg|| — O,
respectively, for every a € A. Define mg = my@mpg C AQpA, therefore
¢po n(m%) = ¢p(mymg) = ¢(my)p(mg) = 1. On the other hand, for every a € A,
we have

||a - (m,x®m/3) — (ma®mﬁ) -al| — 0.

To see this, by using the boundedness of (1 )sc1 and (1mg)ge;, we obtain

[la-mf —mf-al| = ||a- (ma @ mp) — (mq @ mg) -al|

< ||amy @ mp — p(a)ma @ mg|| + ||[my @ mpp(a) — (ma @ mg)all
< |lamy — @p(a)ma|| [|mp|| + [|mq|| [|mpa — $p(a)mg|| — 0.
So by Lemma 2.1, A is ¢-Johnson amenable.

For converse, suppose that (1,)aer is a bounded net in A ®, A such that
a-my —my-a— 0and ¢ o r(m,) — 1. One can easily show that, there exists a
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bounded linear map T : A®, A — A defined by T(a ® b) = ¢(b)a, for every a
and b in A. It is easy to see that T(a-m) = a-T(m) and T(m -a) = ¢(a)T(m),
where m € A ®, A. Now, consider the following

| T(a - mg —ma-a)|| < [[TI[a-me—mq-al|,
therefore one can easily see that
|aT (mo) — ¢(@)T(ma)|| = [|T(a - ma —mq - a)|[ = 0.

Replacing m, with ¢(T(m,)) 'm, and using the fact ¢(T(m,)) = ¢ o t(my) = 1,
we obtain a bounded net (T (my)), in A, which satisfies the hypotheses of [13,
Theorem 1-4], hence A is left ¢-amenable. Similarly, one can show that A is right
¢-amenable. n

Recall that, A is a ¢-inner amenable Banach algebra, if A has a bounded net
(ax)qer such that ¢(a,) — 1 and aa, — aya — 0, see [10, Theorem 2-1].

Lemma 2.3. Let A be a Banach algebra and ¢ € A(A). Suppose that A is ¢-Johnson
amenable. Then A is ¢p-inner amenable.

Proof. Let (my)aer € A ®, A be a bounded net such that a - m, —m, -a — 0 and
¢ o t(my) — 1. Now if we consider the net (71(m,)), and since 7 is A-module
morphism, then clearly,

art(my) — w(my)a = 7w(a-my —my-a) — 0
and ¢ o w(m,) — 1. Hence, A is a ¢-inner amenable Banach algebra. n

Now, we want to give an example which is ¢-inner amenable but is not
¢-Johnson amenable. Moreover, we give another example which is ¢-biprojective,
hence is ¢-biflat but is not ¢-Johnson amenable. Let I be a closed ideal of the Ba-
nach algebra A which ¢|; # 0. Then I is left and right ¢-amenable whenever A is
left and right ¢-amenable, see [13].

Example 2.4. Let A be a Banach algebra with dim(A) > 1 such that ab = ¢(a)b for
every a,b € A, where ¢ € A(A). Then A is weakly amenable, but not amenable
[2, Proposition 2.13]. Also A is not a ¢-inner amenable Banach algebra [5, Ex-
ample 2-3]. Note that A? = A @ C, the unitization of A, is a ¢e-inner amenable
Banach algebra, where ¢.(a + A) = ¢p(a) + A, foreverya € Aand A € C.

We claim that, this algebra is not ¢.-Johnson amenable. We go toward a con-
tradiction and suppose that A? is ¢.-Johnson amenable, where dim A > 1 . Since
A is a closed ideal of A and $ela # 0, A is ¢-Johnson amenable. Hence, A is
¢-inner amenable. So by [5, Example 2-3], dim(A) = 1 which is a contradiction.

