An Efficient Solution to Generalized Yao's Millionaires Problem*

Yuan Zhang Sheng Zhong

Abstract

We study a generalized version of Yao's Millionaires problem. Namely, n millionaires want to find out the k richest persons among them without revealing their amounts of wealth. We propose an efficient solution that takes $2 n$ secure comparison operations on average to find out the correct result. Our solution protects the privacy of every participant.

1 Introduction

Yao's Millionaires problem is a well-known problem in Cryptography which was first introduced by Andrew Yao in [10]. The problem discusses how two millionaires can learn which one of them is richer without revealing their amounts of wealth to each other. In this paper, we aim to solve Yao's Millionaires problem in a generalized setting: there are n millionaires and these millionaires want to find out the k richest persons among them without revealing their own amounts of wealth ($n \geq 2,0<k \leq n$). We call this problem the generalized Yao's Millionaires problem.

Formally, denote by P_{1}, \ldots, P_{n} the n millionaires involved, and by w_{1}, \ldots, w_{n} their amounts of wealth respectively. For simplicity, assume each $w_{i}(i=1, \ldots, n)$ is an integer. Let $N=\{1, \ldots, n\}$ be the millionaires' index set, and R_{k} be any subset of N such that $\left|R_{k}\right|=k$ and $w_{i} \geq w_{j}$ for every $i \in R_{k}, j \in N \backslash R_{k}$. The generalized Yao's Millionaires problem is to design a privacy-preserving algorithm

[^0]that takes w_{1}, \ldots, w_{n} as the input and outputs R_{k} without disclosing any information other than R_{k} to any party (See section 2.1 for formal definition of privacy). To the best of our knowledge, this problem has not been studied so far.

When $(n, k)=(2,1)$, our problem reduces to the original Yao's Millionaires problem. Since Yao' Millionaires problem can be viewed as a special case of the secure multiparty computation (MPC) problem, general solutions or frameworks [11, 7, 1] which allow any function to be securely evaluated by multiple parties can be applied to solve it. However, these general solutions require heavy computational and communication overheads, therefore efficient special-purpose solutions which allow two parties to securely compare two private numbers are also proposed $[5,2,3,8]$. Due to the same reason, we also aim to design efficient solutions to solve our problem in this paper.

In the rest of this paper, we assume all millionaires' amounts of wealth are pairwise different(i.e. $w_{i} \neq w_{j}$ holds if $i \neq j$). In cases that millionaires may have same amounts of wealth, we can make the assumption hold by assigning each millionaire P_{i} the "index-based wealth" $w_{i}^{\prime}=w_{i} \times n+i$ and using it as the algorithm's input. It is easy to verify that the corresponding output R_{k} on $\left\{w_{i}^{\prime}\right\}$ is still a valid result for the original problem.

2 Technical Preliminaries

Before we present our algorithm, we give a brief review of the formal definition of privacy and the main techniques we are using in this paper.

2.1 The definition of privacy

In this paper, we discuss the privacy issue in the semi-honest model [6]. In a semihonest model, participants of an algorithm always follow the algorithm without any deviation. However, participants are curious in the sense that they may attempt to learn more about other participants' private information.

Denote by GYM() a function that takes w_{1}, \ldots, w_{n} as input and outputs R_{k}. We give the formal definition of the privacy requirement for the solution of the generalized Yao's Millionaires problem as follows.

Definition An algorithm $\mathcal{G Y} \mathcal{M}$ for the generalized Yao's Millionaires problem is privacy-preserving if there exists a probabilistic polynomial-time simulator M_{i} for every $i \in N$ such that for all possible $\left(w_{1}, w_{2}, \ldots, w_{n}\right)$,

$$
\left\{M_{i}\left(w_{i}, G Y M\left(w_{1}, \ldots, w_{n}\right)\right)\right\}_{\left(w_{1}, \ldots, w_{n}\right)} \stackrel{c}{=}\left\{V I E W_{i}\left(w_{1}, \ldots, w_{n}\right)\right\}_{\left(w_{1}, \ldots, w_{n}\right)},
$$

where $\operatorname{VIEW} W_{i}\left(w_{1}, \ldots, w_{n}\right)$ denotes the view of party i when running the $\mathcal{G Y} \mathcal{M}$ on the input $\left(w_{1}, \ldots, w_{n}\right)$, and $\xlongequal[\equiv]{\equiv}$ denotes the computational indistinguishability [6] of two probability ensembles [6].

