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Abstract

In the paper, we study the uniqueness theorems of meromorphic function
concerning nonlinear differential polynomials sharing a nonzero polynomial
with finite weight and obtain two results which improve and generalize the
results due to X.M Li and L. Gao [12].

1 Introduction, Definitions and Results

In this paper, by meromorphic functions we will always mean meromorphic func-
tions in the complex plane. We adopt the standard notations in the Nevanlinna
theory of meromorphic functions as explained in [7], [15] and [16]. For a noncon-
stant meromorphic function h, we denote by T(r, h) the Nevanlinna characteristic
of h and by S(r, h) any quantity satisfying S(r, h) = o{T(r, h)} as r → ∞ possibly
outside a set of finite linear measure.

Let f and g be two nonconstant meromorphic functions, and let a be a finite
complex number. We say that f and g share the value a CM (counting multiplic-
ities), provided that f − a and g − a have the same set of zeros with the same
multiplicities. Similarly, we say that f and g share the value a IM (ignoring mul-
tiplicities), provided that f − a and g − a have the same set of zeros ignoring
multiplicities. Throughout the paper, we need the following definition.

Θ(a, f ) = 1 − lim sup
r−→∞

N(r, a; f )

T(r, f )
,

Received by the editors September 2011 - In revised form in May 2012.
Communicated by F. Brackx.
2000 Mathematics Subject Classification : Primary 30D35.
Key words and phrases : Uniqueness, Meromorphic function, Nonlinear Differential polyno-

mials, Weighted Value Sharing.

Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 253–267



254 P. Sahoo – S. Seikh

where a is a value in the extended complex plane.
In 1959, W.K. Hayman (see [6], Corollary of Theorem 9) proved the following

theorem:

Theorem A. Let f be a transcendental meromorphic function and n(≥ 3) is an integer.
Then f n f ′ = 1 has infinitely many solutions.

Corresponding to Theorem A, C.C. Yang and X.H. Hua [14] proved the fol-
lowing result.

Theorem B. Let f and g be two nonconstant meromorphic functions, n ≥ 11 be a
positive integer. If f n f ′ and gng′ share 1 CM, then either f (z) = c1ecz, g(z) = c2e−cz,
where c1, c2 and c are three constants satisfying (c1c2)

n+1c2 = −1 or f ≡ tg for a
constant t such that tn+1 = 1.

In 2000, M.L. Fang [4] proved the following result:

Theorem C. Let f be a transcendental meromorphic function, and let n be a positive
integer. Then f n f ′ − z = 0 has infinitely many solutions.

Corresponding to Theorem C, the following result was proved by M.L. Fang
and H.L. Qiu [5].

Theorem D. Let f and g be two nonconstant meromorphic functions, and let n ≥ 11 be

a positive integer. If f n f ′− z and gng′− z share 0 CM, then either f (z) = c1ecz2
, g(z) =

c2e−cz2
, where c1, c2 and c are three nonzero complex numbers satisfying 4(c1c2)

n+1c2 =
−1 or f = tg for a complex number t such that tn+1 = 1.

In 2003, W. Bergweiler and X.C. Pang [3] proved the following theorem:

Theorem E. Let f be a transcendental meromorphic function, and let R 6≡ 0 be a rational
function. If all zeros and poles of f are multiple, except possibly finitely many, then
f ′ − R = 0 has infinitely many solutions.

The question arises:
Question 1. Is there exists a uniqueness theorem corresponding to Theorem E,
similar to Theorems B and D ?

In 2010, X.M. Li and L. Gao [12] answered the above questions and proved the
following uniqueness theorems.

