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Abstract

This paper concerns with a parabolic system coupled via nonlocal sources,
subjecting to homogeneous Dirichlet boundary condition. The main aim
of this paper is to study conditions on the global existence and finite time
blowup of solutions. By using the super- and sub-solution techniques, the
critical exponent of the system is determined. Furthermore, the related clas-
sification for the parameters in the model is optimal and complete.

1 Introduction and main results

In this paper, we investigate the global existence and finite time blowup of non-
negative solutions for the following parabolic system with nonlocal sources























ut = ∆u + ‖uv‖
p
α , (x, t) ∈ Ω × (0, T),

vt = ∆v + ‖uv‖
q
β, (x, t) ∈ Ω × (0, T)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = 0, v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T),

(1.1)

where Ω be a bounded domain in R
N(N ≥ 1) with smooth boundary ∂Ω, and

u0(x), v0(x) are nonnegative bounded functions in Ω, constants α, β ≥ 1, p, q > 0,
where ‖ · ‖α

α =
∫

Ω
| · |αdx.
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Equations (1.1) constitute a simple example of a reaction diffusion system ex-
hibiting a nontrivial coupling on the unknowns u(x, t), v(x, t). Such as heat prop-
agations in a two-component combustible mixture [1], chemical processes [2],
interaction of two biological groups without self-limiting [3], etc.

In the past several decades, a number of works have been contributed to the
study of the following weakly coupled reaction-diffusion system

ut = ∆u + up1 vq1 , vt = ∆v + up2 vq2 , (x, t) ∈ Ω × (0, T), (1.2)

(see [1],[4]-[6] and references therein), especially its special cases p1 = q2 = 0
(variational) or q1 = p2 = 0 (uncoupled single equation). For the case p1 =
q2 = 0, Escobedo analyzed the boundedness and blow-up of solutions[7]; Caristi
obtained the blow-up estimates of solutions[4]. Wu Yuan studied the uniqueness
of generalized solutions with degenerate diffusion[6]. It is well known that there
have been much more results for the uncoupled single equation case q1 = p2 = 0,
including necessary and sufficient conditions for finite blow-up[8], estimates of
blow-up time[9], blow-up rates[10] and blow-up behavior[11].

The general form of (1.2) was systematically studied by Escobedo[5]. They
gave a complete analysis on the critical blow-up and the global existence num-
bers for the Cauchy problem of (1.2), where the introduced parameters α and β
satisfying

(

p1 − 1 q1

p2 q2 − 1

)(

α
β

)

=

(

1
1

)

played important roles in their framework.
Meanwhile, the system (1.2) was also studied by Wang in [12] and Zheng in

[13] with different methods. Some interesting results concerning the global exis-
tence and blow-up conditions of the solutions are established.

Lately, Li et al. in[14] and Zhang et al. in[15] studied the following system

ut = ∆u +
∫

Ω

um(x, t)vn(x, t)dx, vt = ∆v +
∫

Ω

up(x, t)vq(x, t)dx, x ∈ Ω, t > 0,

ut = ∆u + a(x)up1 (x, t)vq1(0, t), vt = ∆v + b(x)vp2(x, t)uq2(0, t), x ∈ B, t > 0,

respectively. They obtained some results on the global solutions, the blow-up
solutions and the blow-up rates.

Our present work is motivated by [5] and [12]-[15] mentioned above. The
main purpose is to extend Escobedo’s method in [5] to system (1.1) and estab-
lish the critical exponent which concern with the global existence and finite time
blowup of solutions.

For a solution (u(x, t), v(x, t)) of (1.1), we define

T∗ = T∗(u, v) = sup{T > 0 : (u, v) is bounded and satisfies (1.1)}.

Note that if T∗
< +∞, then we have

lim sup
t→T∗

‖u(x, t)‖L∞ = +∞ or lim sup
t→T∗

‖v(x, t)‖L∞ = +∞,

in this case, we say that the solution (u, v) blows up in finite time.
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Throughout the remainder of this paper, we denote

A =

(

1 − p −p
−q 1 − q

)

, L =

(

l1
l2

)

.

