Positive bounded solutions for semilinear elliptic
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Abstract

We are concerned with the following semilinear elliptic equation Au =
Af (x,u) in D, subject to some Dirichlet conditions, where A > 0 is a pa-
rameter and D is a smooth domain in R” (n > 3). Under some appropriate
assumptions on the nonnegative nonlinearity term f (x, u), we show the ex-
istence of a positive bounded solution for the above semilinear elliptic equa-
tion. Our approach is based on Schauder’s fixed point Theorem.

1 Introduction and Main result

Let D C R" (n > 3), be a C"!-domain with compact boundary and 4, « nonnega-
tive fixed constants such that 2 + « > 0. Consider the following boundary value
problem:

Au = Af (x,u) in D, (in the sense of distributions)

u>0 inD,

u=aq ondD, (1.1)
‘ l‘im u(x) =a (whenever D is unbounded),

X|—00

where A is a nonnegative real number and ¢ is a nontrivial nonnegative continu-
ous function on dD.

When the nonlinearity f is negative, there exist a lot of works related to this sub-
ject; see for example, the papers of Alves, Carriao and Faria [1], de Figueiredo,
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Girardi and Matzeu [5], Ghergu and Radulescu [6,7], Lair and Wood [9], Zhang
[11] and references therein. In all these papers, the main tools used are Galerkin
method, sub-supersolution method and variational techniques. Here, we show
that the Schauder’s fixed point theorem allows us to find solutions to (1.1) for
nonnegative nonlinearity f.

More precisely, we assume that f : D x [0,00) — [0, o) is Borel measurable func-
tion satisfying

(H;) f is continuous and nondecreasing with respect to the second variable.
(Hy) Ve >0, f(.,c) € K(D),

where the Kato class K(D) is defined by means of the Green function Gp(x, y) of
the Dirichlet Laplacian in D as follows

Definition 1.1. A Borel measurable function q in D belongs to the Kato class K(D) if

lim(su / MG X, dy) =0 1.2
Hmsup | b pp(x) P EWAWIAY) (1.2)
and satisfies further
lim (sup/ Po(Y) Gp(x,y)|9(y)|dy = 0) (whenever D is unbounded),
M=o vep J(lyl=m)nD D (%)
(1.3)
where pp(x) = 5 (i()xj_ 7 and 6(x) denotes the Euclidean distance from x to the bound-
ary of D.

This class was introduced and studied in [2] for unbounded domains and in
[10] for the bounded ones. It is quite rich, it contains for example any function
belonging to L (D) N LY(D), with p > 4.

Throughout this paper, we denote by Hp ¢ the unique harmonic function u in

D with boundary value ¢ and satisfying further ‘ 1|im u(x) = 0 whenever D is
X|—00

unbounded. We also denote by i = 1 — Hpl and we remark that h = 0if D is
bounded. Let w(x) := aHp¢(x) + ah(x), for x € D.
It is clear that w is the solution of the problem

Au =20 inD,

u>0 inD,

u=aq on adD, (1.4)
‘ 1|im u(x) =a (whenever D is unbounded).

X|—00

Here, we study a perturbation to the problem (1.4), that is problems of the form
(1.1) and we obtain a solution which its behavior is not affected by the perturbed
term. A fundamental role will be played by the number

/\0 = inf w(x)

xDV(f (., w))(x)’

where V is the potential kernel associated to A (i.e V = (—A)~1).
Our main result is the following.

(1.5)
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Theorem 1.2. Assume that Ay > 0 and f satisfies (H1)-(Hp). If A € [0, Ag), then the
problem (1.1) has a continuous bounded solution u such that

A
(1-—)w<u<winD.
Ao

Remark 1.3. Let A > 0 and D = B(0,1) be the unit ball of R" (n > 3). Then the
solution of the problem

Au=A inB,
{ u=1 onadB, (1.6)
is given by
2
4 . =]x)
u(x) =1-AVi(x) =1-A 7 , for x € B. (1.7)
Hence we deduce that
u>0,mB&0<A<2n=inf ! — = Ap.
xeB (1-|x[7)

2n
This implies that A is optimal.