Theorem F. Let f and g be two transcendental meromorphic functions, let n ≥ 11 be a
positive integer, and let P 6≡ 0 be a polynomial with its degree γP ≤ 11. If f n f ′ − P and
gng′ − P share 0 CM, then either f = tg for a complex number t satisfying tn+1 = 1,
or f = c1ecQ and g = c2e−cQ, where c1, c2 and c are three nonzero complex numbers
satisfying (c1c2)

n+1c2 = −1, Q is a polynomial satisfying Q =
∫ z

0 P(η)dη.

Theorem G. Let f and g be two transcendental meromorphic functions, let n ≥ 15 be a
positive integer, and let P 6≡ 0 be a polynomial. If ( f n( f − 1))′− P and (gn(g− 1))′ − P
share 0 CM and Θ(∞, f ) > 2/n, then f = g.
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However questions arise in one’s mind as follows which are the motive of the
authors.
Question 2. Is it really possible to relax in any way the nature of sharing the value
0 in Theorems F and G keeping the lower bound of n fixed?
Question 3. What happened if one consider kth derivative instead of first in
Theorems F and G?

In the paper, we shall try to find out the possible solution of the above two
questions. To state the main results we require the following notion of weighted
sharing of values, introduced by I. Lahiri [8, 9] which measures how close a
shared value is to being shared CM or to being shared IM.

Definition 1. Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we denote by
Ek(a; f ) the set of all a-points of f where an a-point of multiplicity m is counted m times
if m ≤ k and k+1 times if m > k. If Ek(a; f ) = Ek(a; g), we say that f , g share the value
a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is an a-point
of f with multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity m(≤ k)
and z0 is an a-point of f with multiplicity m(> k) if and only if it is an a-point of g with
multiplicity n(> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly
if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that
f , g share a value a IM or CM if and only if f , g share (a, 0) or (a, ∞) respectively.

With the aid of weighted value sharing, we will prove two theorems of which
first one will improve and generalize Theorem F and second one will improve
and generalize Theorem G. The following theorems are the main results of the
paper.

Theorem 1. Let f and g be two transcendental meromorphic functions, let n, k be two
positive integers such that n ≥ 3k + 9, and let P 6≡ 0 be a polynomial with its degree

γP ≤ n − 1. Let ( f n)(k) − P and (gn)(k) − P share (0, 2). Then
(i) if k = 1, either f = tg for a complex number t satisfying tn = 1 or f = c1ecQ and g =
c2e−cQ, where c1, c2 and c are three nonzero complex numbers satisfying (c1c2)

nc2 =
−1, Q is a polynomial satisfying Q =

∫ z
0 P(η)dη;

(ii) if k ≥ 2, either ( f n)(k)(gn)(k) = P2 or f = tg for a complex number t satisfying
tn = 1.

Theorem 2. Let f and g be two transcendental meromorphic functions, let n, m, k be

three positive integers, and let P 6≡ 0 be a polynomial. If ( f n( f − 1)m)(k) − P and

(gn(g − 1)m)(k) − P share (0, 2), then each of the following holds:
(i) when m = 1, n ≥ 3k + 12 and Θ(∞, f ) + Θ(∞, g) > 4/n, then either

( f n( f − 1)m)(k)(gn(g − 1)m)(k) = P2 or f = g;

(ii) when m ≥ 2 and n ≥ 3k + m + 11, then either ( f n( f − 1)m)(k)(gn(g − 1)m)(k) =
P2 or f = g or f and g satisfy the algebraic equation R( f , g) = 0, where

R(w1, w2) = wn
1(w1 − 1)m − wn

2(w2 − 1)m.

The possibility ( f n( f − 1)m)(k)(gn(g − 1)m)(k) = P2 does not arise for k = 1.
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Remark 1. Theorem 1 improves and generalizes Theorem F.

Remark 2. Theorem 2 improves and generalizes Theorems G.

We now explain some definitions and notations which are used in the paper.

Definition 2. [10] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting func-
tions of simple a-points of f . For a positive integer p we denote by N(r, a; f |≤ p) the
counting function of those a-points of f (counted with proper multiplicities) whose mul-
tiplicities are not greater than p. By N(r, a; f |≤ p) we denote the corresponding reduced
counting function.