Then, let us state our main results, the two theorems concern the global exis-
tence and blow-up conditions of the solutions to system (1.1).

Theorem 1. If one of the following conditions holds:
(1) p, q < 1 and pq < (1 − p)(1 − q);
(2) p, q < 1 , pq > (1 − p)(1 − q) and the initial data u0(x), v0(x) are sufficiently

small;
(3) p, q < 1 , pq = (1 − p)(1 − q) and the domain (|Ω|) is sufficiently small.

Then every nonnegative solution of system (1.1) exists globally.

Theorem 2. If one of the following conditions holds:
(1) p, q < 1, pq > (1 − p)(1 − q), and the initial data u0(x), v0(x) are sufficiently

large;
(2) p, q < 1, pq = (1 − p)(1 − q), the domain contains a sufficiently large ball, and

initial data u0(x), v0(x) are sufficiently large.
Then the nonnegative solution of system (1.1) blows up in a finite time.

This paper is organized as follows. In the next Section, we establish the local
existence and give some auxiliary lemmas. In Section 3, which concerns global
existence, we prove Theorem 1. Theorem 2 which deals with the blow-up phe-
nomenon is proved in Section 4.

2 Local existence and comparison principle

At first, we give the maximum principle and the comparison principle for the
nonlocal parabolic system. Let 0 < T < +∞, we set QT = Ω × (0, T),
Q̄T = Ω̄ × [0, T], ST = ∂Ω × (0, T) and define the following class of test func-
tions:

Ψ ≡ {ψ(x, t) ∈ C(Q̄T); ψt, ∆ψ ∈ C(QT) ∩ L2(QT); ψ > 0; ψ(x, t)|x∈∂Ω = 0}.

Definition 1. A pair of vector function (ũ(x, t), ṽ(x, t)) defined on Q̄T, for some T > 0,
is called a sub-solution of (1.1), if ũ, ṽ ∈ C2,1(QT) ∩ C(Q̄T) and all the following hold:

(1) ũ(x, t), ṽ(x, t) ∈ L∞(QT);
(2) ũ(x, t), ṽ(x, t) ≤ 0 for (x, t) ∈ ST, and for all x ∈ Ω, ũ(x, 0) ≤ u0(x), ṽ(x, 0) ≤

v0(x);
(3) For every t ∈ [0, T] and any ψ1, ψ2 ∈ Ψ,















∫

Ω

(

ũ(x, t)ψ1(x, t)− u0(x)ψ1(x, 0)
)

dx 6

∫ t

0

∫

Ω

(

ũψ1s + ũ∆ψ1 + ‖ũṽ‖
p
αψ1

)

dxds,

∫

Ω

(

ṽ(x, t)ψ2(x, t)− v0(x)ψ2(x, 0)
)

dx 6

∫ t

0

∫

Ω

(

ṽψ2s + ṽ∆ψ2 + ‖ũṽ‖
q
βψ2

)

dxds.

(2.1)
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A super-solution (ū(x, t), v̄(x, t)) can be defined in a similar way.
A weak solution (u, v) of (1.1) is a vector function which is both a sub-solution

and a super-solution of (1.1). For every T < +∞, if (u, v) is a weak solution of
(1.1), we say the (u, v) is global.

Lemma 1. (Maximum principle) Suppose that ω1(x, t), ω2(x, t) ∈ C2,1(QT)∩C(Q̄T)
and satisfy































M1ω = ω1t − ∆ω1 − f1

∫

Ω

(c11ω1 + c12ω2)dx ≥ 0, (x, t) ∈ QT,

M2ω = ω2t − ∆ω2 − f2

∫

Ω

(c21ω1 + c22ω2)dx ≥ 0, (x, t) ∈ QT,

ω1(x, t) ≥ 0, ω2(x, t) ≥ 0, (x, t) ∈ ST,

ω1(x, 0) ≥ 0, ω2(x, 0) ≥ 0, x ∈ Ω,

(2.2)

where fi(x, t) and cij(x, t) are the nonnegative functions in QT. Then ωi(x, t) ≥ 0 on

Q̄T.

