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Abstract

We study a generalized version of Yao’s Millionaires problem. Namely,
n millionaires want to find out the k richest persons among them without
revealing their amounts of wealth. We propose an efficient solution that takes
2n secure comparison operations on average to find out the correct result.
Our solution protects the privacy of every participant.

1 Introduction

Yao’s Millionaires problem is a well-known problem in Cryptography which was
first introduced by Andrew Yao in [10]. The problem discusses how two million-
aires can learn which one of them is richer without revealing their amounts of
wealth to each other. In this paper, we aim to solve Yao’s Millionaires problem
in a generalized setting: there are n millionaires and these millionaires want to
find out the k richest persons among them without revealing their own amounts
of wealth (n ≥ 2, 0 < k ≤ n). We call this problem the generalized Yao’s Million-
aires problem.

Formally, denote by P1, . . . , Pn the n millionaires involved, and by w1, . . . , wn

their amounts of wealth respectively. For simplicity, assume each wi (i = 1, . . . , n)
is an integer. Let N = {1, . . . , n} be the millionaires’ index set, and Rk be any
subset of N such that |Rk| = k and wi ≥ wj for every i ∈ Rk, j ∈ N\Rk . The
generalized Yao’s Millionaires problem is to design a privacy-preserving algorithm
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that takes w1, . . . , wn as the input and outputs Rk without disclosing any informa-
tion other than Rk to any party (See section 2.1 for formal definition of privacy).
To the best of our knowledge, this problem has not been studied so far.

When (n, k) = (2, 1), our problem reduces to the original Yao’s Millionaires
problem. Since Yao’ Millionaires problem can be viewed as a special case of the
secure multiparty computation (MPC) problem, general solutions or frameworks
[11, 7, 1] which allow any function to be securely evaluated by multiple parties
can be applied to solve it. However, these general solutions require heavy com-
putational and communication overheads, therefore efficient special-purpose so-
lutions which allow two parties to securely compare two private numbers are
also proposed [5, 2, 3, 8]. Due to the same reason, we also aim to design efficient
solutions to solve our problem in this paper.

In the rest of this paper, we assume all millionaires’ amounts of wealth are
pairwise different(i.e. wi 6= wj holds if i 6= j). In cases that millionaires may
have same amounts of wealth, we can make the assumption hold by assigning
each millionaire Pi the “index-based wealth” w′

i = wi × n + i and using it as the
algorithm’s input. It is easy to verify that the corresponding output Rk on {w′

i} is
still a valid result for the original problem.

2 Technical Preliminaries

Before we present our algorithm, we give a brief review of the formal definition
of privacy and the main techniques we are using in this paper.

2.1 The definition of privacy

In this paper, we discuss the privacy issue in the semi-honest model [6]. In a semi-
honest model, participants of an algorithm always follow the algorithm without
any deviation. However, participants are curious in the sense that they may at-
tempt to learn more about other participants’ private information.

Denote by GYM() a function that takes w1, . . . , wn as input and outputs Rk.
We give the formal definition of the privacy requirement for the solution of the
generalized Yao’s Millionaires problem as follows.

Definition An algorithm GYM for the generalized Yao’s Millionaires problem
is privacy-preserving if there exists a probabilistic polynomial-time simulator Mi

for every i ∈ N such that for all possible (w1, w2, . . . , wn),

{Mi(wi, GYM(w1, . . . , wn))}(w1,...,wn)
c
≡ {VIEWi(w1, . . . , wn)}(w1,...,wn),

where VIEWi(w1, . . . , wn) denotes the view of party i when running the GYM

on the input (w1, . . . , wn), and
c
≡ denotes the computational indistinguishability [6]

of two probability ensembles [6].
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2.2 Probabilistic public-key cryptosystem that supports r erandomization

and threshold decryption

In this paper, we build our solution based on a probabilistic public-key cryptosys-
tem that supports rerandomization of a ciphertext, and the threshold decryption.