Furthermore, we show that A is not even a pseudo-amenable Banach algebra.
To see this we go toward a contradiction, suppose that A is pseudo-amenable.
Letag € Abesuch that ¢(ag) = 1. By [7, Theorem 3-1], clearly A is approximately
amenable. Therefore A has an approximate identity say (ey)qscr. Consider

ay = limape, = lim ¢(ap)e, = lime,,
14 4 4
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in other words, a¢ is a unit element for A. Then by the above considerations, one
can easily see that
a=limae, = alime, = ¢(a)ap

so dim(A) = 1, which is a contradiction.

Note that, since aag = ¢(a)ag and ¢(ag) = 1, A is a left ¢p-amenable Banach
algebra, so by [13, Lemma 3-2] A is left ¢,-amenable. Therefore by this example
we have a Banach algebra which is ¢.-amenable and ¢.-inner amenable but is not
¢e-Johnson amenable.

We want to give an example which reveals differences of ¢-biflatness and
¢-biprojectivity with ¢-Johnson amenability. Let A be a Banach algebra with
dim(A) > 1 such that ab = ¢(b)a, where ¢ € A(A). By [5, Example 2-3] A is
not ¢-inner amenable, so by previous lemma A is not ¢-Johnson amenable. But
we show that, A is ¢-biprojective. Indeed, let x9 € A be such that ¢(xg) = 1.
Definep : A -+ A®, Aby p(a) = a ® xo. One can easily see that p is a bounded
A-module morphism and ¢ o mop = ¢. Then we have an example which is
¢-biprojective and hence ¢-biflat but is not ¢-Johnson amenable.

Example 2.5. Let A = {( 8 Z ) la, b e C} and cp(( 8 Z
to see that ¢ is a character on A. By [18, page 3241] A is a biprojective Ba-
nach algebra, hence is ¢-biprojective, therefore is ¢-biflat. On the other hand, by
[5, Example 2-3], this algebra is not ¢-inner amenable, then by previous Lemma
A is not ¢-Johnson amenable.

) = b. Itis easy

3 Characterization of ¢-biflathess and ¢-biprojectivity
Lemma 3.1. Let A be a Banach algebra and ¢ € A(A). If A is ¢-Johnson amenable,
then A is ¢-biflat.

Proof. Letm € (A®, A)** besuch thata-m = m-aand ¢ o m**(m) = 1. Define
amapp: A — (A®, A)* by p(a) = a-m. Then p is an A-module morphism,
since

b-p(a)=0b-(a-m)=0ba-m=p(ba), p(a)-b=(a-m)-b=ab-m=p(ab).
On the other hand
Fon™ op(a) =Fom(a-m) = Glar (m)) = p(a)f o 7 (m) = P(a).
Therefore A is a ¢-biflat Banach algebra. m

Lemma 3.2. Let A be a Banach algebra and ¢ € A(A). If A is ¢p-Johnson contractible,
then A is ¢-biprojective. The converse holds, whenever A is either unital or a commuta-
tive Banach algebra.

Proof. Let m € A®, A be such thata-m = m-a and ¢(mr(m)) = 1. Define
p:A— A®,Abyp(a) = a-m. Then clearly p is abounded A-module morphism
and we have

pomop(a) =¢lar(m)) = d(a)p(r(m)) = ¢(a).
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So A is ¢-biprojective.

Conversely, suppose that A is a ¢-biprojective Banach algebra. Letp : A —
A ®, A be a bounded A-module morphism and e is an unit for A. Thus, p(e) €
A®y,Aand a-p(e) = p(e)-aand pomop(e) = ¢(e) = 1. Therefore A is
¢-Johnson contractible. In the commutative case, let xg € A be such that ¢(xg) =
1. For p(x9) € A®p A, wehavea-p(xo) = p(xo)-aand pomop(xp) = ¢(xp) =1,
for every a € A. Then the proof is complete. n

Proposition 3.3. Let A be a Banach algebraand ¢ € A(A). If A is ¢-biflat and ¢p-inner
amenable, then A is ¢-Johnson amenable.