Analogously we can define N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 3. [9] Let p be a positive integer or infinity. We denote by Np(r, a; f ) the
counting function of a-points of f , where an a-point of multiplicity m is counted m times
if m ≤ p and p times if m > p. Then

Np(r, a; f ) = N(r, a; f ) + N(r, a; f |≥ 2) + ... + N(r, a; f |≥ p).

Clearly N1(r, a; f ) = N(r, a; f ).

Definition 4. Let a be any value in the extended complex plane, and let p be an arbitrary
nonnegative integer. We define

δp(a, f ) = 1 − lim sup
r−→∞

Np(r, a; f )

T(r, f )
.

Remark 3. From the definitions of δp(a, f ) and Θ(a, f ), it is clear that

0 ≤ δp(a, f ) ≤ δp−1(a, f ) ≤ δ1(a, f ) ≤ Θ(a, f ) ≤ 1.

Definition 5. [1, 2] Let f and g be two nonconstant meromorphic functions sharing
the value 1 IM. Let z0 be a 1-point of f with multiplicity p and also a 1-point of g with
multiplicity q. We denote by NL(r, 1; f ) the reduced counting function of those 1-points

of f and g, where p > q, by N
1)
E (r, 1; f ) the counting function of those 1-points of f

and g, where p = q = 1, by N
(2
E (r, 1; f ) the reduced counting function of those 1-points

of f and g, where p = q ≥ 2. Similarly we can define NL(r, 1; g), N
1)
E (r, 1; g) and

N
(2
E (r, 1; g).

2 Lemmas

In this section we present some lemmas which will be needed later.

Lemma 1. [17] Let f and g be two nonconstant meromorphic functions, and let p, k be
two positive integers. Then

Np(r, 0; f (k)) ≤ Np+k(r, 0; f ) + kN(r, ∞; f ) + S(r, f ).
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Lemma 2. [7] Let f be a nonconstant meromorphic function, k be a positive integer, and
let c be a nonzero finite complex number. Then

T(r, f ) ≤ N(r, ∞; f ) + N(r, 0; f ) + N(r, c; f (k))− N(r, 0; f (k+1)) + S(r, f )

≤ N(r, ∞; f ) + Nk+1(r, 0; f ) + N(r, c; f (k))− N0(r, 0; f (k+1)) + S(r, f ),

where N0(r, 0; f (k+1)) denotes the counting function which only counts those points such

that f (k+1) = 0 but f ( f (k) − c) 6= 0.

Lemma 3. [7, 15] Let f be a transcendental meromorphic function, and let a1(z), a2(z)
be two distinct meromorphic functions such that T(r, ai(z)) = S(r, f ), i=1,2. Then

T(r, f ) ≤ N(r, ∞; f ) + N(r, a1; f ) + N(r, a2; f ) + S(r, f ).

Lemma 4. Let f and g be two transcendental meromorphic functions such that f (k) − P

and g(k) − P share (0, 2), where k is a positive integer, P 6≡ 0 is a polynomial. If

∆1 = (k + 2)Θ(∞, f ) + 2Θ(∞, g) + Θ(0, f ) + Θ(0, g)

+δk+1(0, f ) + δk+1(0, g) > k + 7 (2.1)

and

∆2 = (k + 2)Θ(∞, g) + 2Θ(∞, f ) + Θ(0, g) + Θ(0, f )

+δk+1(0, g) + δk+1(0, f ) > k + 7, (2.2)

then either f (k)g(k) = P2 or f = g.