2.2 Probabilistic public-key cryptosystem that supports rerandomization and threshold decryption

In this paper, we build our solution based on a probabilistic public-key cryptosystem that supports rerandomization of a ciphertext, and the threshold decryption.

Rerandomization operations take a ciphertext of a plain message as input, and efficiently output a new ciphertext of the same message without decrypting the input ciphertext.

A cryptosystem that supports threshold decryption generally assumes that n shares of the decryption key (in a secret sharing scheme) have been distributed to n involved parties. Decryptions can only be made when at least m (m is the security parameter which can be chosen from 1 to n) parties jointly performed a threshold decryption algorithm using their parts of the private key.

One example of such a cryptosystem can be found in [4]. In [4], Damgard, et al. adapt the original decryption scheme of the Paillier cryptosystem [9] and make it support threshold decryption. The basic idea of the adaption is to hide the private key as a coefficient of a polynomial function, and to let each party hold a different evaluation of that function. With more evaluations than the order of the function, the private key can be learned using Lagrange interpolation. The adapted cryptosystem also has the additively homomorphic property for free, since the Paillier cryptosystem is additively homomorphic (Please see [9] for detailed explanations of the homomorphic property). Based on the additively homomorphic property, the cryptosystem allows to rerandomize a ciphertext by computing a random encryption of the product of the ciphertext and the constant number 1. It has been proved that the adapted cryptosystem is semantic secure just like the Paillier cryptosystem [4] and the threshold decryption is privacypreserving in the semi-honest model.

2.3 Secure comparison algorithm

A main tool we use to construct our algorithm is a two-party secure comparison algorithm. Denote the secure comparison algorithm $\mathcal{S C} . \mathcal{S C}$ takes two encrypted numbers $E\left(w_{i}\right)$ and $E\left(w_{j}\right)$ as public input and reveals nothing more than the comparison result as:

$$
\mathcal{S C}\left(E\left(w_{i}\right), E\left(w_{j}\right)\right)=\left\{\begin{array}{ll}
1 & \text { if } w_{i}>w_{j} \tag{1}\\
0 & \text { if } w_{i}<w_{j}
\end{array} .\right.
$$

In [8], a secure comparison algorithm based on homomorphic encryption is proposed ${ }^{1}$. The algorithm has been proved to be privacy-preserving in the semihonest model. In particular, the algorithm allows one party A to securely compare two numbers given only the ciphertexts of these two numbers with the help of another party B. In the end, A learns nothing more than the comparison result and B learns nothing. The algorithm can be implemented using a probabilistic

[^1]public-key cryptosystem that supports the homomorphic encryption and threshold decryption, for example the adapted Paillier cryptosystem introduced in [4].

3 Our algorithms

In this section, we first present a basic solution to the generalized Yao's Millionaires problem. After that, we give another solution that is more efficient compared with the first one. Both algorithms can be implemented using a probabilistic public-key cryptosystem that supports the homomorphic encryption, rerandomization and threshold decryption, for example the adapted Paillier cryptosystem introduced in [4].

3.1 A basic solution

Intuitively, our problem can be solved by finding out the first richest, the second richest, ..., the k th richest party. Below we give a three-stage algorithm based on this idea.

Setup: A public key $p k$ and n shares of the corresponding private key, $p r_{1}, \ldots, p r_{n}$, are generated such that each party P_{i} knows $p k$ and $p r_{i}$ but not any other shares of private key. (This can be achieved using either a trusted authority or an MPC technique like [4])