As usual, let BT (D) be the set of nonnegative Borel measurable functions in
D. We denote by 0D = aD if D is bounded and 0D = dD U {co} whenever D
is unbounded, Cy(D) the set of continuous functions in D vanishing at 9®°D. Note

that Cy(D)is a Banach space with respect to the uniform norm ||u||, = sup |u(x)| .
xeD
The letter C will denote a generic positive constant which may vary from line to

line. When two positive functions f and g are defined on a set S, we write f ~ ¢

if the two sided inequality % ¢ < f < Cgholds on S. Finally, for f € B*(D), we
denote by

V() = [ Golxy)f()dy
and by

- oD ()
Il = sup [ E2Goxy)f (o) dy

Next we collect some properties of the Green function Gp (¥, y) and functions
belonging to the Kato class K(D), which are useful to establish our main result.
For the proofs we refer to [2] and [10].
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Proposition 1.4. For each x,y € D, we have

Ap(x)Ap ()
-2 2
e =y" " (x =yl + Ap(x)An (y))
where Ap(x) = 5(x)(d(x) +1).
Moreover, for M > 1 and r > 0 there exists a constant C > 0 such that for each x € D
and y € D satisfying |x — y| > rand |y| < M, we have

Gp (x,y) = , (1.8)

Gp (1) < c’ﬁ(f)—;i%). (19)

We remark that in the case where D is bounded, we have
pp(x) =~ é(x) =~ Ap(x).

Proposition 1.5. Let g be a function in K(D), then we have

(i) llgllp < e,

(ii) Let h be a positive superharmonic function in D. Then there exists a constant Cy > 0
such that

[ Gomhla)ldy < Collglp hx). (110
Furthermore, for each xo € D, we have
1
lim(sups— Gp (x,y)h dy) =0 111
m(Sup ey S COYHWIAW)Idy) (1.11)

and

lim (su 1

Gp(x,y)h dy) = 0 (whenever D is unbounded).

(1.12)

(iii) The function x — %q(x) isin LY(D).

2 Proof of Theorem 1.2.

Let A € [0,Ag) and A be the nonempty closed bounded convex set given by

A={veC(DU{c}): (1—%)w§v§w}.
0
We define the operator T on A by
To(x) = w(x) = | Go(x,y)f (v,0()) dy. @)

We shall prove that the family TA is relatively compact in C(D U {oo}). First, we
claim that the family

([ Goxy)f o) dy, ve A}, 2
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is relatively compact in Cy(D).
Indeed, observe that from (Hy)-(H3), (1.10) and Proposition 1.5 (i), we have for
eachve Aand x € D,

[ Golenf o) dy < [ Gole)f v wl)dy < Collf (el < e

So the family {/ Gp(.v)f (y,v(y))dy, v € A}, is uniformly bounded.
D

Next we aim at proving that the family {/ Gp(,y)f (y,v(y))dy, v € A}, is
D

equicontinuous on D U {oo}. Let xg € D and ¢ > 0. By (Hy), (1.11) and (1.12),
there exist r > 0 and M > 1 such that

> m

Gpl(z, , o) dy <
sup /B o COE NS ) dy
and

Ssu

zeg /(|y|2M)ﬂD

Ll I

Go(zy)f (v, [|wlle) dy <
Let x,x" € B(xo,7) N D, then for each v € A, we have
[ Golen)s ot dy = [ Gol' ) (o) dy
< [ [6o(x.y) = Go (¥ y)| f ¥, |w].) dy
<asup [ Go(zy)f (v ) dy

zeD

+ 2su / Gp(z, wlle) d
P Jieo—yizann(yizmrn 0 I W l@llo) dy

G 4 _G // 7 d
e vomnesnn | 5P = GO £ (1 lel) dy

§€+/ Gp(x, -G X/, /wood.
(\xo—y|22r)m(|y|gM)mD} p(xy) D( y)}f(y |wll) dy

On the other hand, for every y € B(xo,2r) N B(0, M) N D and x, x’ € B(xo,7) N D,
we have by using (1.9),
|Gp(x,y) —Gp(x',y)| < Gp(x,y)+Gp(x,y)

<C PD(x)PD(y) _|_PD(X/)PD(]/)]

x—y"r Y-y
1 1
<C — — | ep(y)
x =y 2 —y/" 2]
< C.a(y)
<c W
(Jy|" " +1)