Proof. Noting that f and g are two transcendental meromorphic functions, f (k)

and g(k) are also two transcendental meromorphic functions. Let

F =
f (k)

P
, G =

g(k)

P
,

and let

H =

(

F′′

F′
−

2F′

F − 1

)

−

(

G′′

G′
−

2G′

G − 1

)

. (2.3)

Let z0 6∈ {z : P(z) = 0} be a common simple zero of f (k) − P and g(k) − P. Then
z0 is a common simple zero of F − 1 and G − 1. Substituting their Taylor series at
z0 into (2.3), we see that z0 is a zero of H. Thus we have

N
1)
E (r, 1; F) ≤ N(r, 0; H) ≤ T(r, H) + O(1)

≤ N(r, ∞; H) + S(r, F) + S(r, G). (2.4)

Let z1 6∈ {z : P(z) = 0} be a pole of H. Then from (2.3) we can see that H have
poles only at the zeros of F′ and G′, 1-points of F whose multiplicities are not
equal to the multiplicities of the corresponding 1-points of G, and poles of f and
g. Hence we have

N(r, ∞; H) ≤ N(r, ∞; f ) + N(r, ∞; g) + N(r, 0; f ) + N(r, 0; g) + NL(r, 1; F)

+NL(r, 1; G) + N0(r, 0; F′) + N0(r, 0; G′) + O(log r), (2.5)
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where N0(r, 0; F′) denotes the counting function of those zeros of F′ which are not
the zeros of f (F − 1), N0(r, 0; G′) is similarly defined. Since f is a transcendental
meromorphic functions we have

T(r, P) = o{T(r, f )}. (2.6)

By Lemma 2, we have

T(r, f ) ≤ N(r, ∞; f ) + Nk+1(r, 0; f ) + N(r, 1; F)

−N0(r, 0; F′) + S(r, f ). (2.7)

Similarly

T(r, g) ≤ N(r, ∞; g) + Nk+1(r, 0; g) + N(r, 1; G)

−N0(r, 0; G′) + S(r, g). (2.8)

Since f (k) − P and g(k) − P share 0 IM, therefore using (2.4) and (2.5) we obtain

N(r, 1; F) + N(r, 1; G) = 2N
1)
E (r, 1; F) + 2NL(r, 1; F) + 2NL(r, 1; G)

+2N
(2
E (r, 1; F)

≤ N
1)
E (r, 1; F) + N(r, ∞; f ) + N(r, ∞; g)

+N(r, 0; f ) + N(r, 0; g) + 3NL(r, 1; F)

+3NL(r, 1; G) + N0(r, 0; F′) + N0(r, 0; G′)

+2N
(2
E (r, 1; F) + S(r, f ) + S(r, g). (2.9)

Noting that f (k) − P and g(k) − P share (0, 2) we have

N
1)
E (r, 1; F) + 2N

(2
E (r, 1; F) + 3NL(r, 1; F) + 3NL(r, 1; G)

≤ N(r, 1; G) + S(r, f ) + S(r, g)

≤ T(r, G) + S(r, g)

≤ T(r, g) + kN(r, ∞; g) + S(r, g). (2.10)

From (2.7) - (2.10), we obtain

T(r, f ) ≤ 2N(r, ∞; f ) + (k + 2)N(r, ∞; g) + N(r, 0; f ) + N(r, 0; g)

+Nk+1(r, 0; f ) + Nk+1(r, 0; g) + S(r, f ) + S(r, g). (2.11)

Similarly

T(r, g) ≤ 2N(r, ∞; g) + (k + 2)N(r, ∞; f ) + N(r, 0; g) + N(r, 0; f )

+Nk+1(r, 0; g) + Nk+1(r, 0; f ) + S(r, f ) + S(r, g). (2.12)

Suppose that there exists a subset I ⊆ R+ satisfying mesI = ∞ such that T(r, g) ≤
T(r, f ), r ∈ I. Hence from (2.11) we have

∆2 = (k + 2)Θ(∞, g) + 2Θ(∞, f ) + Θ(0, g) + Θ(0, f )

+δk+1(0, g) + δk+1(0, f ) ≤ k + 7,
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contradicting (2.2). Similarly if there exists a subset I ⊆ R+ satisfying mesI = ∞

such that T(r, f ) ≤ T(r, g), r ∈ I, from (2.12) we can obtain

∆1 = (k + 2)Θ(∞, f ) + 2Θ(∞, g) + Θ(0, f ) + Θ(0, g)

+δk+1(0, f ) + δk+1(0, g) ≤ k + 7,

contradicting (2.1). We now assume that H = 0. That is

(

F′′

F′
−

2F′

F − 1

)

−

(

G′′

G′
−

2G′

G − 1

)

= 0.