Proof. Since A is a ¢-biflat Banach algebra, there exists a bounded A-module mor-
phism p : A — (A ®, A)** such that ¢ o 7" 0 p = ¢. Suppose that (a,)ucs is a
bounded net in A such that for each a € A, aa, —aya — 0and ¢(a,) — 1. Thus,
we have

||a - p(an) —p(ax) - al| =0
and
porm*™op(ay) = 1.

We construct a bounded net (b)) € A ®, A such that ¢ o (b)) — 1 and
lla-by —by-a|| — 0. Let e > 0, pick finite sets F C A and ® C (A®, A)*.
Let

K={a-¢lacF,ec®tU{l -alacFcd}

Hence, there exists v = v(e, F, ®) such that for every a € F

€
la-p(ar) — p(as) -al| < 3K,
and
[pom™op(ay) —1] <e,

where Ky = max{||¢|| : ¢ € ®}. By Goldstine’s theorem, there exists a bounded
net (b)) € A ®, A such that converges to p(a,) in the w*-topology. Since 77** is

w*-continuous, 77(b,) , % (p(ay)). Hence, there exists Ay = Ag(€, F, ®) such
that

[$(br,) = pao) ()] < =

and )
[ o7t(bry) —pom™ op(an)] <e,

for all ¢ € K. Therefore for some ¢ € R, we have

\pom(by,) —1| = |pom(by,) —Pom™op(ay) +Pom™op(ay) —1| < ce.
Since |¢(by,) — p(a0)(¥)] < §,
16(a-bag —ba,-a)| < [G(a-bry) —a-p(an)(E)| +a-p(a0)(S) —plan) -a(f) [+

(o) -a(g) — &by, - a)| <e.

Hence, we have a - by, — b, - a — 0 in the w-topology. By Mazur’s theorem, one
can assume that a - by — by -a — 0, with respect to the norm topology, as we
desired. n
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Lemma 3.4. Let A be a Banach algebra and ¢ € A(A). Let I be a closed ideal of A such
that ¢|; # 0. If A is ¢p-biprojective, then I is ¢|-biprojective.

Proof. Letp : A — A ®, A be an A-module morphism such that ¢ o 10 p = ¢.
Suppose that iy € I is such that ¢(ip) = 1. Definen : A®, A — I ®,I by
n(a ®b) = aip @ iph for every a and b in A. Since % is an A-module morphism,
nop:A — I®plisan A-module morphism. Define p = 7 o p|; which is an
I-module morphism. It is easy to see that ¢ o t o p(i) = ¢(i) for every i € I. Then
the proof is complete. n

Similarly, one can see that the above lemma is also true for the ¢-biflat case.

Lemma 3.5. Let A be a Banach algebra and ¢ € A(A). If A** is ¢p-biprojective, then A
is ¢-biflat.

Proof. Letp : A*™ — A** ®, A** be an A**-module morphism such that ¢ o 74+« 0
p = ¢. Define pg = p|s : A — A™ ®, A**. There exists a bounded linear map
P ARy A — (A®p A)** such that for a,b € Aand m € A* ®, A**, the
following holds;

(i) p(axb)=a®Db,
(i) p(m)-a=y(m-a), a-p(m)=1(a-m),
(iii) 7T (p(m)) = 1= (m),

see [6, Lemma 1-7]. Clearly one can see that i o pg is an A-module morphism and
pormifotpopy=¢ormopy= ¢, the proof is complete. n

The analogous result of [16, Proposition 2-4] holds for ¢-biprojectivity.

Proposition 3.6. Let A and B be Banach algebras and ¢ € A(A),p € A(B). Suppose
that A and B are ¢p-biprojective and y-biprojective, respectively. Then A @, B is ¢ & -
biprojective.