Stage 1: To generate a sequence of ciphertext pairs that encodes a random permutation of all parties' amounts of wealth and indices.
step 1.1: For $i=1, \ldots, n, P_{i}$ computes the ciphertext pair $\left(e_{i}, f_{i}\right)=\left(E\left(w_{i}\right), E(i)\right)$. For $i=2, \ldots, n, P_{i}$ sends $\left(e_{i}, f_{i}\right)$ to party P_{1}.
step 1.2: For $i=1, \ldots, n, P_{1}$ rerandomizes $\left(e_{i}, f_{i}\right)$. Denote by $\left\{\left(e_{i}^{\prime}, f_{i}^{\prime}\right)\right\}$ the rerandomized ciphertext pairs. Then P_{1} generates a random permutation π_{1} on N and sends P_{2} the permuted rerandomized ciphertext pairs $\left\{\left(e_{\pi_{1}(1)}^{\prime}, f_{\pi_{1}(1)}^{\prime}\right), \ldots\right.$, $\left.\left(e_{\pi_{1}(n)}^{\prime}, f_{\pi_{1}(n)}^{\prime}\right)\right\}$.
step 1.3: For $i=2, \ldots, n-1, P_{i}$ rerandomizes and permutes the ciphertext pairs she receives and sends them to $P_{i+1} . P_{n}$ rerandomizes and permutes the ciphertext pairs she receives and sends them back to P_{1} in the end. After this, P_{1} has a sequence of ciphertext pairs which encodes a unknown permutation of every party's original ciphertext pair. Denote this sequence by $\left(e_{\pi(1)}^{\prime}, f_{\pi(1)}^{\prime}\right), \ldots$, $\left(e_{\pi(n)}^{\prime}, f_{\pi(n)}^{\prime}\right)$.

Stage 2: To find the ciphertext pairs which encode the first, the second, ..., the k th richest party.
step 2.1: Let $($ emax, $f \max)=\left(e_{\pi(1)}^{\prime}, f_{\pi(1)}^{\prime}\right)$. For $j=2, \ldots, n, P_{1}$ runs the secure comparison algorithm on emax and $e_{\pi(j)}^{\prime}$ with the help of other parties. and
updates (emax, fmax) as:

$$
(e \max , f \max)=\left\{\begin{array}{ll}
(\text { emax }, f \max) & \text { if } \mathcal{S C}\left(\text { emax }, e_{\pi(j)}^{\prime}\right)=1 \tag{2}\\
\left(e_{\pi(j)}^{\prime}, f_{\pi(j)}^{\prime}\right) & \text { if } \mathcal{S C}\left(\text { emax }, e_{\pi(j)}^{\prime}\right)=0
\end{array} .\right.
$$

The final (emax, fmax) encodes the first richest party's amount of wealth and index.
step 2.2: P_{1} removes the ciphertext pair found in the previous step from the sequence of ciphertext pairs, then repeats step 2.1 for $k-1$ times till the other $k-1$ ciphertext pairs which encode the second,...,the k th richest parties' amounts of wealth and indices are found. Denote by $f \max _{1}, \ldots, f \operatorname{fax}_{k}$ the k ciphertexts which encode the k richest parties' indices.

Stage 3: To get the indices of the k richest parties.
step 3.1: For $i=1, \ldots, k, P_{1}$ rerandomizes fmax $_{i}$. Denote by $f_{\text {max }}^{\prime}$ the new ciphertext after rerandomization.
P_{1} generates a random permutation θ_{1} on $\{1, \ldots, k\}$ and sends P_{2} the permuted rerandomized ciphertext sequence $\left\{\operatorname{fmax}_{\theta_{1}(1)}^{\prime}, \ldots, f \max _{\theta_{1}(k)}^{\prime}\right\}$.
step 3.2: For $i=2, \ldots, n-1, P_{i}$ rerandomizes and permutes the ciphertext sequence she receives and sends it to P_{i+1} similarly. P_{n} rerandomizes and permutes the ciphertext sequence she receives and sends it back to P_{1} in the end. After this, P_{1} has a sequence of ciphertext which encodes a random permutation of R_{k}. Denote this sequence by $f \max _{\theta(1)}^{\prime}, \ldots, f \max _{\theta(n)}^{\prime}$.
step 3.3: P_{1} sends the sequence $f \max _{\theta(1)}^{\prime}, \ldots, f \max _{\theta(n)}^{\prime}$ to all other parties.
step 3.4: P_{2}, \ldots, P_{n} help P_{1} to do a threshold decryption of the ciphertext sequence. After getting the index set R_{k} that indicates the k richest parties, P_{1} sends R_{k} to other parties.