Rerandomization operations take a ciphertext of a plain message as input, and
efficiently output a new ciphertext of the same message without decrypting the
input ciphertext.

A cryptosystem that supports threshold decryption generally assumes that n
shares of the decryption key (in a secret sharing scheme) have been distributed
to n involved parties. Decryptions can only be made when at least m (m is the
security parameter which can be chosen from 1 to n) parties jointly performed a
threshold decryption algorithm using their parts of the private key.

One example of such a cryptosystem can be found in [4]. In [4], Damgard,
et al. adapt the original decryption scheme of the Paillier cryptosystem [9] and
make it support threshold decryption. The basic idea of the adaption is to hide
the private key as a coefficient of a polynomial function, and to let each party
hold a different evaluation of that function. With more evaluations than the
order of the function, the private key can be learned using Lagrange interpola-
tion. The adapted cryptosystem also has the additively homomorphic property
for free, since the Paillier cryptosystem is additively homomorphic (Please see [9]
for detailed explanations of the homomorphic property). Based on the additively
homomorphic property, the cryptosystem allows to rerandomize a ciphertext by
computing a random encryption of the product of the ciphertext and the constant
number 1. It has been proved that the adapted cryptosystem is semantic secure
just like the Paillier cryptosystem [4] and the threshold decryption is privacy-
preserving in the semi-honest model.

2.3 Secure comparison algorithm

A main tool we use to construct our algorithm is a two-party secure comparison
algorithm. Denote the secure comparison algorithm SC. SC takes two encrypted
numbers E(wi) and E(wj) as public input and reveals nothing more than the com-
parison result as:

SC(E(wi), E(wj)) =

{

1 if wi > wj

0 if wi < wj
. (1)

In [8], a secure comparison algorithm based on homomorphic encryption is
proposed1. The algorithm has been proved to be privacy-preserving in the semi-
honest model. In particular, the algorithm allows one party A to securely com-
pare two numbers given only the ciphertexts of these two numbers with the help
of another party B. In the end, A learns nothing more than the comparison result
and B learns nothing. The algorithm can be implemented using a probabilistic

1The algorithm in [8] assumes that the inputs are cleartexts, not ciphertexts. It is trivial to
modify it so that the inputs can be ciphertexts.
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public-key cryptosystem that supports the homomorphic encryption and thresh-
old decryption, for example the adapted Paillier cryptosystem introduced in [4].

3 Our algorithms

In this section, we first present a basic solution to the generalized Yao’s Million-
aires problem. After that, we give another solution that is more efficient com-
pared with the first one. Both algorithms can be implemented using a probabilis-
tic public-key cryptosystem that supports the homomorphic encryption, reran-
domization and threshold decryption, for example the adapted Paillier cryp-
tosystem introduced in [4].

3.1 A basic solution

Intuitively, our problem can be solved by finding out the first richest, the second
richest, . . . , the kth richest party. Below we give a three-stage algorithm based on
this idea.

Setup: A public key pk and n shares of the corresponding private key, pr1, . . . , prn,
are generated such that each party Pi knows pk and pri but not any other shares
of private key. (This can be achieved using either a trusted authority or an MPC
technique like [4])

Stage 1: To generate a sequence of ciphertext pairs that encodes a random per-
mutation of all parties’ amounts of wealth and indices.

step 1.1: For i = 1, . . . , n, Pi computes the ciphertext pair (ei, fi) =
(

E(wi), E(i)
)

.
For i = 2, . . . , n, Pi sends (ei, fi) to party P1.

step 1.2: For i = 1, . . . , n, P1 rerandomizes (ei, fi). Denote by {(e′i , f ′i )} the
rerandomized ciphertext pairs. Then P1 generates a random permutation π1 on
N and sends P2 the permuted rerandomized ciphertext pairs {(e′

π1(1)
, f ′

π1(1)
), . . . ,

(e′
π1(n)

, f ′
π1(n)

)}.

step 1.3: For i = 2, . . . , n − 1, Pi rerandomizes and permutes the ciphertext
pairs she receives and sends them to Pi+1. Pn rerandomizes and permutes the
ciphertext pairs she receives and sends them back to P1 in the end. After this,
P1 has a sequence of ciphertext pairs which encodes a unknown permutation of
every party’s original ciphertext pair. Denote this sequence by (e′

π(1), f ′
π(1)), . . . ,

(e′
π(n), f ′

π(n)).