Proof. The technique for proving the maximum principle for parabolic equa-
tion is quite standard. Here we shall sketch the argument for the convenience of
the reader.

Suppose the strict inequality of (2.2) hold, then we assert that ωi(x, t) > 0
(i = 1, 2) on Q̄T. According to ωi(x, 0) > 0(i = 1, 2), by continuity, there exist
δ > 0 such that ωi(x, t) > 0 for all x ∈ Ω, 0 6 t 6 δ. Let

A = {δ < T : ωi(x, t) > 0, (x, t) ∈ Ω × [0, δ], i = 1, 2}

and t̄ = sup A, then 0 < t̄ 6 T.
If t̄ < T, there holds ωi(x, t) > 0 in Ω × (0, t̄], and at least one of ω1, ω2

vanishes at (x̄, t̄) for some x̄ ∈ Ω̄. Furthermore, by the boundary conditions we
know that x̄ ∈ Ω. Without loss of generality, we suppose ω1(x̄, t̄) = 0. In view
of the boundary conditions, we know ω1 > 0 on ∂Ω × (0, t̄]. So ω1 takes the
nonnegative minimum on Q̄t̄ at (x̄, t̄). Then, at (x̄, t̄) we find that

M1ω = ω1t − ∆ω1 − f1

∫

Ω

(c11ω1 + c12ω2)dx 6 0.

This is a contradiction from (2.2). Hence t̄ = T, that is ωi(x, t) > 0(i = 1, 2) on
Q̄T.

Now, we consider the general case. Take constant γ satisfies

γ > max
(x,t)∈Q̄T

{ f1

∫

Ω

(c11 + c12)dx, f2

∫

Ω

(c21 + c22)dx }

and set ω̃i(x, t) = ωi(x, t) + εeγt, (i = 1, 2), where ε is any fixed positive constant.
In view of (2.2), we can get































M1ω̃ = M1ω + εeγt
(

γ − f1

∫

Ω

(c11 + c12)dx
)

> 0, (x, t) ∈ QT,

M2ω̃ = M2ω + εeγt
(

γ − f2

∫

Ω

(c21 + c22)dx
)

> 0, (x, t) ∈ QT,

ω̃1(x, t) > εeγt
> 0, ω̃2(x, t) > εeγt

> 0, (x, t) ∈ ST,

ω̃1(x, 0) = ω1(x, 0) + ε > 0, ω̃2(x, 0) = ω2(x, 0) + ε > 0, x ∈ Ω.
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Therefore, we have ω̃i(x, t) > 0, that is ωi(x, t) + εeγt
> 0 on Q̄T. Let ε → 0+, it

follows that ωi(x, t) > 0(i = 1, 2) on Q̄T. Thus the proof is completed.

Based on the above lemma, we obtain the following comparison principle.

Lemma 2. (Comparison principle) Let (ũ, ṽ) and (ū, v̄) be a nonnegative sub-solution
and a nonnegative super-solution of system (1.1), respectively. Then (ũ, ṽ) ≤ (ū, v̄) on
QT if

(ũ(x, 0), ṽ(x, 0)) ≤ (ū(x, 0), v̄(x, 0)) and either

∫

Ω

(ūv̄)αdx ≥ ρ > 0,
∫

Ω

(ūv̄)βdx ≥ ρ > 0 or
∫

Ω

(ũṽ)αdx ≥ ρ > 0,
∫

Ω

(ũṽ)βdx ≥ ρ > 0 (2.3)

hold.

