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Abstract

In this paper we study Dupin hypersurfaces in R
4 parametrized by lines

of curvature, with three distinct principal curvatures and mjik = 0. We char-
acterize locally a generic family of such hypersurfaces in terms of the princi-
pal curvatures and three vector valued functions of one variable, which are
invariant under inversions and homotheties.

1 Introduction.

Dupin surfaces were first studied by Dupin in 1822 and more recently by many
authors [1]-[3] and [6]-[15], which studied several aspects of Dupin hypersur-
faces. The class of Dupin hypersurfaces is invariant under Lie transformations
[8]. Therefore, the classification of Dupin hypersurfaces is considered up to these
transformations. The local classification of Dupin surfaces in IR3 is well known.
Pinkall [9] gave a complete classification up to Lie equivalence for Dupin hyper-
surfaces M3 ⊂ IR4, with three distinct principal curvatures. Niebergall [7] and
Cecil and Jensen [3] studied proper Dupin hypersurfaces with four distinct prin-
cipal curvatures and constant Lie curvature.

Riveros [12] obtained a local characterization of the Dupin hypersurfaces in
R

4 parametrized by lines of curvature, with three distinct principal curvatures
and mjik 6= 0, in terms of the principal curvatures and three vector valued func-

tions in R
4 which are invariant under inversions and homotheties.

In this paper we consider Dupin hypersurfaces parametrized by lines of cur-
vature and we ask if it is possible to obtain a similar result to that obtained in
[12] with the condition mjik = 0. The Theorem 3.1 gives an affirmative answer

Received by the editors April 2010.
Communicated by S. Gutt.
2000 Mathematics Subject Classification : 35N10, 53A07.
Key words and phrases : Dupin hypersurfaces; Laplace invariants; lines of curvature.

Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 145–154



146 C. M.C. Riveros

to this question, more precisely, we obtain a local characterization of a family of
Dupin hypersurfaces parametrized by lines of curvature and mjik = 0, in terms of
the principal curvature functions and three vector valued functions of one vari-
able. The characterization is based on the theory of higher-dimensional Laplace
invariants introduced by Kamran-Tenenblat [4]-[5]. We consider generic hyper-
surfaces in the sense that suitable generic conditions on the Laplace invariants
are required.

In section 2, we give some properties of hypersurfaces with distinct principal
curvatures. Section 3, is devoted to showing our main results on Dupin hyper-
surfaces in IR4 with three distinct principal curvatures. Moreover, we show that
the vector valued functions, which appear in the characterization of Theorem 3.1
are invariant under inversions and homotheties and we conclude by applying the
theory to a dupin hypersurface.

2 Preliminaries

Let Ω be an open subset of R
n and x = (x1, x2, · · · , xn) ∈ Ω. Let X : Ω ⊂ R

n →
R

n+1, n ≥ 3, be a hypersurface parametrized by lines of curvature, with distinct
principal curvatures λi, 1 ≤ i ≤ n and N : Ω ⊂ R

n → R
n+1 be a unit normal

vector field of X. Then

〈X,i, X,j〉 = δijgii , 1 ≤ i, j ≤ n ,

N,i = −λiX,i , (1)

where the subscript ,i denotes the derivative with respect to xi.
Moreover,

X,ij − Γ
i
ijX,i − Γ

j
ijX,j = 0 , 1 ≤ i 6= j ≤ n , (2)

Γ
i
ij =

λi,j

λj − λi
, 1 ≤ i 6= j ≤ n, (3)

where Γ
k
ij are the Christoffel symbols.

We now consider the higher-dimensional Laplace invariants of the system of
equations (2) (see [4]-[5] for the definition of these invariants),

mij = −Γ
i
ij,i + Γ

i
ijΓ

j
ij ,

mijk = Γ
i
ij − Γ

k
kj , k 6= i, j , 1 ≤ k ≤ n.

(4)

As a consequence of (3) and the Lemma obtained in [5], we obtain the following
identities, valid for distinct i, j, k, l, 1 ≤ i, j, k, l ≤ n :

mijk + mkji = 0,
mijk,k − mijkmjki − mkj = 0,

mij,k + mijkmik + mikjmij = 0,
mijk − mijl − ml jk = 0,

mlik,j + mijlmkil + ml jkmkij = 0.

(5)
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Definition 2.1 An immersion X : Ω ⊂ R
n → R

n+1 is a parametrized Dupin hy-
persurface if each principal curvature is constant along its corresponding lines of
curvature. If the multiplicities of the principal curvatures are constant then the
Dupin hypersurface is said to be proper.