Stage 2: To find the ciphertext pairs which encode the first, the second, . . . , the
kth richest party.

step 2.1: Let (emax, f max) = (e′
π(1), f ′

π(1)). For j = 2, . . . , n, P1 runs the se-

cure comparison algorithm on emax and e′
π(j) with the help of other parties. and
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updates (emax, f max) as:

(emax, f max) =

{

(emax, f max) if SC(emax, e′
π(j)) = 1

(e′
π(j), f ′

π(j)) if SC(emax, e′
π(j)) = 0

. (2)

The final (emax, f max) encodes the first richest party’s amount of wealth and
index.

step 2.2: P1 removes the ciphertext pair found in the previous step from the
sequence of ciphertext pairs, then repeats step 2.1 for k − 1 times till the other
k− 1 ciphertext pairs which encode the second,. . .,the kth richest parties’ amounts
of wealth and indices are found. Denote by f max1, . . . , f maxk the k ciphertexts
which encode the k richest parties’ indices.

Stage 3: To get the indices of the k richest parties.

step 3.1: For i = 1, . . . , k, P1 rerandomizes f maxi . Denote by f max′i the new
ciphertext after rerandomization.

P1 generates a random permutation θ1 on {1, . . . , k} and sends P2 the per-
muted rerandomized ciphertext sequence { f max′

θ1(1)
, . . . , f max′

θ1(k)
}.

step 3.2: For i = 2, . . . , n − 1, Pi rerandomizes and permutes the ciphertext se-
quence she receives and sends it to Pi+1 similarly. Pn rerandomizes and permutes
the ciphertext sequence she receives and sends it back to P1 in the end. After
this, P1 has a sequence of ciphertext which encodes a random permutation of Rk.
Denote this sequence by f max′

θ(1)
, . . . , f max′

θ(n)
.

step 3.3: P1 sends the sequence f max′
θ(1), . . . , f max′

θ(n) to all other parties.

step 3.4: P2, . . . , Pn help P1 to do a threshold decryption of the ciphertext se-
quence. After getting the index set Rk that indicates the k richest parties, P1 sends
Rk to other parties.

Efficiency Analysis: Compared with other operations in the algorithm, the se-
cure comparison algorithm is much more complex and time-consuming. There-
fore, we can use the total number of times that the secure comparison algorithm
is performed to evaluate the efficiency of our solution. In this basic solution, the
total number equals to (n − 1) + . . . + (n − k). Therefore the algorithm requires
O(nk) secure comparison operations to solve the generalized Yao’s Millionaires
problem. When k ≈ n/2, the total number is quadratic in n. This would make
the algorithm relatively slow especially when n is a big number.

3.2 An improved solution

To improve the performance, we propose a solution that finds the k richest parties
with fewer secure comparison operations. This solution also has three stages.
The only difference between the previous solution and this one is in their second
stages. To save the space, we only present the second stage below.

Stage 2: To find the ciphertext pairs which encode the first, the second, . . . , the
kth richest party.
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step 2.0: Let Scandidate be the set that contains all n rerandomized and per-
muted ciphertext pairs received by P1 from stage 1, Soutput be an empty set.

step 2.1: P1 randomly picks a pair (e′⋆, f ′⋆) from Scandidate and runs the secure
comparison algorithm to compare it with all other pairs in Scandidate with the help
of other parties.