Proof. Subtracting the integral inequalities of (2.1) for (ū, v̄) and (ũ, ṽ), and
using the mean value theorem, we have

∫

Ω

(

ũ(x, t)− ū(x, t)
)

ψ1(x, t)dx 6

∫

Ω

(

ũ(x, 0)− ū(x, 0)
)

ψ1(x, 0)dx

+
∫ t

0

∫

Ω

(ũ − ū)(ψ1s + ∆ψ1)dxds

+
∫ t

0
D1(s)

(

∫

Ω

(ṽ − v̄)ũH1(x, s)dx
)(

∫

Ω

ψ1dx
)

ds

+
∫ t

0
D1(s)

(

∫

Ω

(ũ − ū)v̄H1(x, s)dx
)(

∫

Ω

ψ1dx
)

ds.

where

D1(s) =
∫ 1

0

p

α

(

θ
∫

Ω

(ũṽ)αdx + (1 − θ)
∫

Ω

(ūv̄)αdx
)p/α−1

dθ,

H1(x, s) =
∫ 1

0
α
(

θũṽ + (1 − θ)ūv̄
)α−1

dθ.

Since (ũ, ṽ) and (ū, v̄) on QT are bounded, it follows from α > 1 that H1(x, s)
is a bounded, nonnegative function. Similarly, D1(s) is bounded if p/α > 1. Now
if p/α < 1, we have D1(s) 6 ρp/α−1 by the assumptions. Thus, appropriate test
function ψ1 may be chosen exactly as in [16] to obtain

∫

Ω

[ũ(x, t)− ū(x, t)]+dx 6 ‖ψ1‖∞

∫

Ω

[ũ(x, 0)− ū(x, 0)]+dx

+ k1

∫ t

0

∫

Ω

(

[ũ − ū]+ + [ṽ − v̄]+
)

dxds, (2.4)

where ω+ = max{ω, 0} and k1 > 0 is a bounded constant. Similarly, we can
prove

∫

Ω

[ṽ(x, t)− v̄(x, t)]+dx 6 ‖ψ2‖∞

∫

Ω

[ṽ(x, 0)− v̄(x, 0)]+dx

+ k2

∫ t

0

∫

Ω

(

[ũ − ū]+ + [ṽ − v̄]+
)

dxds (2.5)
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for some bounded constant k2 > 0. Now, (2.4)-(2.5) combined with the Gron-
wall’s lemma show (ũ, ṽ) 6 (ū, v̄) since (ũ(x, 0), ṽ(x, 0)) 6 (ū(x, 0), v̄(x, 0)). Thus
the proof is completed.

In order to prove the local existence of solution, for k = 1, 2, · · · , we consider
the following corresponding regularized system























(uk)t = ∆ fk(uk) + ‖ fk(uk)gk(vk)‖
p
α , (x, t) ∈ QT,

(vk)t = ∆gk(vk) + ‖ fk(uk)gk(vk)‖
q
β, (x, t) ∈ QT,

uk(x, t) = vk(x, t) = 1/k, (x, t) ∈ ST,

uk(x, 0) = u0i(x) + 1/k, vk(x, 0) = v0i(x) + 1/k, x ∈ Ω,

(2.6)

where

fk(uk) =

{

uk, uk > 1/k,
1/k, uk < 1/k,

gk(vk) =

{

vk, vk > 1/k,
1/k, vk < 1/k

and u0i(x), v0i(x) are smooth approximation of u0(x), v0(x) with suppu0i ⊂ Ω

and suppv0i ⊂ Ω, respectively. It is known that the system (2.6) has a unique clas-
sical solution (ui

k , vi
k) ∈ C(Ω̄ × [0, Ti(k))) ∩ C2,1(Ω × (0, Ti(k))) for 0 < Ti(k) 6 ∞

by the classical theory for parabolic equation, where Ti(k) is the maximal exis-
tence time. By a direct computation and the classical maximum principle, we
have ui

k, vi
k > 1/k. Hence (ui

k, vi
k) satisfies

(ui
k)t = ∆(ui

k) + ‖ui
kvi

k‖
p
α , (vi

k)t = ∆(vi
k) + ‖ui

kvi
k‖

q
β, (x, t) ∈ QTi(k)

