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Abstract

In this paper we study Dupin hypersurfaces in R* parametrized by lines
of curvature, with three distinct principal curvatures and m;; = 0. We char-
acterize locally a generic family of such hypersurfaces in terms of the princi-
pal curvatures and three vector valued functions of one variable, which are
invariant under inversions and homotheties.

1 Introduction.

Dupin surfaces were first studied by Dupin in 1822 and more recently by many
authors [1]-[3] and [6]-[15], which studied several aspects of Dupin hypersur-
faces. The class of Dupin hypersurfaces is invariant under Lie transformations
[8]. Therefore, the classification of Dupin hypersurfaces is considered up to these
transformations. The local classification of Dupin surfaces in R? is well known.
Pinkall [9] gave a complete classification up to Lie equivalence for Dupin hyper-
surfaces M°> C R*, with three distinct principal curvatures. Niebergall [7] and
Cecil and Jensen [3] studied proper Dupin hypersurfaces with four distinct prin-
cipal curvatures and constant Lie curvature.

Riveros [12] obtained a local characterization of the Dupin hypersurfaces in
R* parametrized by lines of curvature, with three distinct principal curvatures
and mjj; # 0, in terms of the principal curvatures and three vector valued func-

tions in R* which are invariant under inversions and homotheties.

In this paper we consider Dupin hypersurfaces parametrized by lines of cur-
vature and we ask if it is possible to obtain a similar result to that obtained in
[12] with the condition mj; = 0. The Theorem 3.1 gives an affirmative answer
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to this question, more precisely, we obtain a local characterization of a family of
Dupin hypersurfaces parametrized by lines of curvature and mj; = 0, in terms of
the principal curvature functions and three vector valued functions of one vari-
able. The characterization is based on the theory of higher-dimensional Laplace
invariants introduced by Kamran-Tenenblat [4]-[5]. We consider generic hyper-
surfaces in the sense that suitable generic conditions on the Laplace invariants
are required.

In section 2, we give some properties of hypersurfaces with distinct principal
curvatures. Section 3, is devoted to showing our main results on Dupin hyper-
surfaces in R* with three distinct principal curvatures. Moreover, we show that
the vector valued functions, which appear in the characterization of Theorem 3.1
are invariant under inversions and homotheties and we conclude by applying the
theory to a dupin hypersurface.

2 Preliminaries

Let Q) be an open subset of R” and x = (x1,x2,---,%,) € Q. Let X: Q C R" —
R"*!1, 1 > 3, be a hypersurface parametrized by lines of curvature, with distinct

principal curvatures A;, 1 <i <mand N: Q C R" — R"*! be a unit normal
vector field of X. Then

(X, X;) = 6ijgii, 1<i,j<n,
N, = —AX;, M)

’

where the subscript ; denotes the derivative with respect to x;.
Moreover,

i — Aij 1<i#j<n (©)
g )L] — )\i, - J=
where Fi-‘j are the Christoffel symbols.
We now consider the higher-dimensional Laplace invariants of the system of
equations (2) (see [4]-[5] for the definition of these invariants),

_ j i T/
Mijx = Fi-j—l”ﬁj,k;éz,], 1<k<n.

As a consequence of (3) and the Lemma obtained in [5], we obtain the following
identities, valid for distinct 7,j,k,I, 1 <i,j,k, 1 <mn:

~

Mijk + Mji =

Mijk e — MijkcMjki — Mj
Mijf + MjjMi + Migm;
Mijk — Miji — Myjk

Myik,j + Miji M) + MjMgi; =

|
coocoo

~

(5)

~
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Definition 2.1 An immersion X : Q C R" — R"*! is a parametrized Dupin hy-
persurface if each principal curvature is constant along its corresponding lines of
curvature. If the multiplicities of the principal curvatures are constant then the
Dupin hypersurface is said to be proper.

For Dupin hypersurfaces, the Laplace invariants m;; are equal to zero and
from Remark 2.2 in [14], it follows that for n > 3, the higher-dimensional Laplace
invariants do not change under inversions in spheres centered at the origin and
homotheties.

For Dupin hypersurfaces with distinct principal curvatures, the Mobius curvature
is defined, for distinct i, j, k, by
Ai = Aj

Ry (©)

Cijk —

Since all A; are distinct we conclude that C7/% £ 0 and CY* # 1. Mobius curvatures
are invariant under Mdobius transformations.

The following result extends Lemma 2.3 in [14], which provides some prop-
erties which are satisfied by the principal curvatures of a hypersurface in R"*!
parametrized by lines of curvature.

Lemma 2.2 Let A, : O C R" — R, n > 3, be smooth functions distinct at each
point. Consider functions mj defined by (3) and (4). Then fori,j fixed, 1 <i #j <n,
the following properties hold

o A s
Ckityg ... — L T , 7
L m]kl_ ,i m]kl/l + /\] - /\1 ) ( )
- A

Chimy;| = — [il 8)

jki | A
_ !, N=A,
CHmjg ;= [Clﬁmjlz} L )

where Cii is the Mobius curvature and 1 < k # 1 < n are distinct from i and j.