Proof. Letpg: A - A®y Aand p; : B— B®y Bbe such that ¢ o 7w4 0 pg = ¢ and
pompop; =y. Defined: (A®,A) ®,(B®,B) = (A®;,B)®, (A®,B)by

(a1 ®612) & (bl X bz) —> (a1 & bl) ® (a2 ® bz),

where aj,a, € Aand by, by € B. Setp = 6o (pp®p1), foray,a; € Aand by, b, € B,
we have

TAg,B00(a1 ®ay @b @by) = Tag,p(a1 @b ®ay @by) = 1a(a1 ®ax)7tp(b1 @ by),

then clearly one can show that 74,5 00 = 714 ® 715. Hence, 7ag,p © B(po(a) ®
p1(b)) = w4 0 po(a) @ 7t 0 p1(b) and it is easy to see that

PO YPormag,po0(po®@p1)(a®b) =¢YP(a®b),
the proof is complete. n

We now prove a partial converse to Proposition 3.6.
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Proposition 3.7. Let A and B be Banach algebras, ¢ € A(A) and ¢ € A(B). Sup-
pose that A is unital with unit e 4 and B containing a non-zero idempotent xq such that
P(x0) = 1. If A®, B is ¢ ® p-biprojective, then A is ¢-biprojective.

Proof. Let A and B be Banach algebras. Then A ®, B becomes a Banach A-module
with the actions given by

a1-(aa®b) =may ®b, a;®b-a; =a; @D, (a1,ap € A, b € B).

Suppose that A ®, B is ¢ ® pp-biprojective. Then there exists a bounded A ®,
B-module morphism p; : A ®, B — (A ®;, B) ®, (A ®, B) such that (¢ ® 1) o
TAg,B © P1 = ¢ ® P. By the above considerations, we have

p1(a1a2 ® x0) = p1((a1 @ x0) @ (a2 ® x0)) = 41 ® X0 - p1(a2 ® X0)
=ay - (ea @ x0)p1(a2 ® x)
= a1p1(a2 ® bo).

Similarly one can show that p1(a2a1 ® x0) = p1(a2 ® x) - a1.

Define T : (A®yB)®, (A®yB) = AR, Aby T((a®b)® (c®d)) =
P(bd)a ® ¢, where a,c € A and b,d € B. Clearly T is a bounded linear oper-
ator and 40 T = (idg @ §) o Tag,p and also ¢ o (idy ® ) = ¢ ® ¢, where
ida@yPa®b) =y(b)aforac Aandb € B.

Obviously the map p : A — A ®, A defined by p(a) = Topi(a® x) is a
bounded A-module morphism. Since (xy) = 1, we have

pompoTop(a)=¢pompoTopi(a®xg) =¢o(idg®p)omag,popi(a® x)
= (9@ ) o Tag,p 0 p1(a® xo)
= ¢(a)

for all 2 € A and this completes the proof. n

4 Application to group algebras and Fourier algebras

Let G be a locally compact group and let G be its dual group, which consists
of all non-zero continuous homomorphism ¢ : G — T. It is well-known that

A(LY(G)) = {¢; : ¢ € G}, where ¢;(f) = [;{(x)f(x)dx and dx is a left Haar
measure on G, for more details, see [8, Theorem 23-7].

Lemma 4.1. For a locally compact group G, LY(G) is ¢;-biflat if and only if G is
amenable.

Proof. Let L'(G) be ¢;-biflat. Since L'(G) has a bounded approximate identity,
then by Proposition 3.3 L!(G) is ¢;-Johnson amenable, hence by Proposition 2.2
L!(G) is left ¢;-amenable. Therefore by [1, Corollary 3-4] G is amenable. n
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Lemma 4.2. Let G be an infinite abelian discrete group. Then (*(G) is ¢p¢-biflat, but it
is not ¢p-biprojective.

Proof. Let G be an infinite abelian discrete group and let /! (G) be ¢-biprojective.
Since ¢'(G) is unital, Lemma 3.2 implies that ¢!(G) is ¢;-Johnson contractible.
Using the same argument as in the proof of Proposition 2.2, we can show that
('(G) is ¢-contractible, now by applying [15, Theorem 6-1] we see that G is com-

pact which is a contradiction, so 1(G) is not ¢;-biprojective. But since an abelian
group G is amenable, its group algebra ¢!(G) is amenable and so is ¢;-Johnson
amenable. Thus by Lemma 3.1 ¢}(G) is ¢;-biflat. u

Lemma 4.3. Let G be a compact group and ¢p; € A(L'(G)). Then L'(G)™" is ¢-
biprojective. If converse holds, then G is amenable.