Based on the comparison results, Scandidate is divided into two parts. Let Sgreater

(Sless resp.) be the set that contains all pairs which have greater (less resp.) wealth
compared with the randomly picked pair.

If |Sgreater|+ |Soutput| ≤ k− 1, P1 updates Soutput to Soutput ∪ Sgreater ∪ {e′⋆, f ′⋆},
Scandidate to Sless.

If |Sgreater| + |Soutput| = k, P1 updates Soutput to Soutput ∪ Sgreater, Scandidate to
Sless ∪ {e′⋆, f ′⋆}.

If |Sgreater |+ |Soutput| > k, P1 updates Scandidate to Sgreater.
step 2.2: P1 repeats step 2.1 till |Soutput| = k. The final set Soutput contains k

ciphertext pairs which encode the wealth and indices of the k richest parties. De-
note by f max1, . . . , f maxk the k ciphertexts which encode these parties’ indices.

Efficiency Analysis: Since the improved algorithm is a probabilistic algorithm,
its efficiency is not deterministic. The algorithm stops doing secure compari-
son until the “pivot” ciphertext pair (the ciphertext pair of the kth richest or the
(k + 1)th richest party) is picked. In the best case, the pivot is picked in the first
round which results in n − 1 secure comparison operations. In the worst case,
the pivot is picked after all other n − 2 pairs have been picked which results in
n − 1 + n − 2 + . . . + 2 = (n2 − n − 2)/2 secure comparison operations. In the
average case, every picked pair cuts approximately half of the Scandidate. This re-
sults in n + n/2 + n/4 + . . . ≈ 2n secure comparison operations at most to locate
the pivot pair.

4 Algorithm Analysis

In this section, we give analysis of the correctness and privacy guarantee of our
algorithms.

Proposition 4.1. (Correctness) Both algorithms output the correct Rk.

Proof. The first algorithm performs secure comparison operations to find the first
richest, second richest,. . . , kth richest party’s pair one by one. It is straightforward
to see the final output is correct.

We prove the correctness of the second algorithm in two steps.

Firstly, we prove the second algorithm will always stop and output an Soutput

of k ciphertext pairs. It is easy to see |Soutput| is a non-decreasing integer and
always no greater than k. Also, |Soutput| cannot remain unchanged at a value that
is smaller than k. Otherwise, |Sgreater|+ |Soutput| has to be always greater than k.
However, this is impossible because Sgreater would keep decreasing till it goes to
zero in this case, and causes |Sgreater |+ |Soutput| < 0+ k. Therefore, the algorithm
always stops. When it stops, |Soutput| = k.
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Secondly, we prove every ciphertext pair in Soutput encodes one of the k richest
party. This can be done by assuming Soutput has an incorrectly inserted ciphertext
pair which encodes a party who is not one of the k richest party. It directly follows
that at least one party who is one of the k richest party is not in the final Soutput,
denote this party by Pcorrect. Denote by Pf alse the first falsely inserted party. Con-
sider the round in which Pf alse’s ciphertext pair is inserted into Soutput, Pcorrect’s
ciphertext pair must have been deleted from some previous round r. In round
r, |Sgreater |+ |Soutput| > k because only in this case a ciphertext pair could be ex-
cluded with all other ciphertext pairs in Sless. Therefore, every ciphertext pair in
Sgreater should encode a party that has greater amount of wealth compared with
Pcorrect and thus encodes a valid k-richest party. Also, every ciphertext pair in
Soutput should also encode a valid k-richest party because the first falsely inserted
party has not been inserted yet. It directly follows that Sgreater ∪ Soutput is a subset
of the correct Rk i.e. |Sgreater|+ |Soutput| ≤ k which is contradictive to the premise
of |Sgreater |+ |Soutput| > k.

Privacy Guarantee: Our algorithms are privacy-preserving in the semi-honest
model.