Proof: The result it follows from (5) and the equations

¢l = A].Cfﬁm Aii+ (A = A40)Cmg |
cj' = A].Cfl]m A+ (= A
cii = /\1'1)\]' :Ak,k‘f'(/\k_)\i)ckjimjki}’
i~ % [mjzk+C”"C"f"'mﬂf}' )
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Remark 2.3 Let X : QO C R®> — R*, be a Dupin hypersurface parametrized by
lines of curvature, with three distinct principal curvatures A,, 1 < r < 3. Using
Lemma 2.4 in [14], for i, j, k fixed, 1 < i # j # k < 3, the transformation

- / ijiTTijidxk
- e

X=VX, h V= , 10
where Py (10)

transforms system (2) into
X,ij + AX,] = 0,
- X+ (A4 mp) X g 0, (11)
X,]'k + mik]'X,]- + miij,k = 0,

where
A’]‘ =0 , A,k = —m]‘kl',l'. (12)

It follows from Lemma 2.2 that, the derivatives of the function V defined by (10)
are given by,

_ j
vi = (A+1))V,
vV, = r;ijv, (13)
Vi = T4V,

where A is given by (12).

3 Main results

In this section, we prove our main result which provides a local characterization
of generic Dupin hypersurfaces parametrized by lines of curvature in R*, with
three distinct principal curvatures and Laplace invariant m;; = 0.

Theorem 3.1 Let X : QO C R® — R*, be a Dupin hypersurface parametrized by lines
of curvature, with three distinct principal curvatures A,. For i, j, k distinct fixed indices,
suppose mjy = 0 then

X =VX, (14)

where
X = ¢~ J Adxi { / e A% G, (x;)dx; + CN { / CIk Gy (xp ) dxye + G]-(xj)] } , (15

V is defined by (10), G,(x,), r = i,j,k, are vector valued functions into R* and
A;j=0, Ax=0.
Moreover, considering
p—(a+r 2 Vxax,, p=-lis 4%, 540 (16
Al_/\] A7 As—/\l‘ S 7 7

the functions G, (x,) satisfy the following properties in Q), for 1 <r #t < 3:
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a) B" #0,

b) (B",B") =0, r#t,

(B B x B x B)

~ VIE BB B

Conversely, let A, : Q) C R3 > R ,r =1,2,3 be real functions, distinct at each point.
Assume that the functions m,s and m,; defined by

c) A,

Art /\st
= 4 — 4 < <
Myts p— At_/\s,l_r;ét#s_?),
Art Art)\tr
= — . — L 1< t < 17
Myt |:/\t_/\r:|/r (/\t_Ar)z 7 ST 7& >~ 3/ ( )

satisfy (5), and for i,j, k distinct fixed indices, mjx = 0. Then for any vector valued
functions G,(x,) satisfying properties a) b) c), where B is defined by (16), the function
X : Q) C R®> — R* given by (14) describes a Dupin hypersurface parametrized by lines
of curvature whose principal curvatures are the functions A,.

Proof: From equation (2) we have,
X —I5Xs —T0,X, =0, 1<s#r<3. (18)
For tixed distinct indices i, j, k, we consider the transformation
X =VX, (19)
as in Remark 2.3, where V is given by (10). Then system (18) reduces to

X,ij + AX,]' =0,
Xix+AX; =0, (20)
X,]'k + mik]‘)_(,]' + mi]‘kf{,k =0,

where
A,]- =0, Ap=0. (21)

We observe that the condition m;; = 0 was used to obtain the second equation of
(20). It follows from the first two equations of (20) that

X+ AX = Gi(xy), (22)
whose integration with respect x;, provides

X = o J Adx { [ el 445G, )i + Fxg )| 23)

The substitution of Xjj, X; and Xy, X in the first and second equations of (20),
respectively, gives identities.
Using X, X; and X; in the third equation of (20), we obtain

Fyj+ migFj + mjjFy = 0. (24)
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Next we compute the Laplace invariant 7, of equation (24),
Mj = Migj i + MiiMMijk.
Using third equation of (5), we obtain
Mj = 0.
Therefore, the solution of equation (24) is given by

F(xj, x¢) = ¢S [/ eg_SGk(xk)dxk + Gj(xj)} , (25)

where

§ =log(C*) , S = log(—C""). (26)
Using (26) in (25) we obtain

F(xj, x) = C [ / CRGe (i) doxy + G]-(xj)] : 27)
The substitution of (27) in (23) gives (15).

Considering B and B°, s = j,k defined by (16), it follows from (7), (8), (13)
and (4) that
X, = VB ,r=i,jk (28)

Differentiating (28), we have
Xpw=V,p"+VB,, r=1i,jk (29)

It follows from (28) that the metric of X, is given by

gr= (V7B gn=0,r#t (30)
A unit vector field normal to X is given by
i piw gk
B B] 1B
Since X is a hypersurface parametrized by orthogonal curvature lines, with A, as
principal curvature we have, for1 <r #s <3

(N,X,s) =0, Ag = M .
Qrr

Hence from (29) and (31) we obtain for r = i, j, k,

_ (B BT B X B
VIBIPIB 18] 1B

r
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Therefore, we conclude that conditions a), b) and c) are satisfied.