Proof. Since G is a compact group, then G C L(G). Suppose that ¢; € A(L}(G))
where { € G. Then ¢; has an extension to L' (G)**, which denoted by ¢;. Let m =
{ ® . Itis clear that m € L1(G)*™ ®, L'(G)**. We claim that, m is a ¢;-Johnson
contraction for L'(G)**. Let h € L'(G)**. Then there exists a net (hy)se; C L!(G)

such that h, s hTtis easy to verify that
ha - L@ L= g(ha)l ©C =L@ LPr(ha) =L DT ha

Since iy 5 1,

Pe(ha)e® ¢ — de(f®C
and

& Lr(ha) = L@ L ().
Hence, it is clear that {® {-h = h-{® for h € L'Y(G)**. Plainly one can
show that ¢7 (7({ ® {)) = 1, then m is a ;-Johnson contraction for L' (G)**, then
L'(G)** is ¢;-Johnson contractible, so by Lemma 3.2, it is ¢;-biprojective.

For converse, let L1(G)** be ¢;-biprojective. Then by Lemma 3.5, L}(G) is

¢¢-biflat. Hence Lemma 4.1 implies the amenability of G. n

Let A be a Banach algebra with norm || - || 4. We recall that a Banach algebra
B with norm || - || is called an abstract Segal algebra with respect to A if

(i) Bis a dense leftideal in A,
(ii) there exists M > 0 such that ||b||4 < M]||b||p for every b € B,

(iii) there exists C > 0 such that ||ab||p < Cl|a||a||b||p for every a € A and
b e B.

Let G be a locally compact group and let A(G) be its Fourier algebra. Then
A(A(G)) consists of all point evaluations ¢, (x € G) defined by ¢.(f) = f(x)
forall f € A(G).

Lemma 4.4. Let A(G) be the Fourier algebra on a locally compact group G and let
SA(G) be an abstract Segal algebra with respect to A(G). Suppose that ¢ € A(A(G))
for some x € G. Then SA(G) is ¢x-biprojective if and only if G is a discrete group
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Proof. Suppose that SA(G) is ¢-biprojective. Since SA(G) is a commutative Ba-
nach algebra, Lemma 3.2 implies that SA(G) is ¢y-Johnson contractible. Hence,
by similar arguments as in the proof of Proposition 2.2, SA(G) is ¢,-contractible,
then G is discrete, see [1, Theorem 3-5].

For the converse, use the same argument as in the proof of [1, Theorem 3-
5]. [

Corollary 1. A(G) is ¢px-biprojective for some x € G if and only if G is a discrete group.

Corollary 2. Let G be any non-discrete locally compact group and ¢ € A(A(G)) for
every x € G. Then A(G) is ¢x-biflat, but is not ¢x-biprojective.

Proof. Let G be a locally compact group. By [13, Example 2-6] A(G) is left
¢r-amenable for every x € G. Since A(G) is commutative, then A(G) is right
¢r-amenable. Hence by Proposition 2.2 A(G) is ¢r-Johnson amenable. Then by
Lemma 3.1 A(G) is ¢-biflat for every locally compact group G. But by the above
corollary A(G) is not ¢x-biprojective. ]

5 Example

Remark 5.1. Our standard reference for the following examples is [3]. Consider
the semigroup IN», with the semigroup operation m A n = min{m,n}, where m
and n are in IN. A(¢}(IN»)) consists precisely of the all functions ¢, : £} (IN») — C
defined by ¢, (Y72 a;6;) = Y-, a; for every n € IN. It has been shown that IN 5
is not a uniformly locally finite semigroup (see [16]).