Efficiency Analysis: Compared with other operations in the algorithm, the secure comparison algorithm is much more complex and time-consuming. Therefore, we can use the total number of times that the secure comparison algorithm is performed to evaluate the efficiency of our solution. In this basic solution, the total number equals to $(n-1)+\ldots+(n-k)$. Therefore the algorithm requires $O(n k)$ secure comparison operations to solve the generalized Yao's Millionaires problem. When $k \approx n / 2$, the total number is quadratic in n. This would make the algorithm relatively slow especially when n is a big number.

3.2 An improved solution

To improve the performance, we propose a solution that finds the k richest parties with fewer secure comparison operations. This solution also has three stages. The only difference between the previous solution and this one is in their second stages. To save the space, we only present the second stage below.
Stage 2: To find the ciphertext pairs which encode the first, the second, ..., the k th richest party.
step 2.0: Let $S_{\text {candidate }}$ be the set that contains all n rerandomized and permuted ciphertext pairs received by P_{1} from stage $1, S_{\text {output }}$ be an empty set.
step 2.1: P_{1} randomly picks a pair $\left(e^{\prime \star}, f^{\prime \star}\right)$ from $S_{\text {candidate }}$ and runs the secure comparison algorithm to compare it with all other pairs in $S_{\text {candidate }}$ with the help of other parties.

Based on the comparison results, $S_{\text {candidate }}$ is divided into two parts. Let $S_{\text {greater }}$ ($S_{\text {less }}$ resp.) be the set that contains all pairs which have greater (less resp.) wealth compared with the randomly picked pair.

If $\left|S_{\text {greater }}\right|+\left|S_{\text {output }}\right| \leq k-1, P_{1}$ updates $S_{\text {output }}$ to $S_{\text {output }} \cup S_{\text {greater }} \cup\left\{e^{\prime \star}, f^{\prime \star}\right\}$, $S_{\text {candidate }}$ to $S_{\text {less }}$.

If $\left|S_{\text {greater }}\right|+\left|S_{\text {output }}\right|=k, P_{1}$ updates $S_{\text {output }}$ to $S_{\text {output }} \cup S_{\text {greater, }}, S_{\text {candidate }}$ to $S_{\text {less }} \cup\left\{e^{\prime \star}, f^{\prime \star}\right\}$.

If $\left|S_{\text {greater }}\right|+\left|S_{\text {output }}\right|>k, P_{1}$ updates $S_{\text {candidate }}$ to $S_{\text {greater }}$.
step 2.2: P_{1} repeats step 2.1 till $\left|S_{\text {output }}\right|=k$. The final set $S_{\text {output }}$ contains k ciphertext pairs which encode the wealth and indices of the k richest parties. Denote by $f \max _{1}, \ldots, f \operatorname{fmax}_{k}$ the k ciphertexts which encode these parties' indices.

Efficiency Analysis: Since the improved algorithm is a probabilistic algorithm, its efficiency is not deterministic. The algorithm stops doing secure comparison until the "pivot" ciphertext pair (the ciphertext pair of the k th richest or the $(k+1)$ th richest party) is picked. In the best case, the pivot is picked in the first round which results in $n-1$ secure comparison operations. In the worst case, the pivot is picked after all other $n-2$ pairs have been picked which results in $n-1+n-2+\ldots+2=\left(n^{2}-n-2\right) / 2$ secure comparison operations. In the average case, every picked pair cuts approximately half of the $S_{\text {candidate }}$. This results in $n+n / 2+n / 4+\ldots \approx 2 n$ secure comparison operations at most to locate the pivot pair.

4 Algorithm Analysis

In this section, we give analysis of the correctness and privacy guarantee of our algorithms.

Proposition 4.1. (Correctness) Both algorithms output the correct R_{k}.
Proof. The first algorithm performs secure comparison operations to find the first richest, second richest,..., k th richest party's pair one by one. It is straightforward to see the final output is correct.

We prove the correctness of the second algorithm in two steps.
Firstly, we prove the second algorithm will always stop and output an $S_{\text {output }}$ of k ciphertext pairs. It is easy to see $\left|S_{\text {output }}\right|$ is a non-decreasing integer and always no greater than k. Also, $\left|S_{\text {output }}\right|$ cannot remain unchanged at a value that is smaller than k. Otherwise, $\left|S_{\text {greater }}\right|+\left|S_{\text {output }}\right|$ has to be always greater than k. However, this is impossible because $S_{\text {greater }}$ would keep decreasing till it goes to zero in this case, and causes $\left|S_{\text {greater }}\right|+\left|S_{\text {output }}\right|<0+k$. Therefore, the algorithm always stops. When it stops, $\left|S_{\text {output }}\right|=k$.