For Dupin hypersurfaces, the Laplace invariants mij are equal to zero and
from Remark 2.2 in [14], it follows that for n ≥ 3, the higher-dimensional Laplace
invariants do not change under inversions in spheres centered at the origin and
homotheties.

For Dupin hypersurfaces with distinct principal curvatures, the Möbius curvature
is defined, for distinct i, j, k, by

Cijk =
λi − λj

λk − λj
. (6)

Since all λi are distinct we conclude that Cijk 6= 0 and Cijk 6= 1. Möbius curvatures
are invariant under Möbius transformations.

The following result extends Lemma 2.3 in [14], which provides some prop-
erties which are satisfied by the principal curvatures of a hypersurface in R

n+1

parametrized by lines of curvature.

Lemma 2.2 Let λr : Ω ⊂ R
n → R, n ≥ 3, be smooth functions distinct at each

point. Consider functions mijk defined by (3) and (4). Then for i, j fixed, 1 ≤ i 6= j ≤ n,
the following properties hold

[

Ckjimjki

]

,i
= mjki,i +

[

λi,i

λj − λi

]

,k

, (7)

[

Ckjimjki

]

,j
= −

[

λj,j

λj − λi

]

,k

, (8)

[

Ckjimjki

]

,l
=

[

Cl jimjli

]

,k
, (9)

where Ckji is the Möbius curvature and 1 ≤ k 6= l ≤ n are distinct from i and j.

Proof: The result it follows from (5) and the equations

C
kji
,i =

Ckji

λj − λi

[

λi,i + (λk − λi)C
ijkmkij

]

,

C
kji
,j =

Ckij

λj − λi

[

λj,j + (λk − λj)C
jikmkji

]

,

C
kji
,k =

1

λi − λj

[

λk,k + (λk − λi)C
kjimjki

]

,

C
kji
,l =

λk − λl

λi − λj

[

mjlk + CilkCkjimil j

]

.
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Remark 2.3 Let X : Ω ⊂ R
3 → R

4, be a Dupin hypersurface parametrized by
lines of curvature, with three distinct principal curvatures λr, 1 ≤ r ≤ 3. Using
Lemma 2.4 in [14], for i, j, k fixed, 1 ≤ i 6= j 6= k ≤ 3, the transformation

X = VX̄ , where V =
e
−

∫

Ckjimjkidxk

λj − λi
, (10)

transforms system (2) into

X̄,ij + AX̄,j = 0,
X̄,ik + (A + mjik)X̄,k = 0,

X̄,jk + mikjX̄,j + mijkX̄,k = 0,
(11)

where
A,j = 0 , A,k = −mjki,i. (12)

It follows from Lemma 2.2 that, the derivatives of the function V defined by (10)
are given by,

V,i =
(

A + Γ
j
ji

)

V,

V,j = Γ
i
ijV, (13)

V,k = Γ
i
ikV,

where A is given by (12).

3 Main results

In this section, we prove our main result which provides a local characterization
of generic Dupin hypersurfaces parametrized by lines of curvature in R

4, with
three distinct principal curvatures and Laplace invariant mjik = 0.

Theorem 3.1 Let X : Ω ⊂ R
3 → R

4, be a Dupin hypersurface parametrized by lines
of curvature, with three distinct principal curvatures λr. For i, j, k distinct fixed indices,
suppose mjik = 0 then

X = VX̄, (14)

where

X̄ = e−
∫

Adxi

{

∫

e
∫

Adxi Gi(xi)dxi + Cikj

[

∫

CjikGk(xk)dxk + Gj(xj)

]}

, (15)

V is defined by (10), Gr(xr), r = i, j, k, are vector valued functions into R
4 and

A,j = 0, A,k = 0.
Moreover, considering

βi =

(

A +
λj,i

λi − λj

)

X̄ + X̄,i , βs =
λi,s

λs − λi
X̄ + X̄,s , s 6= i, (16)

the functions Gr(xr) satisfy the following properties in Ω, for 1 ≤ r 6= t ≤ 3 :
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a) βr 6= 0,

b) 〈βr, βt〉 = 0, r 6= t,

c) λr =
〈βr

,r , βi × βj × βk〉

V|βr|2 |βi| |βj| |βk|
.

Conversely, let λr : Ω ⊂ R
3 → R , r = 1, 2, 3 be real functions, distinct at each point.

