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Abstract

We are concerned with the following semilinear elliptic equation ∆u =
λ f (x, u) in D, subject to some Dirichlet conditions, where λ ≥ 0 is a pa-
rameter and D is a smooth domain in R

n (n ≥ 3). Under some appropriate
assumptions on the nonnegative nonlinearity term f (x, u) , we show the ex-
istence of a positive bounded solution for the above semilinear elliptic equa-
tion. Our approach is based on Schauder’s fixed point Theorem.

1 Introduction and Main result

Let D ⊂ R
n (n ≥ 3), be a C1,1-domain with compact boundary and a, α nonnega-

tive fixed constants such that a + α > 0. Consider the following boundary value
problem:



















∆u = λ f (x, u) in D, (in the sense of distributions)
u > 0 in D,
u = aϕ on ∂D,
lim

|x|→∞

u(x) = α (whenever D is unbounded),

(1.1)

where λ is a nonnegative real number and ϕ is a nontrivial nonnegative continu-
ous function on ∂D.
When the nonlinearity f is negative, there exist a lot of works related to this sub-
ject; see for example, the papers of Alves, Carriao and Faria [1], de Figueiredo,
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Girardi and Matzeu [5], Ghergu and Radulescu [6, 7], Lair and Wood [9], Zhang
[11] and references therein. In all these papers, the main tools used are Galerkin
method, sub-supersolution method and variational techniques. Here, we show
that the Schauder’s fixed point theorem allows us to find solutions to (1.1) for
nonnegative nonlinearity f .
More precisely, we assume that f : D × [0, ∞) → [0, ∞) is Borel measurable func-
tion satisfying

(H1) f is continuous and nondecreasing with respect to the second variable.

(H2) ∀c > 0, f (., c) ∈ K(D),

where the Kato class K(D) is defined by means of the Green function GD(x, y) of
the Dirichlet Laplacian in D as follows

Definition 1.1. A Borel measurable function q in D belongs to the Kato class K(D) if

lim
r→0

(sup
x∈D

∫

(|x−y|≤r)∩D

ρD(y)

ρD(x)
GD(x, y)|q(y)|dy) = 0 (1.2)

and satisfies further

lim
M→∞

(sup
x∈D

∫

(|y|≥M)∩D

ρD(y)

ρD(x)
GD(x, y)|q(y)|dy = 0) (whenever D is unbounded),

(1.3)

where ρD(x) =
δ(x)

δ(x) + 1
and δ(x) denotes the Euclidean distance from x to the bound-

ary of D.

This class was introduced and studied in [2] for unbounded domains and in
[10] for the bounded ones. It is quite rich, it contains for example any function
belonging to Lp(D) ∩ L1(D), with p >

n
2 .

Throughout this paper, we denote by HD ϕ the unique harmonic function u in
D with boundary value ϕ and satisfying further lim

|x|→∞

u(x) = 0 whenever D is

unbounded. We also denote by h = 1 − HD1 and we remark that h ≡ 0 if D is
bounded. Let ω(x) := aHD ϕ(x) + αh(x), for x ∈ D.
It is clear that ω is the solution of the problem



















∆u = 0 in D,
u > 0 in D,
u = aϕ on ∂D,
lim

|x|→∞

u(x) = α (whenever D is unbounded).

(1.4)

Here, we study a perturbation to the problem (1.4) , that is problems of the form
(1.1) and we obtain a solution which its behavior is not affected by the perturbed
term. A fundamental role will be played by the number

λ0 := inf
x∈D

ω(x)

V( f (., ω))(x)
, (1.5)

where V is the potential kernel associated to ∆ (i.e V = (−∆)−1).
Our main result is the following.
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Theorem 1.2. Assume that λ0 > 0 and f satisfies (H1)-(H2). If λ ∈ [0, λ0), then the
problem (1.1) has a continuous bounded solution u such that

(1 −
λ

λ0
)ω ≤ u ≤ ω in D.

Remark 1.3. Let λ ≥ 0 and D = B(0, 1) be the unit ball of R
n (n ≥ 3). Then the

solution of the problem
{

∆u = λ in B,
u = 1 on ∂B,

(1.6)

is given by

u(x) = 1 − λV1(x) = 1 − λ
(1 − |x|2)

2n
, for x ∈ B. (1.7)

Hence we deduce that

u > 0, in B ⇔ 0 ≤ λ < 2n = inf
x∈B

1

(1−|x|2)
2n

= λ0.

This implies that λ0 is optimal.