Secondly, we prove every ciphertext pair in $S_{\text {output }}$ encodes one of the k richest party. This can be done by assuming $S_{\text {output }}$ has an incorrectly inserted ciphertext pair which encodes a party who is not one of the k richest party. It directly follows that at least one party who is one of the k richest party is not in the final $S_{\text {output }}$, denote this party by $P_{\text {correct }}$. Denote by $P_{\text {false }}$ the first falsely inserted party. Consider the round in which $P_{\text {false }}$'s ciphertext pair is inserted into $S_{\text {output }}, P_{\text {correct }}$'s ciphertext pair must have been deleted from some previous round r. In round $r,\left|S_{\text {greater }}\right|+\left|S_{\text {output }}\right|>k$ because only in this case a ciphertext pair could be excluded with all other ciphertext pairs in $S_{\text {less }}$. Therefore, every ciphertext pair in $S_{\text {greater }}$ should encode a party that has greater amount of wealth compared with $P_{\text {correct }}$ and thus encodes a valid k-richest party. Also, every ciphertext pair in $S_{\text {output }}$ should also encode a valid k-richest party because the first falsely inserted party has not been inserted yet. It directly follows that $S_{\text {greater }} \cup S_{\text {output }}$ is a subset of the correct R_{k} i.e. $\left|S_{\text {greater }}\right|+\left|S_{\text {output }}\right| \leq k$ which is contradictive to the premise of $\left|S_{\text {greater }}\right|+\left|S_{\text {output }}\right|>k$.

Privacy Guarantee: Our algorithms are privacy-preserving in the semi-honest model.
Theorem 4.2. (Privacy) The basic solution is privacy-preserving.
Proof. We construct M_{1} as follows. On input $\left(w_{1}, R_{k}\right), M_{1}$ simulates the coin flips of P_{1} as described in the algorithm. Then, M_{1} simulates the received ciphertext pair from $P_{i}(i \neq 1)$ in step 1.1 using a random encryption of a random cleartext and a random encryption of i, and simulates the sequence of permuted ciphertext pairs received from P_{n} in step 1.3 using $2 n$ random encryptions of random cleartexts. M_{1} performs cleartext comparison operations and uses the results to simulate the results of secure comparison results in $P_{1}{ }^{\prime} \mathrm{s}$ view in step 2.1 and 2.2. In particular, M_{1} generates $\left\{v_{i}\right\}$ which is a random permutation of N. For every secure comparison between $e^{\prime}{ }_{\pi(i)}$ and $e l_{\pi(j)}, M_{1}$ simulates the comparison result with 1 if $v_{i}>v_{j}$, otherwise M_{1} simulates the comparison result with 0 . In each round of the secure comparison algorithm, M_{1} simulates the numbers and ciphertexts received by P_{1} using the same amount of random numbers and random encryptions of random cleartexts. M_{1} simulates fmax $_{1}, \ldots, f$ max $_{k}$ in step 2.2 and $f \max _{\theta(1)}^{\prime}, \ldots, \operatorname{fmax}_{\theta(n)}^{\prime}$ in step 3.2 using random encryptions of R_{k}. Finally, M_{1} simulates the numbers or ciphertexts received by P_{1} during the threshold decryption in step 3.4 using the same amount of random numbers or random encryptions of random cleartexts.

For $i \neq 1$, we construct M_{i} as follows. On input $\left(w_{i}, R_{k}\right), M_{i}$ simulates the coin flips of P_{i} as described in the algorithm. Then, M_{i} simulates the sequence of permuted ciphertext pairs received from P_{i-1} in step 1.2 or 1.3 using $2 n$ random encryptions of random cleartexts. In step 2.1, P_{i} needs to help P_{1} to perform the secure comparison algorithm several times. M_{i} simulates the numbers and ciphertexts received by P_{i} using the same amount of random numbers and random encryptions of random cleartexts. To simulate the ciphertext sequence received from P_{i-1} in step 3.2 and from P_{1} in step 3.3, M_{i} uses two sequences of random encryptions on all elements in R_{k}. In step 3.4, P_{i} helps P_{1} to decrypt the encryption of R_{k}, M_{i} simulates the numbers and ciphertexts received by P_{i} using the same amount of random numbers and random encryptions of random cleartexts.