(2.7)

with the corresponding initial and boundary conditions. At the same time, pass-
ing to the limit i → ∞, it follows that

uk(x, t) = lim
i→∞

ui
k(x, t), vk(x, t) = lim

i→∞

vi
k(x, t)

and (uk, vk) is a weak solution of

(uk)t = ∆(uk) + ‖ukvk‖
p
α , (vk)t = ∆(vk) + ‖ukvk‖

q
β, (x, t) ∈ QT(k) (2.8)

with the corresponding initial and boundary conditions on QT(k), where T(k) =

limi→∞ Ti(k) is the maximal existence time. Here a weak solution of (2.8) is de-
fined in a manner similar to that for (1.1), only the integral equalities for u and v,
(2.1) may be replaced with

∫

Ω

(

uk(x, t)ψ1(x, t)− (u0(x) + 1/k)ψ1(x, 0)
)

dx

=
∫ t

0

∫

Ω

(

ukψ1s + uk∆ψ1 + ‖ukvk‖
p
αψ1

)

dxds +
1

k

∫ t

0

∫

∂Ω

(∂ψ1/∂ν)dσds, (2.9)
∫

Ω

(

vk(x, t)ψ2(x, t)− (v0(x) + 1/k)ψ2(x, 0)
)

dx

=
∫ t

0

∫

Ω

(

vkψ2s + vk∆ψ2 + ‖ukvk‖
q
βψ2

)

dxds +
1

k

∫ t

0

∫

∂Ω

(∂ψ2/∂ν)dσds, (2.10)

respectively.
Since ui

k, vi
k > 1/k, applying Lemma 1, we have the following lemma.
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Lemma 3. Assume that ω(x, t), s(x, t) ∈ C(Ω̄ × [0, Ti(k))) ∩ C2,1(Ω × (0, Ti(k))) is
a sub- ( or super- ) solution of (2.7). Then (ω, s) 6 (>)(ui

k , vi
k) on Ω̄ × [0, Ti(k)).

According to Lemma 3, we have

Lemma 4. If k1 > k2, then we have (ui
k1

, vi
k1
) 6 (ui

k2
, vi

k2
) on Ω̄ × [0, Ti(k2)) and

Ti(k1) > Ti(k2).

Then, from Lemma 4, passing to the limit i → ∞, it happens that (uk1
, vk1

) 6
(uk2

, vk2
) and T(k1) > T(k2) if k1 > k2.

Therefore, the limit T∗ = limk→∞ T(k) exists and, as well, the point-wise limit

u(x, t) = lim
k→∞

uk(x, t), v(x, t) = lim
k→∞

vk(x, t)

exist for any (x, t) ∈ Ω̄× [0, T∗). Furthermore, as the convergence of the sequence
is monotone, passing to the limit k → ∞ in the identities (2.9) and (2.10) is justi-
fied by monotone and dominated convergence theorems for any ψ1, ψ2 ∈ Ψ and
t ∈ [0, T∗). Thus, the following theorem is established.

Theorem 3. (Local existence and continuation) Assume u0, v0 > 0, u0, v0 ∈ L∞(Ω),
there is a T∗ = T∗(u0, v0) > 0 such that there exists a nonnegative weak solution
(u(x, t), v(x, t)) of (1.1) for each T < T∗. Furthermore, either T∗ = +∞ or

lim sup
t→T∗

(‖u(·, t)‖∞ + ‖v(·, t)‖∞) = ∞.

3 Global existence

In this section, we will prove Theorem 1. According to Lemma 2, we only need
to construct bounded, positive super-solutions for any T > 0.

Let ϕ(x) be the unique positive solution of the following linear elliptic prob-
lem

−∆ϕ(x) = 1, x ∈ Ω; ϕ(x) = 0, x ∈ ∂Ω.