As usual, let B+(D) be the set of nonnegative Borel measurable functions in
D. We denote by ∂∞D = ∂D if D is bounded and ∂∞D = ∂D ∪ {∞} whenever D
is unbounded, C0(D) the set of continuous functions in D vanishing at ∂∞D. Note
that C0(D)is a Banach space with respect to the uniform norm ‖u‖

∞
= sup

x∈D

|u(x)| .

The letter C will denote a generic positive constant which may vary from line to
line. When two positive functions f and g are defined on a set S, we write f ≈ g

if the two sided inequality
1

C
g ≤ f ≤ Cg holds on S. Finally, for f ∈ B+(D), we

denote by

V f (x) :=
∫

D
GD(x, y) f (y)dy

and by

‖ f‖D := sup
x∈D

∫

D

ρD(y)

ρD(x)
GD(x, y) f (y) dy.

Next we collect some properties of the Green function GD (x, y) and functions
belonging to the Kato class K(D), which are useful to establish our main result.
For the proofs we refer to [2] and [10].
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Proposition 1.4. For each x, y ∈ D, we have

GD (x, y) ≈
λD(x)λD(y)

|x − y|n−2 (|x − y|2 + λD(x)λD(y))
, (1.8)

where λD(x) = δ(x)(δ(x) + 1).
Moreover, for M > 1 and r > 0 there exists a constant C > 0 such that for each x ∈ D
and y ∈ D satisfying |x − y| ≥ r and |y| ≤ M, we have

GD (x, y) ≤ C
ρD(x)ρD(y)

|x − y|n−2
. (1.9)

We remark that in the case where D is bounded, we have

ρD(x) ≈ δ(x) ≈ λD(x).

Proposition 1.5. Let q be a function in K(D), then we have
(i) ‖q‖D < ∞,
(ii) Let h be a positive superharmonic function in D. Then there exists a constant C0 > 0
such that

∫

D
GD(x, y)h(y)|q(y)|dy ≤ C0 ‖q‖D h(x). (1.10)

Furthermore, for each x0 ∈ D, we have

lim
r→0

(sup
x∈D

1

h(x)

∫

B(x0,r)∩D
GD(x, y)h(y)|q(y)|dy) = 0 (1.11)

and

lim
M→∞

(sup
x∈D

1

h(x)

∫

(|y|≥M)∩D
GD(x, y)h(y)|q(y)|dy) = 0 (whenever D is unbounded).

(1.12)

(iii) The function x → δ(x)

(|x|n−1+1)
q(x) is in L1(D).

2 Proof of Theorem 1.2.

Let λ ∈ [0, λ0) and Λ be the nonempty closed bounded convex set given by

Λ = {v ∈ C(D ∪ {∞}) : (1 −
λ

λ0
)ω ≤ v ≤ ω}.

We define the operator T on Λ by

Tv(x) = ω(x)− λ
∫

D
GD(x, y) f (y, v(y)) dy. (2.1)

We shall prove that the family TΛ is relatively compact in C(D ∪ {∞}). First, we
claim that the family

{
∫

D
GD(x, y) f (y, v(y)) dy, v ∈ Λ}, (2.2)
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is relatively compact in C0(D).
Indeed, observe that from (H1)-(H2), (1.10) and Proposition 1.5 (i), we have for
each v ∈ Λ and x ∈ D,

∫

D
GD(x, y) f (y, v(y)) dy ≤

∫

D
GD(x, y) f (y, ‖ω‖

∞
) dy ≤ C0 ‖ f (., ‖ω‖

∞
)‖D < ∞.

So the family {
∫

D
GD(., y) f (y, v(y)) dy, v ∈ Λ}, is uniformly bounded.

Next we aim at proving that the family {
∫

D
GD(., y) f (y, v(y)) dy, v ∈ Λ}, is

equicontinuous on D ∪ {∞}. Let x0 ∈ D and ε > 0. By (H2), (1.11) and (1.12),
there exist r > 0 and M > 1 such that

sup
z∈D

∫

B(x0,2r)∩D
GD(z, y) f (y, ‖ω‖

∞
) dy ≤

ε

4

and

sup
z∈D

∫

(|y|≥M)∩D
GD(z, y) f (y, ‖ω‖

∞
) dy ≤

ε

4
.