Example 5.2. Let IN be as in the Remark 5.1. Since IN, is not uniformly locally
finite, ! (IN 1) is neither biprojective nor biflat [16, Theorem 3-7]. But if we take
$1 € A(l1(N,)) and m = 6; ® 61, then we have ¢y (7t(m)) = ¢1(7(61 ® 61)) =
$1(61) = land a-m = m-a, for every a € ('(IN,). Therefore ¢}(IN,) is a
¢1-Johnson contractible Banach algebra. By Lemma 3.2, /! (IN 1) is ¢-biprojective
and hence ¢;-biflat.

Example 5.3. Again let N, be as in the Remark 5.1 and let ¢ € A(¢!(IN»)**). Since
(6n)nen is a bounded approximate identity for /! (IN ) see [3, Proposition 3-3-1],
(' (N»)™ has a right unit E, which is a w*-limit point of (d,,),en. Since ¢(E) = 1,
¢(0n) # 0 for sufficiently large n, hence ¢| () # {0}. So ¢|s1 () is a character
on /'(IN4), by Remark 5.1 it has a form ¢, for some n € IN, but every character
¢, on (1(IN,) has an unique extension ¢, on £!(IN,)**, that is, for some n € IN
we have ¢ = ¢,.

Now if /1(N,)"" is amenable, then by [6, Theorem 1-8] ¢}(IN ) is amenable,
so by [4, Theorem 2] IN 5 has a finite number of idempotents, which is impossible.
Thus ¢! (IN,)** is not amenable but we claim that it is ¢;-Johnson contractible.
To see this, leta € /1(IN5)"". Then there exists a net (a,)qer in £1(IN ) such that

w*
a, — a. Hence,

a-01 Q6 =w" —limayd @6 = limcpl(a,x)él ®o = 4;1(0)51 ® 01
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and similarly 6; ® 61 - a = ¢1(a)d1 ® 61. Moreover ¢1(1**(61 ® 61)) = ¢1(61) =1,
som =38 ®6 € (YN ®p 0! (N,)™" is a ¢1-Johnson contraction for ¢1(N,)",
that is, /! (IN)™" is ¢1-Johnson contractible. So by Lemma 3.2 it is ¢;-biprojective.
In the general case, for every n > 1, take m = (0, — 0,—1) ® (0 — d,—1), it is easy
to see that m is a ¢,-Johnson contraction for ¢! (IN A)"". Hence, by Lemma 3.2 for
every n € N, /(N,)"" is §,-biprojective.

Remark 5.4. Consider the semigroup Ny, with semigroup operation m V n =
max{m,n}, where m and n are in IN. The character space A(¢!(INy)) precisely
consists of the all functions ¢, : £!(IN\) — C defined by ¢, (X% a;6;) = Y1 &
for every n € N U {oo}.

Example 5.5. Let Ny be as in the Remark 5.4 and let ¢, € A(/}(IN\/)) where n €
IN U {co}. We claim that £1(IN,) is ¢,-biflat, for every n in N U {oo}. To see this,
for every n € IN, set m = (6, — 8,41) ® (0y — Op41), then it is easy to see that
a-m = m-aand ¢,(rt(m)) = 1, where a € ¢}(Ny). In the case n = oo, set
m = w* — lim dy ® J, then by the w*-continuity of 77**, we have

Poo (T (1)) = Poo(m** (w* — lim 6 ® J))
= Poo(w”™ — lim 77 (8 ® &%)
= Poo(w* — lim &) = lim oo (0¢) = 1.