Denote C = maxx∈Ω ϕ(x), then 0 ≤ ϕ(x) ≤ C. Now, we define the functions ū, v̄
as

ū(x, t) =
(

k(ϕ(x) + 1)
)l1, v̄(x, t) =

(

k(ϕ(x) + 1)
)l2 , (3.1)

where constants l1, l2 < 1, and k > 0 will be fixed later. Clearly, for any T > 0,
(ū, v̄) is a bounded function and ū ≥ kl1 > 0, v̄ ≥ kl2 > 0. Then, a series of
computations yields

ūt − ∆ū =− kl1 l1(l1 − 1)(ϕ + 1)l1−2|∇ϕ|2 + kl1 l1(ϕ + 1)l1−1

≥kl1 l1(ϕ + 1)l1−1 ≥ kl1 l1(C + 1)l1−1, (3.2)

‖ūv̄‖
p
α =kp(l1+l2)‖(ϕ + 1)l1+l2‖

p
α ≤ kp(l1+l2)(C + 1)p(l1+l2)|Ω|p/α. (3.3)

Similarly,

v̄t − ∆v̄ ≥ kl2 l2(C + 1)l2−1, ‖ūv̄‖
q
β ≤ kq(l1+l2)(C + 1)q(l1+l2)|Ω|q/β. (3.4)
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(1) If p, q < 1 and pq < (1 − p)(1 − q), then there exist constant 0 < ε1 < 1
such that

(1 − ε1)(1 − p) > (1 + ε1)q, (1 − ε1)(1 − q) > (1 + ε1)p. (3.5)

Hence, AL = (ε1, ε1)
T yields

(1 − p)l1 − pl2 = ε1, −ql1 + (1 − q)l2 = ε1. (3.6)

That is,

l1 =
ε1(1 − q) + ε1 p

(1 − p)(1 − q)− pq
, l2 =

ε1(1 − p) + ε1q

(1 − p)(1 − q)− pq
. (3.7)

Moreover, 0 < l1, l2 < 1. Therefore, we can choose k sufficiently large such that

k > max
{( |Ω|p/α

l1
(1 + C)1−ε1

)1/ε1

,
( |Ω|q/β

l2
(1 + C)1−ε1

)1/ε1
}

(3.8)

and
(k(ϕ + 1))l1 ≥ u0(x), (k(ϕ + 1))l2 ≥ v0(x). (3.9)

Now, it follows from (3.2)-(3.9) that (ū, v̄) is a positive super-solution of (1.1).
(2) Next, if p, q < 1 and pq > (1− p)(1− q), then there exist constant 0 < ε2 <

1 such that

(1 + ε2)(1 − q) < (1 − ε2)p, (1 + ε2)(1 − p) < (1 − ε2)q. (3.10)

Hence, AL = (−ε2,−ε2)
T yields

(1 − p)l1 − pl2 = −ε2, −ql1 + (1 − q)l2 = −ε2. (3.11)

Namely,

l1 = −
ε2(1 − q) + ε2 p

(1 − p)(1 − q)− pq
, l2 = −

ε2(1 − p) + ε2q

(1 − p)(1 − q)− pq
. (3.12)

Furthermore, 0 < l1, l2 < 1. Therefore, we can choose k sufficiently small such
that

k < min
{( l1

|Ω|p/α
(1 + C)−1−ε2

)1/ε2

,
( l2
|Ω|q/β

(1 + C)−1−ε2

)1/ε2
}

. (3.13)

And provided u0(x), v0(x) are also sufficiently small to satisfy (3.9). Then, from
(3.2)-(3.4) and (3.9), (3.10)-(3.13), we know that (ū, v̄) is a positive super-solution
of (1.1).

(3) Finally, if p, q < 1 and pq = (1 − p)(1 − q), then we may choose positive
constants l1, l2 < 1 such that

p

1 − p
=

l1
l2

=
1 − q

q
(3.14)
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That is l1 = p(l1 + l2), l2 = q(l1 + l2). Without loss of generality, we may assume
that Ω ⊂⊂ B, where B is a sufficiently large ball. And denote ϕB(x) is the unique
positive solution of the following linear elliptic problem

−∆ϕ(x) = 1, x ∈ B; ϕ(x) = 0, x ∈ ∂B.