Let x, x′ ∈ B(x0, r) ∩ D, then for each v ∈ Λ, we have
∣

∣

∣

∣

∫

D
GD(x, y) f (y, v(y)) dy −

∫

D
GD(x

′, y) f (y, v(y)) dy

∣

∣

∣

∣

≤
∫

D

∣

∣GD(x, y)− GD(x
′, y)

∣

∣ f (y, ‖ω‖
∞
) dy

≤ 2sup
z∈D

∫

B(x0,2r)∩D
GD(z, y) f (y, ‖ω‖

∞
) dy

+ 2sup
z∈D

∫

(|x0−y|≥2r)∩(|y|≥M)∩D
GD(z, y) f (y, ‖ω‖

∞
) dy

+
∫

(|x0−y|≥2r)∩(|y|≤M)∩D

∣

∣GD(x, y)− GD(x
′, y)

∣

∣ f (y, ‖ω‖
∞
) dy

≤ ε +
∫

(|x0−y|≥2r)∩(|y|≤M)∩D

∣

∣GD(x, y)− GD(x
′, y)

∣

∣ f (y, ‖ω‖
∞
) dy.

On the other hand, for every y ∈ Bc(x0, 2r)∩ B(0, M)∩ D and x, x′ ∈ B(x0, r)∩ D,
we have by using (1.9),

|GD(x, y)− GD(x
′, y)| ≤ GD(x, y) + GD(x

′, y)

≤ C

[

ρD(x)ρD(y)

|x − y|n−2
+

ρD(x
′)ρD(y)

|x′ − y|n−2

]

≤ C

[

1

|x − y|n−2
+

1

|x′ − y|n−2

]

ρD(y)

≤ C.δ(y)

≤ C
δ(y)

(|y|n−1 + 1)
Now since GD is continuous outside the diagonal,we deduce by the dominated
convergence theorem, (H2) and Proposition 1.5 (iii), that

∫

(|x0−y|≥2r)∩(|y|≤M)∩D

∣

∣GD(x, y)− GD(x
′, y)

∣

∣ f (y, ‖ω‖
∞
) dy → 0 as

∣

∣x − x′
∣

∣ → 0.
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Hence {
∫

D
GD(., y) f (y, v(y)) dy, v ∈ Λ}, is equicontinuous on D.

Next, we need to prove that {
∫

D
GD(., y) f (y, v(y)) dy, v ∈ Λ}, is equicontinuous

at ∞, whenever D is unbounded.
Let x ∈ D such that |x| ≥ M + 1. Then for each v ∈ Λ, we have
∣

∣

∣

∣

∫

D
GD(x, y) f (y, v(y)) dy

∣

∣

∣

∣

≤
∫

(|y|≥M)∩D
GD(x, y) f (y, ‖ω‖

∞
) dy

+
∫

(|y|≤M)∩D
GD(x, y) f (y, ‖ω‖

∞
) dy

≤
ε

4
+

∫

(|y|≤M)∩D
GD(x, y) f (y, ‖ω‖

∞
) dy.

For y ∈ B(0, M) ∩ D, we have |x − y| ≥ 1. Hence by (1.9), we get
∣

∣

∣

∣

∫

D
GD(x, y) f (y, v(y)) dy

∣

∣

∣

∣

≤
ε

4
+ C

∫

(|y|≤M)∩D

ρD(y)

|x − y|n−2
f (y, ‖ω‖

∞
) dy

≤
ε

4
+

C

(|x| − M)n−2

∫

(|y|≤M)∩D
δ(y) f (y, ‖ω‖

∞
) dy

≤
ε

4
+

C

(|x| − M)n−2

∫

(|y|≤M)∩D

δ(y) f (y, ‖ω‖
∞
)

(|y|n−1 + 1)
dy.

Using again Proposition 1.5(iii), we obtain
∫

D
GD(x, y) f (y, v(y)) dy → 0 as

|x| → ∞, uniformly in v ∈ Λ. Therefore by Ascoli’s theorem, the family

{
∫

D
GD(x, y) f (y, v(y)) dy, v ∈ Λ} becomes relatively compact in C0(D).

Since ω ∈ C(D ∪ {∞}), then we deduce that the set TΛ is relatively compact in
C(D ∪ {∞}).
On the other hand, since f is a nonnegative function, it is clear from (2.1) and
(1.5) that TΛ ⊂ Λ.
Next, we prove the continuity of the operator T in Λ in the supremum norm. Let
(vk)k be a sequence in Λ which converges uniformly to a function v in Λ. Then
we have

|Tvk(x)− Tv(x)| ≤ λ
∫

D
GD(x, y) | f (y, vk(y))− f (y, v(y))| dy.