Integrating both sides of the above equality twice we get

1

F − 1
=

A

G − 1
+ B, (2.13)

where A( 6= 0) and B are finite complex constants. We now discuss the following
three cases.

Case 1. Let B 6= 0 and A = B. If B = −1, we obtain from (2.13) FG = 1, i.e.,

f (k)g(k) = P2. If B 6= −1, from (2.13) we get

1

F
=

BG

(1 + B)G − 1
and G =

−1

b(F − 1+B
B )

.

So by Lemma 1 we obtain

N

(

r,
1

1 + B
; G

)

≤ N(r, 0; F) ≤ Nk+1(r, 0; f ) + kN(r, ∞; f )

+O(log r) + S(r, f ) (2.14)

and

N

(

r,
1 + B

B
; F

)

≤ N(r, ∞; g) + O(log r). (2.15)

Using Lemma 2, (2.14) and (2.15) we obtain

T(r, g) ≤ Nk+1(r, 0; g) + N

(

r,
1

1 + B
; G

)

+ N(r, ∞; g)

−N0(r, 0; G′) + S(r, g)

≤ Nk+1(r, 0; g) + Nk+1(r, 0; f ) + kN(r, ∞; f )

+N(r, ∞; g) + S(r, f ) + S(r, g) (2.16)

and

T(r, f ) ≤ Nk+1(r, 0; f ) + N

(

r,
1 + B

B
; F

)

+ N(r, ∞; f )

−N0(r, 0; F′) + S(r, f )

≤ Nk+1(r, 0; f ) + N(r, ∞; f ) + N(r, ∞; g) + S(r, f ). (2.17)
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Suppose that there exists a subset I ⊆ R+ satisfying mesI = ∞ such that T(r, f ) ≤
T(r, g), r ∈ I. So from (2.16) we obtain

kΘ(∞, f ) + Θ(∞, g) + δk+1(0, f ) + δk+1(0, g) ≤ k + 2,

which by (2.1) gives

2Θ(∞, f ) + Θ(∞, g) + Θ(0, f ) + Θ(0, g) > 5,

a contradiction by Remark 3. If there exists a subset I ⊆ R+ satisfying mesI = ∞ such
that T(r, g) ≤ T(r, f ), r ∈ I, by the same argument we obtain a contradiction from (2.1)
and (2.17).

Case 2. Let B 6= 0 and A 6= B. If B = −1, from (2.13) we obtain F = A
−(G−(a+1))

. If

B 6= −1, from (2.13) we obtain F − 1+B
B = −A

B2(G+ A−B
B )

. Using the same argument as in

case 1 we obtain a contradiction in both cases.

Case 3. Let B = 0. Then from (2.13) we get

g = A f + (1 − A)P1, (2.18)

where P1 is a polynomial of degree γP1
≥ k. If A 6= 1, by Lemma 3 and (2.18) we get

T(r, g) ≤ N(r, 0; g) + N(r, ∞; g) + N(r, (1 − A)P1; g) + S(r, g)

≤ N(r, 0; g) + N(r, ∞; g) + N(r, 0; f ) + S(r, g). (2.19)

Since f and g are transcendental meromorphic function from (2.18) we have

T(r, f ) = T(r, g) + O(log r).

So from (2.19), we obtain

Θ(0, f ) + Θ(0, g) + Θ(∞, g) ≤ 2,

which gives by (2.1)

(k + 2)Θ(∞, f ) + Θ(∞, g) + δk+1(0, f ) + δk+1(0, g) > k + 5,

a contradiction by Remark 3. Thus A = 1 and so f = g. This completes the proof of the
lemma.