Assume that the functions mrts and mrt defined by

mrts =
λr,t

λt − λr
−

λs,t

λt − λs
, 1 ≤ r 6= t 6= s ≤ 3,

mrt = −

[

λr,t

λt − λr

]

,r

−
λr,tλt,r

(λt − λr)2
, 1 ≤ r 6= t ≤ 3, (17)

satisfy (5), and for i, j, k distinct fixed indices, mjik = 0. Then for any vector valued
functions Gr(xr) satisfying properties a) b) c), where βr is defined by (16), the function
X : Ω ⊂ IR3 → R

4 given by (14) describes a Dupin hypersurface parametrized by lines
of curvature whose principal curvatures are the functions λr.

Proof: From equation (2) we have,

X,sr − Γ
s
srX,s − Γ

r
srX,r = 0 , 1 ≤ s 6= r ≤ 3. (18)

For fixed distinct indices i, j, k, we consider the transformation

X = VX̄, (19)

as in Remark 2.3, where V is given by (10). Then system (18) reduces to

X̄,ij + AX̄,j = 0,
X̄,ik + AX̄,k = 0,

X̄,jk + mikjX̄,j + mijkX̄,k = 0,
(20)

where
A,j = 0, A,k = 0. (21)

We observe that the condition mjik = 0 was used to obtain the second equation of
(20). It follows from the first two equations of (20) that

X̄,i + AX̄ = Gi(xi), (22)

whose integration with respect xi, provides

X̄ = e−
∫

Adxi

[

∫

e
∫

Adxi Gi(xi)dxi + F(xj, xk)

]

. (23)

The substitution of X̄ij, X̄j and X̄ik, X̄k in the first and second equations of (20),
respectively, gives identities.

Using X̄jk, X̄j and X̄k in the third equation of (20), we obtain

F,kj + mikjF,j + mijkF,k = 0. (24)
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Next we compute the Laplace invariant m̃jk of equation (24),

m̃jk = mikj,j + mikjmijk.

Using third equation of (5), we obtain

m̃jk = 0.

Therefore, the solution of equation (24) is given by

F(xj, xk) = e−S̃

[

∫

eS̃−SGk(xk)dxk + Gj(xj)

]

, (25)

where

S̃ =
∫

mikjdxk , S =
∫

mijkdxj.

By integration, we obtain

S̃ = log(Cjki) , S = log(−Ckji). (26)

Using (26) in (25) we obtain

F(xj, xk) = Cikj

[

∫

CjikGx(xk)dxk + Gj(xj)

]

. (27)

The substitution of (27) in (23) gives (15).

Considering βi and βs, s = j, k defined by (16), it follows from (7), (8), (13)
and (4) that

X,r = Vβr , r = i, j, k. (28)

Differentiating (28), we have

X,rr = V,rβr + Vβr
,r , r = i, j, k. (29)

It follows from (28) that the metric of X,r is given by

grr = (V)2|βr |2 , grt = 0 , r 6= t. (30)

A unit vector field normal to X is given by

N =
βi × βj × βk

|βi| |βj| |βk|
. (31)

Since X is a hypersurface parametrized by orthogonal curvature lines, with λs, as
principal curvature we have, for 1 ≤ r 6= s ≤ 3

〈N, X,rs〉 = 0, λs =
〈X,rr , N〉

grr
.

Hence from (29) and (31) we obtain for r = i, j, k,

λr =
〈βr

,r , βi × βj × βk〉

V|βr|2|βi| |βj| |βk|
.
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Therefore, we conclude that conditions a), b) and c) are satisfied.
Conversely, let λr be real functions distinct at each point. Assume that the

functions mrts and mrt, defined by (17), satisfy (5) and suppose Gr(xr), 1 ≤ r ≤ 3,
are vector valued functions satisfying properties a), b) and c). Defining X by
(14), it follows from Lemma 2.2 and properties a) and b), that X is an immersion,
whose coordinates curves are orthogonal. Moreover, the induced metric is given
by (30) and a unit normal vector field by (31).

Differentiating (28) with respect to xt, using Lemma 2.2, the expressions (5),
(13) and (16) we obtain

X,rt = V

(

λr,t

λt − λr
βr +

λt,r

λr − λt
βt

)

, r 6= t.

From (31), it follows that 〈X,rt , N〉 = 0 . Hence the second fundamental form is
diagonal and therefore the coordinates curves are lines of curvature. Moreover, it
follows from (29) - (31) and from property c) that for r = i, j, k,

〈X,rr, N〉

grr
=

〈βr
,r , βi × βj × βk〉

V|βr|2|βi| |βj| |βk|
= λr,

which concludes the proof.
Now we show that the vector valued functions which appear in Theorem 3.1

are invariant under inversions and homotheties.

Theorem 3.2 Let X : Ω ⊂ R
3 → R

4 be a Dupin hypersurface with three distinct prin-
cipal curvatures λr, parametrized by lines of curvature as in the Theorem 3.1. Then the
vector valued functions Gr(xr), 1 ≤ r ≤ 3 are invariants under inversions and homoth-
eties.