Conversely, let A, be real functions distinct at each point. Assume that the
functions m;,s and m,;, defined by (17), satisfy (5) and suppose G,(x,), 1 <r <3,
are vector valued functions satisfying properties a), b) and c). Defining X by
(14), it follows from Lemma 2.2 and properties a) and b), that X is an immersion,
whose coordinates curves are orthogonal. Moreover, the induced metric is given
by (30) and a unit normal vector field by (31).

Differentiating (28) with respect to x;, using Lemma 2.2, the expressions (5),
(13) and (16) we obtain

Art /\tr
Xy=V|—"—L_p 4L gt t.
St (/\t_/\rﬁ +)Lr_)Ltﬁ) ,1’7&

From (31), it follows that (X ,; ,N) = 0. Hence the second fundamental form is
diagonal and therefore the coordinates curves are lines of curvature. Moreover, it
follows from (29) - (31) and from property c) that for r =i, j, k,

(X, N)Y _ (B B x B/ x )
8rr VIBPIB 1B B
which concludes the proof. n

Now we show that the vector valued functions which appear in Theorem 3.1
are invariant under inversions and homotheties.

)LY/

Theorem 3.2 Let X : QO C R3 — R* be a Dupin hypersurface with three distinct prin-
cipal curvatures A, parametrized by lines of curvature as in the Theorem 3.1. Then the
vector valued functions G,(x,),1 < r < 3 are invariants under inversions and homoth-
eties.

Proof: a) Assuming without loss of generality that 0 ¢ X(Q)), we consider X =
I*(X) a Dupin hypersurface parametrized by lines of curvature, obtained by com-

posing X with the inversion defined by I4(X) = and whose distinct prin-

(X, X)
cipal curvatures are given by

Ar = (X, X)A +2(X,N), r =1i,]j,k. (32)

Applying the Theorem 3.1 to X, we have for i, , k fixed distinct indices

X =VX,

where

<

e~ J Adxi {/ef“idx"éi(xi)dxi +CH {/ CI* Gy (xp)dxy + Gj(xi)} }

—/ijiﬁijkidxk
V = ¢ = = , Ckﬂ =

XX
A = _/mjki,idxkz

>
>

K —

! (33)
]

1

>
>
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and G,(x,), r =1, j, k are vector valued functions in R*.
Since X and X have the same higher-dimensional Laplace invariants, we ob-
tain

A=A (34)
Substituting (32) in (33), we have
- 1%
YERY (39)
On the other hand, X
X = XX (36)

We will show that G,(x,) = G,(x,), r = i,j, k. It follows from (35) and (36) that
X = X. (37)
Differentiating (37) with respect to x;, we get
Gi(xi) = Gi(x). (38)

From (37) and (38), we have
{/ Cﬁk(ik(xk)dxk + éj(x]‘)} = {/ Cjika(xk)dxk + G]-(x]-) (39)

Differentiating with respect to x, we get Gr(xx) = Gi(xy), hence it follows that

Gj(xj) = Gj(x;), which concludes the proof of a).

b) Let X = aX be a homothety of X. Then X is a Dupin hypersurface parametrized
by lines of curvature, with distinct principal curvatures given by

ﬁw:%,rzhﬁk (40)

Applying Theorem 3.1 to X, we have for i, j, k distinct fixed indices

DI

X=v

where

— | CNiiypy dx N N

/ Jhi% 2k A=A

vo= S kiR (41)
A=A Ai— A

A = _/mjki,idxk/

and G,(x,), r =1, j, k are vector valued functions in R*.
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Since X and X have the same Laplace invariants. Therefore, it follows that
A=A (42)
We will show that G, (x,) = G,(x,). Substituting (40) in (41), we have
V=aV. (43)

Since

X=VX, X=VX. (44)
Substituting (43) and (44) in X = aX we have,

A, —

X =X.
The same argument of item a) proves that Gr(x,) = G,(x,), V r. u

Example Now we will give an example: We consider a Dupin hypersurface X :
Q — R* given by

X(x1,x2,x3) = ((a + rcosx3) cos x1, (a + r cos x3) sin x1, ¥ sin x3, x7)

where Q) = {(x1,x2,x3) € R*| x1 € (0,271), x € R, x3 € (0, 77/2)}
The principal curvatures of X is given by

COS X3

AM=——"-—"7"—-
a+ rcos x3

1
//\2:0//\3:_;

and fori = 1, j = 2, k = 3; the Laplace invariant my;3 = 0, therefore, using
Theorem 3.1, we obtain

X = Ve~ [ Adxn {/ef Adlel(m)dxl + C132 {/ C?13G3(x3)dxz + Gz(xz)} },

where

V = a+rcosuxs,
A = 0. (45)

The vector valued functions are given by

Gi(x1) = (—sinxy,cosxy,0,0),
X

Ga(x2) = (0,0,0,2),

G3(X3) = (0,0,—1,0).

We observe that in this example, using (6) we can show that the M&bius curvature
Cii* is not constant.
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