Now since Gp is continuous outside the diagonal,we deduce by the dominated
convergence theorem, (Hy) and Proposition 1.5 (iii), that

Gp(x,y) — Gp(«/, , d 0 —x' 0.
L s |62 = oW f (0 wll)dy = 0as [x =] =
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Hence {/ Gp(.,y)f (y,v(y))dy, v € A},is equicontinuous on D.
D

Next, we need to prove that { / Gp(.,y)f (y,v(y))dy, v € A},isequicontinuous
D

at oo, whenever D is unbounded.
Let x € D such that |[x| > M + 1. Then for each v € A, we have

‘A;GD(%y)thin)dy‘ SLAthDNDGD(%y)fQLHwHw)dy
L o SN W el dy

S
< - Go(x,y)f (v, dy.
=27 Jyemnp GOV W llwlo) dy

For y € B(0, M) N D, we have |x —y| > 1. Hence by (1.9), we get
: oY)
Gp(x, ,0 d < ——i—C/ — wlle) d
[ Golx.w)f (v,o) dy renn o2 W@l dy
C

o S0 )y

C / SW)f (Y llwlle)
(|| = M)" =2 Jyl=mno (Jy[" " +1)

dy.

Using again Proposition 1.5(iii), we obtain / Gp(x,y)f (y,v(y))dy — 0 as
D

|x| — oo, uniformly in v € A. Therefore by Ascoli’s theorem, the family
{/ Gp(x,y)f (y,v(y))dy, v € A} becomes relatively compact in Cy(D).

D —
Since w € C(D U {c0}), then we deduce that the set TA is relatively compact in
C(D U {co}).
On the other hand, since f is a nonnegative function, it is clear from (2.1) and
(1.5) that TA C A.
Next, we prove the continuity of the operator T in A in the supremum norm. Let

(vk)x be a sequence in A which converges uniformly to a function v in A. Then
we have

Tou(x) = To()| <A [ Go(xy)If (v ouv)) = £ W, 0(0)] dy.
From the monotonicity of f, we have

f oY) = f o)) <2f (v |wlle) ,

Since by (H), (1.10) and Proposition 1.5 (i), Vf (y, ||w]|) is bounded, we con-
clude by the continuity of f with respect to the second variable and by the domi-
nated convergence theorem, that

Vx € DU {oo}, Tog(x) — To(x) as k — co.

Using the fact that TA is relatively compact in C(D U {0} ), we obtain the uniform
convergence, namely
|Tox — Tol|, — 0 as k — oo.
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Thus we have proved that T is a compact mapping from A to itself. Hence by the
Schauder’s fixed point theorem, there exists u € A such that

u(x) = w(x) = [ Golxy)f ,u(y)) dy. 2.3)

In addition, since for each x € D, f (y,u(y)) < f(y,||w| ), we deduce by the
hypothesis (H;) and Proposition 1.5 (iii) that the map y — f (v, u(y)) € L} (D)

loc

and by (2.3), that x — / Gp(x,y)f (y,u(y))dy € L},.(D). Thus using these facts,
D

loc

(2.3) and (2.2), we deduce that u is the required solution. ]

Example 2.1. Assume that ¢ : [0,00) — [0,00) is a continuous and nondecreasing
function satisfying for each ¢ > 0, there exists § > 0 such that

g(t) <mnt, Vte[0,c]. (24)

Let p be a positive measurable function satisfying

p(x) < with o < 2, (if D is bounded)

_c
(6(x))°

or

p(x) < — witho < 2 < u, (whenever D is unbounded).
(0(x))” [x["7

Then form [2] and [10], p € K(D).

Let @ is a positive continuous function on 0D and a > 0, x > 0 such that a +« > 0.

Put w(x) = aHp@(x) + ah(x). Then by (2.4) and (1.10), we have

w(x) w(x) 1
> > > 0.
Vp(g(w))(x) — nV(pw)(x) ~ 1Co|pllp
This implies that Ay > m > 0.

Therefore by Theorem 1.2, for each A € [0, Ag), the problem

Au = Ap(x)g (u) in D, (in the sense of distributions)

u>0 in D,

u=ag on aD,

| l‘im u(x) =« (whenever D is unbounded),
X|—r00

has at least one continuous bounded solution u such that

A
(1-—)w<u<winD.
Ao
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