The computational indistinguishability follows the semantic security of the cryptosystem, the randomness of the permutation operations, and the security of the secure comparison algorithm and the threshold decryption algorithm.

Theorem 4.3. (Privacy) The improved solution is privacy-preserving.
Proof. Since the improved solution differs from the basic solution only in stage 2, we can construct simulators that run exactly the same as the simulators we have constructed above in stage 1 and 3.
M_{1} runs as follows in stage 2. M_{1} performs cleartext comparison operations and uses the results to simulate the results of secure comparison results in P_{1} 's view in step 2.1 and 2.2. In particular, M_{1} generates a sequence $\{1, \ldots, n\}$ and repeats the similar procedure of picking a random number and using it to compare with other numbers as P_{1} does in step 2.1 until the k greatest numbers are found. In each round of the secure comparison algorithm, M_{1} simulates the numbers and ciphertexts received by P_{1} using the same amount of random numbers and random encryptions of random cleartexts.

In stage $2, M_{i}(i \neq 1)$ runs as follows. In step 2.1, P_{i} needs to help P_{1} to run the secure comparison algorithm several times. M_{i} simulates these secure comparison algorithms by generating a sequence $\{1, \ldots, n\}$ and repeating the similar procedure of picking a random number and using it to compare with other numbers as P_{1} does in step 2.1 until the k greatest numbers are found. In each round of the secure comparison algorithm, M_{i} simulates the numbers and ciphertexts received by P_{i} using the same amount of random numbers and random encryptions of random cleartexts.

The computational indistinguishability follows the semantic security of the cryptosystem, the randomness of the permutation operations, and the security of the secure comparison algorithm and the threshold decryption algorithm.

References

[1] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages 503-513. ACM, 1990.
[2] I. Blake and V. Kolesnikov. Conditional encrypted mapping and comparing encrypted numbers. Financial Cryptography and Data Security, pages 206-220, 2006.
[3] I. Damgard, M. Geisler, and M. Kroigard. Homomorphic encryption and secure comparison. International Journal of Applied Cryptography, 1(1):22-31, 2008.
[4] Ivan Damgard and Mads Jurik. Efficient protocols based on probabilistic encryption using composite degree residue classes, March 172001.
[5] M. Fischlin. A cost-effective pay-per-multiplication comparison method for millionaires. Topics in CryptologyCT-RSA 2001, pages 457-471, 2001.
[6] O. Goldreich. Foundations of cryptography: Basic applications, volume 2. Cambridge Univ Pr, 2004.
[7] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 218-229. ACM, 1987.
[8] T. Nishide and K. Ohta. Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. Public Key CryptographyPKC 2007, pages 343-360, 2007.
[9] Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT: Advances in Cryptology: Proceedings of EUROCRYPT, 1999.
[10] A.C. Yao. Protocols for secure computations. In Proceedings of the 23 rd Annual Symposium on Foundations of Computer Science, pages 160-164, 1982.
[11] A.C. Yao. How to generate and exchange secrets. In Foundations of Computer Science, 1986., 27th Annual Symposium on, pages 162-167. IEEE, 1986.

Computer Science and Engineering Department, State University of New York at Buffalo, Buffalo, 14260, USA;
Email:yuanzhan@buffalo.edu
State Key Laboratory for Novel Software Technology, Nanjing University;
Department of Computer Science and Technology, Nanjing University, Nanjing 210046, P. R. CHINA;
Email: sheng.zhong@gmail.com

[^0]: *Supported by NSFC-61021062 and RPGE. Sheng Zhong is the corresponding author.
 Received by the editors in February 2012.
 Communicated by A. Weiermann.
 2010 Mathematics Subject Classification : 11T71, 94A60.
 Key words and phrases : Yao's Millionaires Problem; Privacy-preserving; Secure Comparison.

[^1]: ${ }^{1}$ The algorithm in [8] assumes that the inputs are cleartexts, not ciphertexts. It is trivial to modify it so that the inputs can be ciphertexts.