Let C0 = maxx∈B ϕB(x), then C ≤ C0. Therefore, as long as Ω is sufficiently
small and such that

|Ω| < min{
( l1

C0 + 1

)α/p
,

( l2
C0 + 1

)β/q
}. (3.15)

Furthermore, choose k large enough to satisfy (3.9). Then, it follows from (3.2)-
(3.4) and (3.14)-(3.15) that (ū, v̄) is a positive super-solution of (1.1).

Thus, according to the Lemma 2, the proof of Theorem 1 is completed.

4 Blow-up results

In this section, we prove Theorem 2, to this end, we only need to construct
blowing-up positive sub-solutions.

Denote by λ1 > 0 and φ1(x) the first eigenvalue and the corresponding eigen-
function of the following eigenvalue problem

−∆φ(x) = λφ(x), x ∈ Ω; φ(x) = 0, x ∈ ∂Ω. (4.1)

It is well known that φ1(x) may be normalized as φ1(x) > 0 in Ω and
maxΩ φ1(x) = 1.

Now, we define the functions ũ(x, t), ṽ(x, t) as follows

ũ(x, t) =
(

s(t)φ1(x)
)l1, ṽ(x, t) =

(

s(t)φ1(x)
)l2 , (4.2)

where l1, l2 > 1, and s(t) is the unique positive solution of the following Cauchy
problem

{

s′(t) = k1sr1(t)
(

sr2(t)− k2

)

, t > 0,
s(0) = δ > 0.

(4.3)

where constants k1, k2, r2 > 0 and r1 ≥ 1 to be fixed later. Clearly, s(t) ≥ δ
and become unbounded in finite time T(δ). Next, we will show that (ũ, ṽ) is a
sub-solution of problem (1.1). A series of computations yields

∆ũ + ‖ũṽ‖
p
α = l1(l1 − 1)sl1φl1−2

1 |∇φ1|
2 − λ1l1sl1φl1

1 + c1sp(l1+l2)

≥ −λ1l1sl1φl1
1 + c1sp(l1+l2)

= l1sl1−1φl1
1

c1

l1
s
(

sp(l1+l2)−l1φ−l1
1 −

λ1l1
c1

)

≥ l1sl1−1φl1
1

c1

l1
s
(

sp(l1+l2)−l1 −
λ1l1
c1

)

, (4-4)

ũt = l1sl1−1φl1
1 s′(t), (4-5)

∆ṽ + ‖ũṽ‖
q
β ≥l2sl2−1φl2

1

c2

l2
s
(

sq(l1+l2)−l2 −
λ1l2
c2

)

, ṽt = l2sl2−1φl2
1 s′(t), (4-6)
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where
c1 = ‖φl1+l2

1 ‖
p
α > 0, c2 = ‖φl1+l2

1 ‖
q
β > 0.

(1) If p, q < 1 and pq > (1 − p)(1 − q), then there exist constant 0 < ε3 < 1
such that

(1 + ε3)(1 − q) > (1 − ε3)p, (1 + ε3)(1 − p) > (1 − ε3)q. (4-7)

Hence,AL = (−ε3,−ε3)
T yields

(1 − p)l1 − pl2 = −ε3, −ql1 + (1 − q)l2 = −ε3. (4-8)

Namely,

l1 = −
ε3(1 − q) + ε3 p

(1 − p)(1 − q)− pq
, l2 = −

ε3(1 − p) + ε3q

(1 − p)(1 − q)− pq
. (4-9)

Moreover, l1, l2 > 1. Therefore, if we choose

k1 = min{
c1

l1
,

c2

l2
}, k2 = max{

λ1l1
c1

,
λ1l2
c2

}, r1 = 1, r2 = ε3. (4-10)

Then, k1, k2, r2 > 0, r1 ≥ 1. Thus, assume that u0(x), v0(x) large enough to
satisfy

ũ(x, 0) = (δφ1)
l1 ≤ u0(x), ṽ(x, 0) = (δφ1)

l2 ≤ v0(x). (4-11)

Now, it follows from (4.1)-(4.11) that (ũ, ṽ) is a positive sub-solution of (1.1),
which blows up in finite time since s(t) does.