Proof: a) Assuming without loss of generality that 0 /∈ X(Ω), we consider X̃ =
I4(X) a Dupin hypersurface parametrized by lines of curvature, obtained by com-

posing X with the inversion defined by I4(X) =
X

〈X, X〉
and whose distinct prin-

cipal curvatures are given by

λ̃r = 〈X, X〉λr + 2〈X, N〉 , r = i, j, k. (32)

Applying the Theorem 3.1 to X̃, we have for i, j, k fixed distinct indices

X̃ = Ṽ ¯̃X,

where

¯̃X = e−
∫

Ãdxi

{

∫

e
∫

Ãdxi G̃i(xi)dxi + C̃ikj

[

∫

C̃jikG̃k(xk)dxk + G̃j(xj)

]}

,

Ṽ =
e
−

∫

C̃kjim̃jkidxk

λ̃j − λ̃i

, C̃kji =
λ̃k − λ̃j

λ̃i − λ̃j

, (33)

Ã = −
∫

m̃jki,idxk ,
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and G̃r(xr), r = i, j, k are vector valued functions in R
4.

Since X̃ and X have the same higher-dimensional Laplace invariants, we ob-
tain

Ã = A. (34)

Substituting (32) in (33), we have

Ṽ =
V

〈X, X〉
. (35)

On the other hand,

X̃ =
X

〈X, X〉
. (36)

We will show that G̃r(xr) = Gr(xr), r = i, j, k. It follows from (35) and (36) that

¯̃X = X̄. (37)

Differentiating (37) with respect to xi, we get

G̃i(xi) = Gi(xi). (38)

From (37) and (38), we have

[

∫

C̃jikG̃k(xk)dxk + G̃j(xj)

]

=

[

∫

CjikGk(xk)dxk + Gj(xj)

]

(39)

Differentiating with respect to xk, we get G̃k(xk) = Gk(xk), hence it follows that
G̃j(xj) = Gj(xj), which concludes the proof of a).

b) Let X̂ = aX be a homothety of X. Then X̂ is a Dupin hypersurface parametrized
by lines of curvature, with distinct principal curvatures given by

λ̂r =
λr

a
, r = i, j, k. (40)

Applying Theorem 3.1 to X̂, we have for i, j, k distinct fixed indices

X̂ = V̂ ¯̂X.

where

¯̂X = e−
∫

Âdxi

{

∫

e
∫

Âdxi Ĝi(xi)dxi + Ĉikj

[

∫

ĈjikĜk(xk)dxk + Ĝj(xj)

]}

,

V̂ =
e
−

∫

Ĉkjim̂jkidxk

λ̂j − λ̂i

, Ĉkji =
λ̂k − λ̂j

λ̂i − λ̂j

, (41)

Â = −
∫

m̂jki,idxk ,

and Ĝr(xr), r = i, j, k are vector valued functions in R
4.
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Since X̂ and X have the same Laplace invariants. Therefore, it follows that

Â = A. (42)

We will show that Ĝr(xr) = Gr(xr). Substituting (40) in (41), we have

V̂ = aV. (43)

Since

X = VX̄ , X̂ = V̂ ¯̂X. (44)

Substituting (43) and (44) in X̄ = aX we have,

¯̂X = X̄.

The same argument of item a) proves that Ĝr(xr) = Gr(xr), ∀ r.

Example Now we will give an example: We consider a Dupin hypersurface X :
Ω → R

4 given by

X(x1, x2, x3) = ((a + r cos x3) cos x1, (a + r cos x3) sin x1, r sin x3, x2)

where Ω = {(x1, x2, x3) ∈ R
3| x1 ∈ (0, 2π), x2 ∈ R, x3 ∈ (0, π/2)}

The principal curvatures of X is given by

λ1 = −
cos x3

a + r cos x3
, λ2 = 0, λ3 = −

1

r

and for i = 1, j = 2, k = 3 ; the Laplace invariant m213 = 0, therefore, using
Theorem 3.1, we obtain

X = Ve−
∫

Adx1

{

∫

e
∫

Adx1 G1(x1)dx1 + C132

[

∫

C213G3(x3)dx3 + G2(x2)

]}

,

where

V = a + r cos x3,

A = 0. (45)

The vector valued functions are given by

G1(x1) = (− sin x1, cos x1, 0, 0),

G2(x2) = (0, 0, 0,
x2

a
),

G3(x3) = (0, 0,−1, 0).

We observe that in this example, using (6) we can show that the Möbius curvature
Cijk is not constant.
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