Lemma 5. [12] Let f and g be two transcendental meromorphic functions, let n ≥ 2
be a positive integer, and let P be a nonconstant polynomial with its degree γP ≤ n. If
f n f ′gng′ = P2, then f and g are expressed as f = c1ecQ and g = c2e−cQ respectively,
where c1, c2 and c are three nonzero complex numbers satisfying (c1c2)

n+1c2 = −1, Q
is a polynomial satisfying Q =

∫ z
0 P(η)dη.

Lemma 6. Let f and g be two transcendental meromorphic functions, let n, m be two
positive integers and let P be a nonconstant polynomial. If m = 1, n ≥ 6 or if m ≥ 2,
n ≥ m + 3, then

( f n( f − 1)m)′(gn(g − 1)m)′ 6≡ P2.
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Proof. If possible, let

( f n( f − 1)m)′(gn(g − 1)m)′ ≡ P2. (2.20)

We discuss the following two cases.
Case 1. Let m ≥ 2. Then from (2.20) we obtain

f n−1( f − 1)m−1(c f − d) f ′gn−1(g − 1)m−1(cg − d)g′ ≡ P2, (2.21)

where c = n + m and d = n.
Let z0 6∈ {z : P(z) = 0} be a 1-point of f with multiplicity p0(≥ 1). Then from
(2.21) it follows that z0 is a pole of g. Suppose that z0 is a pole of g of order q0(≥ 1).
Then we have mp0 − 1 = (n + m)q0 + 1, i.e., mp0 = (n + m)q0 + 2 ≥ n + m + 2,
and so

p0 ≥
n + m + 2

m
.

Let z1 6∈ {z : P(z) = 0} be a zero of c f − d with multiplicity p1(≥ 1). Then
from (2.21) it follows that z1 is a pole of g. Suppose that z1 is a pole of g of order
q1(≥ 1). Then we have 2p1 − 1 = (n + m)q1 + 1, and so

p1 ≥
n + m + 2

2
.

Let z2 6∈ {z : P(z) = 0} be a zero of f with multiplicity p2(≥ 1). Then it follows
from (2.21) that z2 is a pole of g. Suppose that z2 is a pole of g of order q2(≥ 1).
Then we have

np2 − 1 = (n + m)q2 + 1. (2.22)

From (2.22) we get mq2 + 2 = n(p2 − q2) ≥ n, i.e., q2 ≥ n−2
m . Thus from (2.22) we

obtain np2 = (n + m)q2 + 2 ≥ (n+m)(n−2)
m + 2, and so

p2 ≥
n + m − 2

m
.

Let z3 6∈ {z : P(z) = 0} be a pole of f . Then it follows from (2.21) that z3 is a zero
of g(g − 1)(cg − d) or a zero of g′. So we have

N(r, ∞; f ) ≤ N(r, 0; g) + N(r, 1; g) + N

(

r,
d

c
; g

)

+ N0(r, 0; g′)

+S(r, f ) + S(r, g)

≤

(

m + 2

n + m + 2
+

m

n + m − 2

)

T(r, g) + N0(r, 0; g′)

+S(r, f ) + S(r, g),

where N0(r, 0; g′) denotes the reduced counting function of those zeros of g′

which are not the zeros of g(g − 1)(cg − d).
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By the second fundamental theorem of Nevanlinna we get

2T(r, f ) ≤ N(r, 0; f ) + N(r, 1; f ) + N

(

r,
d

c
; f

)

+ N(r, ∞; f )

−N0(r, 0; f ′) + S(r, f )

≤

(

m + 2

n + m + 2
+

m

n + m − 2

)

{T(r, f ) + T(r, g)}

−N0(r, 0; f ′) + N0(r, 0; g′) + S(r, f ) + S(r, g). (2.23)