From the monotonicity of f , we have

| f (y, vk(y))− f (y, v(y))| ≤ 2 f (y, ‖ω‖
∞
) ,

Since by (H2), (1.10) and Proposition 1.5 (i), V f (y, ‖ω‖) is bounded, we con-
clude by the continuity of f with respect to the second variable and by the domi-
nated convergence theorem, that

∀x ∈ D ∪ {∞}, Tvk(x) → Tv(x) as k → ∞.

Using the fact that TΛ is relatively compact in C(D ∪{∞}), we obtain the uniform
convergence, namely

‖Tvk − Tv‖
∞
→ 0 as k → ∞.



Positive bounded solutions for semilinear elliptic equations 713

Thus we have proved that T is a compact mapping from Λ to itself. Hence by the
Schauder’s fixed point theorem, there exists u ∈ Λ such that

u(x) = ω(x)− λ
∫

D
GD(x, y) f (y, u(y)) dy. (2.3)

In addition, since for each x ∈ D, f (y, u(y)) ≤ f (y, ‖ω‖
∞
) , we deduce by the

hypothesis (H2) and Proposition 1.5 (iii) that the map y → f (y, u(y)) ∈ L1
loc(D)

and by (2.3), that x →
∫

D
GD(x, y) f (y, u(y)) dy ∈ L1

loc(D). Thus using these facts,

(2.3) and (2.2), we deduce that u is the required solution.

Example 2.1. Assume that g : [0, ∞) → [0, ∞) is a continuous and nondecreasing
function satisfying for each c > 0, there exists η > 0 such that

g(t) ≤ ηt, ∀t ∈ [0, c]. (2.4)

Let p be a positive measurable function satisfying

p(x) ≤
C

(δ(x))σ with σ < 2, (if D is bounded)

or

p(x) ≤
C

(δ(x))σ |x|µ−σ with σ < 2 < µ, (whenever D is unbounded).

Then form [2] and [10], p ∈ K(D).
Let ϕ is a positive continuous function on ∂D and a ≥ 0, α ≥ 0 such that a + α > 0.
Put ω(x) = aHD ϕ(x) + αh(x). Then by (2.4) and (1.10), we have

ω(x)

V(p(.)g(ω))(x)
≥

ω(x)

ηV(pω)(x)
≥

1

ηC0 ‖p‖D

> 0.

This implies that λ0 ≥ 1
ηC0‖p‖D

> 0.

Therefore by Theorem 1.2, for each λ ∈ [0, λ0), the problem



















∆u = λp(x)g (u) in D, (in the sense of distributions)
u > 0 in D,
u = aϕ on ∂D,
lim

|x|→∞

u(x) = α (whenever D is unbounded),

has at least one continuous bounded solution u such that

(1 −
λ

λ0
)ω ≤ u ≤ ω in D.
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References

[1] C. O. Alves, P. C. Carriao, L. O. Faria, Existence of Solution to Singular Elliptic
Equations with Convection Terms via the Galerkin Method, Electronic Journal of
Differential Equations, Vol. 2010(2010), No. 12, pp. 1–12.

[2] I. Bachar, H. Mâagli and N. Zeddini, Estimates on the Green function and
Existence of Positive Solutions of Nonlinear Singular Elliptic Equations, Commu.
Contemp Math. 5, no. 3 (2003), 401-434.

[3] H. Brezis and S. Kamin, Sublinear elliptic equations in R
n, Manus. Math. 74

(1992), 87-106.

[4] K.L. Chung and Z. Zhao, From Brownian motion to Schrödinger’s equation,
Springer Verlag (1995).

[5] D. G. de Figueiredo, M. Girardi, M. Matzeu; Semilinear elliptic equations
with dependence on the gradient via mountain pass techniques, Diff. and
Integral Eqns. 17 (2004), 119-126.

[6] M. Ghergu, V. Radulescu; On a class of sublinear singular elliptic problems
with convection term, J. Math. Anal. Appl. 311 (2005) 635-646.

[7] M. Ghergu, V. Radulescu; Ground state solutions for the singular Lane-
Emden-Fowler equation with sublinear convection term, J. Math. Anal.
Appl. 333 (2007) 265273.

[8] A.C. Lazer and P.J Mckenna, On a singular nonlinear elliptic boundary value
problem, Proc. Amer. Math. Soc. 111 (3), (1991), 721-730.

[9] A. V. Lair, A. W. Wood; Large solutions of semilinear elliptic equations with
nonlinear gradient terms, Int. J. Math. Sci., 22 (1999), 869-883.
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