For e > 0 and each a = Y12 a;6; in /1 (Ny), pick ng € IN such that 2 |a;| < e.
Then for k > ngy, we have

(Y i) @ 0 — S @ (Y ai0i)|| <2 ) |y < 2e.
i=k i=k i=k
Then clearly
(Z 2;0;) @O — O @ (Y ;) w_*> 0. (5.1)
i=k i=k

Now consider

a-m—m-a=w"—1lim(ad; ® & — 6 ® ora)

=w" — lim((z ®;0;0;) @ O — O ® (O Z 2;0;))
i=1 i=1

k )
= w* — hm((z 2;0;0) ® Ok + ( Z 2;0;0k) ® O
i=1 i=k+1

k 00
— 6 ® (O Y aidi) — 6 @ (6 Y widy))
52)

= w* — lim (¢ (a)dx ® O + Z w0 @ Oy
i=k+1

— 0 @ 0pr(a) =& ® Y w;idy).
i=k+1
= w* — lim( Z 2;0;) ® O — O @ ( Z ®;0;).
i=k+1 i=k+1
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Then by (5.1) and (5.2), we have a - m = m - a. Therefore ¢!(INy) is ¢,-Johnson
amenable for every n € IN U {co}. Hence by Lemma 3.1 /1 (INy/) is ¢,-biflat for
every n € IN U {oo}.

Moreover, let /1 (IN\/) be biflat. Then since ¢!(IN\ ) is unital with unit 61, so by
[17, Exercise 4-3-15] £ (IN/) is amenable. Hence by [4, Theorem 2] N\, has a finite
number of idempotents which is impossible. Hence ¢! (IN,) is not a biflat Banach
algebra.

Acknowledgements The authors are grateful to the referee for useful com-
ments which improved the manuscript and for pointing out a number of mis-
prints.

References

[1] M. Alaghmandan, R. Nasr Isfahani and M. Nemati, Character amenability and
contractibility of abstract Segal algebras, Bull. Aust. Math. Soc, 82 (2010) 274-
281.

[2] H. G. Dales, A.T.-M. Lau and D. Strauss, Banach algebras on semigroups and on
their compactifications Mem. Amer. Math. Soc. 205, (2010).

[3] H. G. Dales and R. J. Loy, Approximate amenability of semigroup algebras and
Segal algebras, Dissertationes Math. (Rozprawy Mat.) 474 (2010).

[4] J. Duncan and A. L. T. Paterson, Amenability for discrete convolution semigroup
algebras, Math. Scand. 66 (1990) 141-146.

[5] H. R. Ebrahimi Vishki and A. R. Khoddami, Character inner amenability of
certain Banach algebras, Colloq. Math. 122 (2011) 225-232.

[6] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of
second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996), 1489-1497.

[7] F. Ghahramani and Y. Zhang, Pseudo-amenable and pseudo-contractible Banach
algebras, Math. Proc. Camb. Philos. Soc. 142 (2007) 111-123.

[8] E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Springer-Verlag,
Berlin, (1963).

[9] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras,
Studia Math. 193 (2009) 53-78.

[10] A.Jabbari, T. Mehdi Abad and M. Zaman Abadi, On ¢-inner amenable Banach
algebras, Collog. Math. vol 122 (2011) 1-10.

[11] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127
(1972).

[12] —, Approximate diagonals and cohomology of certain annihilator Banach algebras,
Amer. J. Math. 94 (1972), 685-698.



On ¢-bitlat and ¢-biprojective Banach algebras 801

[13] E. Kaniuth, A. T. Lau and ]. Pym, On ¢-amenability of Banach algebras, Math.
Proc. Camb. Philos. Soc. 144 (2008) 85-96.

[14] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Camb.
Philos. Soc. 144 (2008) 697-706.

[15] R. Nasr Isfahani and S. Soltani Renani, Character contractibility of Banach alge-
bras and homological properties of Banach modules, Studia Math. 202 (3) (2011)
205-225.

[16] P. Ramsden, Biflatness of semigroup algebras. Semigroup Forum 79, (2009) 515-
530.

[17] V. Runde, Lectures on amenability, (Springer, New York, 2002).

[18] Y. Zhang; Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc.
127 (11) (1999), 3237-3242.

Faculty of Mathematics and Computer Science,
Amirkabir University of Technology,

424 Hafez Avenue, 15914 Tehran, Iran.

email: amir.sahami@aut.ac.ir, arpabbas@aut.ac.ir