Similarly

2T(r, g) ≤

(

m + 2

n + m + 2
+

m

n + m − 2

)

{T(r, f ) + T(r, g)}

+N0(r, 0; f ′)− N0(r, 0; g′) + S(r, f ) + S(r, g). (2.24)

Adding (2.23) and (2.24) we obtain
(

1 −
m + 2

n + m + 2
−

m

n + m − 2

)

{T(r, f ) + T(r, g)} ≤ S(r, f ) + S(r, g),

contradicting the fact that n ≥ m + 3.
Case 2. Let m = 1. Then from (2.20) we obtain

f n−1(a f − b) f ′gn−1(ag − b)g′ ≡ P2, (2.25)

where a = n + 1 and b = n.
Let z4 6∈ {z : P(z) = 0} be a pole of f . Then it follows from (2.25) that z4 is a zero
of g(ag − b) or a zero of g′. Then proceeding in a like manner as Case 1 we obtain

(

1 −
2

n − 1
−

4

n + 3

)

{T(r, f ) + T(r, g)} ≤ S(r, f ) + S(r, g),

which contradicts with the fact that n ≥ 6. This proves the lemma.

Lemma 7. [13] Let f be a transcendental meromorphic function, and let Pn( f ) be a
differential polynomial in f of the form

Pn( f ) = an f n(z) + an−1 f n−1(z) + ... + a1 f (z) + a0,

where an( 6= 0), an−1, ... , a1, a0 are complex numbers. Then

T(r, Pn( f )) = nT(r, f ) + O(1).

Lemma 8. Let f and g be two nonconstant meromorphic functions such that

Θ(∞, f ) + Θ(∞, g) >
4

n
,

where n(≥ 3) is an integer. Then

f n(a f + b) ≡ gn(ag + b)

implies f ≡ g, where a, b are two nonzero constants.

Proof. We omit the proof since it can be carried out in the line of Lemma 6 [11].
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3 Proof of the Theorem

Proof of Theorem 1. We consider F1 = f n and G1 = gn. Then we see that F
(k)
1 − P

and G
(k)
1 − P share the value 0 with weight two. Using Lemma 7, we have

Θ(0, F1) = 1 − lim sup
r→∞

N(r, 0; F1)

T(r, F1)

= 1 − lim sup
r→∞

N(r, 0; f )

nT(r, f )

≥ 1 − lim sup
r→∞

T(r, f )

nT(r, f )

≥
n − 1

n
. (3.1)

Similarly

Θ(0, G1) ≥
n − 1

n
. (3.2)

Θ(∞, F1) = 1 − lim sup
r→∞

N(r, ∞; F1)

T(r, F1)

= 1 − lim sup
r→∞

N(r, ∞; f )

nT(r, f )

≥ 1 − lim sup
r→∞

T(r, f )

nT(r, f )

≥
n − 1

n
. (3.3)

Similarly

Θ(∞, G1) ≥
n − 1

n
. (3.4)

δk+1(0, F1) = 1 − lim sup
r→∞

Nk+1(r, 0; F1)

T(r, F1)

= 1 − lim sup
r→∞

Nk+1(r, 0; f n)

nT(r, f )

≥ 1 − lim sup
r→∞

(k + 1)T(r, f )

nT(r, f )

≥
n − k − 1

n
. (3.5)

Similarly

δk+1(0, G1) ≥
n − k − 1

n
. (3.6)



264 P. Sahoo – S. Seikh

In view of (2.1)-(2.2) and (3.1)-(3.6) we obtain

∆1 ≥ (k + 8)−
3k + 8

n
and ∆2 ≥ (k + 8)−

3k + 8

n
.