(2) Next, we consider the case p, q < 1 and pq = (1 − p)(1 − q). Clearly, there
exist positive constants l1, l2 > 1 such that

p(l1 + l2)− l1 = 0, q(l1 + l2)− l2 = 0. (4-12)

Without loss of generality, we may assume that 0 ∈ Ω, and let BR(0) be a ball
such that BR(0) ⊂⊂ Ω. In the following, we will prove that (ũ, ṽ) blows up in
finite time in the ball BR. Because of so, (ũ, ṽ) does blow up in the larger domain
Ω.

Denote by λBR
> 0 and φR(r) the first eigenvalue and the corresponding

eigenfunction of the following eigenvalue problem

−φ′′(r)−
N − 1

r
φ′(r) = λφ(r), r ∈ (0, R); φ′(0) = 0, φ(R) = 0.

It is well known that φR(r) can be normalized as φR(r) > 0 in BR and φR(0) =
maxBR

φR(r) = 1. By the scaling property (let τ = r/R) of eigenvalues and eigen-
functions we see that λBR

= R−2λB1
and φR(r) = φ1(r/R) = φ1(τ), where λB1

and φ1(τ) are the first eigenvalue and the corresponding normalized eigenfunc-
tion of the eigenvalue problem in the unit ball B1(0). Moreover,

max
B1

φ1(τ) = φ1(0) = φR(0) = max
BR

φR(r) = 1.
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Now, we define the functions ũ(x, t), ṽ(x, t) as follows

ũ(x, t) =
(

s(t)φR(|x|)
)l1, ṽ(x, t) =

(

s(t)φR(|x|)
)l2,

where s(t) is confined as in (4.3). Then, a similar calculation as that of (4.4)-(4.6)
yields

∆ũ + ‖ũṽ‖
p
α ≥ l1sl1−1φl1

R

c1

l1
s
(

1 −
λBR

l1
c1

)

, ũt = l1sl1−1φl1
R s′(t); (4-13)

∆ṽ + ‖ũṽ‖
q
β ≥ l2sl2−1φl2

R

c2

l2
s
(

1 −
λBR

l2
c2

)

, ṽt = l2sl2−1φl2
Rs′(t); (4-14)

where

c1 = ‖φl1+l2
R ‖

p
α =

(

∫

Ω

φ
α(l1+l2)
R (|x|)dx

)

p
α = R

Np
α
(

∫

Ω

φ
α(l1+l2)
1 (|y|)dy

)

p
α ≤ K1R

Np
α ,

c2 = ‖φl1+l2
R ‖

q
β ≤ K2R

Nq
β

and K1, K2 are constants independent of R. Then, in view of λBR
= R−2λB1

, we
may assume that R, that is , the ball BR(0) , is sufficiently large that

λBR
< min{

c1

l1
,

c2

l2
}.

Hence,

1 −
λBR

l1
c1

> 0, 1 −
λBR

l2
c2

> 0. (4-15)

We choose

k1 = min{
c1

l1
,

c2

l2
}, k2 = max{

λBR
l1

c1
,

λBR
l2

c2
}, r1 = 1, r2 = 0. (4-16)

Then, k1, k2 > 0. On the other hand, assume that u0(x), v0(x) large enough to
satisfy

ũ(x, 0) = (δφR)
l1 ≤ u0(x), ṽ(x, 0) = (δφR)

l2 ≤ v0(x). (4-17)

It follows from (4.12)-(4.17) that (ũ, ṽ) is a positive sub-solution of (1.1) in the ball
BR(0), which blows up in finite time since s(t) does.

Thus, according to the Lemma 2, the proof of Theorem 2 is completed.
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