Theorem 4.2. (Privacy) The basic solution is privacy-preserving.

Proof. We construct M1 as follows. On input (w1, Rk), M1 simulates the coin flips
of P1 as described in the algorithm. Then, M1 simulates the received ciphertext
pair from Pi (i 6= 1) in step 1.1 using a random encryption of a random cleartext
and a random encryption of i, and simulates the sequence of permuted cipher-
text pairs received from Pn in step 1.3 using 2n random encryptions of random
cleartexts. M1 performs cleartext comparison operations and uses the results to
simulate the results of secure comparison results in P1’s view in step 2.1 and 2.2.
In particular, M1 generates {vi} which is a random permutation of N. For ev-
ery secure comparison between e′π(i) and e′π(j), M1 simulates the comparison
result with 1 if vi > vj, otherwise M1 simulates the comparison result with 0. In
each round of the secure comparison algorithm, M1 simulates the numbers and
ciphertexts received by P1 using the same amount of random numbers and ran-
dom encryptions of random cleartexts. M1 simulates f max1, . . . , f maxk in step 2.2
and f max′

θ(1) , . . . , f max′
θ(n) in step 3.2 using random encryptions of Rk. Finally,

M1 simulates the numbers or ciphertexts received by P1 during the threshold
decryption in step 3.4 using the same amount of random numbers or random
encryptions of random cleartexts.

For i 6= 1, we construct Mi as follows. On input (wi, Rk), Mi simulates the
coin flips of Pi as described in the algorithm. Then, Mi simulates the sequence of
permuted ciphertext pairs received from Pi−1 in step 1.2 or 1.3 using 2n random
encryptions of random cleartexts. In step 2.1, Pi needs to help P1 to perform the
secure comparison algorithm several times. Mi simulates the numbers and ci-
phertexts received by Pi using the same amount of random numbers and random
encryptions of random cleartexts. To simulate the ciphertext sequence received
from Pi−1 in step 3.2 and from P1 in step 3.3, Mi uses two sequences of random
encryptions on all elements in Rk. In step 3.4, Pi helps P1 to decrypt the encryp-
tion of Rk, Mi simulates the numbers and ciphertexts received by Pi using the
same amount of random numbers and random encryptions of random cleartexts.
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The computational indistinguishability follows the semantic security of the
cryptosystem, the randomness of the permutation operations, and the security of
the secure comparison algorithm and the threshold decryption algorithm.

Theorem 4.3. (Privacy) The improved solution is privacy-preserving.

Proof. Since the improved solution differs from the basic solution only in stage 2,
we can construct simulators that run exactly the same as the simulators we have
constructed above in stage 1 and 3.

M1 runs as follows in stage 2. M1 performs cleartext comparison operations
and uses the results to simulate the results of secure comparison results in P1’s
view in step 2.1 and 2.2. In particular, M1 generates a sequence {1, . . . , n} and re-
peats the similar procedure of picking a random number and using it to compare
with other numbers as P1 does in step 2.1 until the k greatest numbers are found.
In each round of the secure comparison algorithm, M1 simulates the numbers
and ciphertexts received by P1 using the same amount of random numbers and
random encryptions of random cleartexts.

In stage 2, Mi (i 6= 1) runs as follows. In step 2.1, Pi needs to help P1 to run
the secure comparison algorithm several times. Mi simulates these secure com-
parison algorithms by generating a sequence {1, . . . , n} and repeating the similar
procedure of picking a random number and using it to compare with other num-
bers as P1 does in step 2.1 until the k greatest numbers are found. In each round of
the secure comparison algorithm, Mi simulates the numbers and ciphertexts re-
ceived by Pi using the same amount of random numbers and random encryptions
of random cleartexts.

The computational indistinguishability follows the semantic security of the
cryptosystem, the randomness of the permutation operations, and the security of
the secure comparison algorithm and the threshold decryption algorithm.
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