This gives ∆1 > k + 7 and ∆2 > k + 7 as n ≥ 3k + 9. So by Lemma 4 we obtain

either F
(k)
1 G

(k)
1 = P2 or F1 = G1. Suppose that F

(k)
1 G

(k)
1 = P2, i.e.,

( f n)(k)(gn)(k) = P2. (3.7)

If k = 1, then from (3.7) we have f n−1 f ′gn−1g′ = P2/n2. Applying Lemma 5 we
obtain f = c1ecQ and g = c2e−cQ, where c1, c2 and c are three nonzero complex
numbers satisfying (c1c2)

nc2 = −1, Q is a polynomial satisfying Q =
∫ z

0 P(η)dη.

If F1 = G1, then f = tg for a complex number t such that tn = 1. This
completes the proof of Theorem 1.

Proof of Theorem 2. Let F2 = f n( f − 1)m and G2 = gn(g − 1)m. Then F
(k)
2 − P and

G
(k)
2 − P share (0, 2). Using Lemma 7, we obtain

Θ(0, F2) = 1 − lim sup
r→∞

N(r, 0; F2)

T(r, F2)

= 1 − lim sup
r→∞

N(r, 0; f n( f − 1)m)

(n + m)T(r, f )

≥ 1 − lim sup
r→∞

2T(r, f )

(n + m)T(r, f )

≥
n + m − 2

n + m
. (3.8)

Similarly

Θ(0, G2) ≥
n + m − 2

n + m
. (3.9)

Θ(∞, F2) = 1 − lim sup
r→∞

N(r, ∞; F2)

T(r, F2)

= 1 − lim sup
r→∞

N(r, ∞; f )

(n + m)T(r, f )

≥ 1 − lim sup
r→∞

T(r, f )

(n + m)T(r, f )

≥
n + m − 1

n + m
. (3.10)

Similarly

Θ(∞, G2) ≥
n + m − 1

n + m
. (3.11)
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δk+1(0, F2) = 1 − lim sup
r→∞

Nk+1(r, 0; F2)

T(r, F2)

= 1 − lim sup
r→∞

Nk+1(r, 0; f n( f − 1)m)

(n + m)T(r, f )

≥ 1 − lim sup
r→∞

(k + m + 1)T(r, f )

(n + m)T(r, f )

≥
n − k − 1

n + m
. (3.12)

Similarly

δk+1(0, G2) ≥
n − k − 1

n + m
. (3.13)

Using (2.1), (2.2) and (3.8)-(3.13) we obtain

∆1 ≥ (k + 6) +
2n − 3k − 10

n + m
and ∆2 ≥ (k + 6) +

2n − 3k − 10

n + m
.

Since n ≥ 3k + m + 11, we get ∆1 > k + 7 and ∆2 > k + 7. So by Lemma 4, either

F
(k)
2 G

(k)
2 = P2 or F2 = G2 holds. Suppose that F

(k)
2 G

(k)
2 = P2. Then

( f n( f − 1)m)(k)(gn(g − 1)m)(k) = P2. (3.14)

Also by Lemma 6, (3.14) does not arise when k = 1.
Next we suppose that F2 = G2, i.e.,

f n( f − 1)m = gn(g − 1)m. (3.15)

Let m = 1. Then in view of Lemma 8 and (3.15) we obtain f = g.

Let m ≥ 2. Then from (3.15) we obtain

f n[ f m + ... + (−1)iCi
m f m−i + ... + (−1)m] = gn[gm

+... + (−1)iCi
mgm−i + ... + (−1)m]. (3.16)

Let h =
f
g . If h is a constant, then substituting f = gh in (3.16) we obtain

gn+m(hn+m − 1) + ... + (−1)iCi
mgn+m−i(hn+m−i − 1)

+... + (−1)mgn(hn − 1) = 0,

which implies h = 1. Hence f = g.

If h is not a constant, then from (3.15) we can say that f and g satisfy the algebraic
equation R( f , g) = 0, where

R(w1, w2) = wn
1(w1 − 1)m − wn

2(w2 − 1)m.

This completes the proof of theorem 2.
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