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Abstract

In 2008, Ferrara Dentice and Marino provided a characterization theorem
for Veronesean caps in PG(N, K), with K a skewfield. This result extends
the theorem for the finite case proved by J.A. Thas and Van Maldeghem in
2004. However, although the statement of this theorem is correct, the proof
given by Ferrara Dentice and Marino is incomplete, as they borrow some
lemmas from the paper of J.A. Thas and Van Maldeghem, which are proved
using counting arguments and hence require a different approach in the in-
finite case. In this paper we use the Veblen-Young theorem to fill these gaps.
Moreover, we then use this classification of Veronesean caps to provide a
further general geometric characterization.

1 Introduction

Veronesean varieties are fundamental objects in geometry, be it in classical alge-
braic geometry or modern finite geometry. In the past decades, several character-
ization results were proved for both quadric Veroneseans and Hermitian Verone-
seans in the finite case, many of them purely combinatorial, but some of them
rather geometric in nature. Two examples of the latter are (1) the characterization
as unions of ovals or ovoids with an additional assumption on the tangent lines
or planes, see [1], [4] and [5]; these characterizations also hold for certain pro-
jections of the varieties, (2) the characterization as representation of a projective
space in another projective space where lines of the former are ovals or ovoids in
the latter, see [6] and [7].
Since the formulation of the assumptions of the above characterizations are inde-
pendent of the finiteness, one can wonder whether these also hold in the general
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(infinite) case. A first attempt towards this was made by Ferrara Dentice and
Marino (in “Classification of Veronesean caps”, Discrete Math. 308 (2008), 299–
302), who considered the characterization of type (1) for quadric Veroneseans.
However, their proof contains two serious gaps, as firstly they neglected to prove
that the tangent lines at a fixed point x to the ovals containing x and meeting a
fixed oval not through x fill up a plane, which is crucial in showing that the cap
endowed with the ovals is a projective space; in the finite case, this just follows by
the numbers. Secondly, in the case of an infinite field, one needs to show that this
projective space is necessarily finite-dimensional (this is trivial in the finite case).
Once this proved, it is a routine exercise to reformulate the proof in [5] count-free.
In the present paper, we fill these gaps by directly showing that the cap endowed
with the ovals is a finite-dimensional projective space using Veblen’s axiom. Then
we go on proving a type (2) characterization for quadric Veronesean varieties
(valid in the general infinite case, but at the same time providing an alternative
proof for the finite case).
The paper is organized as follows. In Section 2, we introduce the necessary no-
tions: we review the Veblen-Young theorem, which is crucial in our arguments,
define quadric Veroneseans, and state our main results. In Section 3 we prove
Theorem 2.2. In Section 4, we prove Theorem 2.3.

2 Notation and main results

2.1 Axiomatization of projective spaces

A good exposition on the foundations of projective and polar spaces can be found
on Peter Cameron’s website, and the paragraph below is based on these lecture
notes. At the end of the 19th century a lot of work was done on the axiomatization
of projective spaces, starting with Pasch. This work culminated in 1910 when
Veblen and Young provided a beautiful characterization of projective spaces [8]
based on the following axiom.
Veblen’s axiom

If a line intersects two sides of a triangle but does not contain their intersection then it
also intersects the third side.
Before stating the Veblen-Young theorem, we recall that a thick linear space is an
incidence structure such that any line contains at least three points, and such that
any two distinct points are contained in a unique line.

Theorem 2.1 (Veblen-Young theorem). Let (X,L) be a thick linear space satisfying
Veblen’s axiom. Then one of the following holds:

(1) X = L = ∅.

(2) |X| = 1, L = ∅.

(3) L = {X}, |X| ≥ 3.

(4) (X,L) is a projective plane.

(5) (X,L) is a projective space over a skew field, not necessarily of finite dimension.
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2.2 Veronesean caps

An oval C in a projective plane π is a set of points of π such that no line of π

intersects C in at least 3 points, and for every point x ∈ C, there is a unique line
L through x intersecting C in only x. The line L is called the tangent line at x to C
and denoted Tx(C).
Let X be a spanning point set of PG(N, K), N ∈ N, N ≥ 3, with K any skew
field, and let Σ be a collection of planes of PG(N, K) such that, for any π ∈ Σ, the
intersection π ∩ X is an oval X(π) in π (and then, for x ∈ X(π), we sometimes
denote Tx(X(π)) simply by Tx(π)). Then V = (X, Σ) is called a Veronesean cap if
the following properties hold :

(V1) Any two points x and y lie in a unique element of Σ, denoted by [x, y].

(V2) If π1, π2 ∈ Σ, with π1 6= π2, then π1 ∩ π2 ⊂ X.

(V3) If x ∈ X and π ∈ Σ, with x /∈ π, then all lines Tx([x, y]), y ∈ π ∩ X, are
contained in a common plane of PG(N, K), denoted by T(x, π).

In [6], it is proved that for n ≥ 2 the following are examples of Veronesean caps.
Quadric Veroneseans

Let K be a (commutative) field and n a natural number greater than or equal to
1. The quadric Veronesean Vn of index n is the set of points of the projective space
PG(n(n + 3)/2, K) with generic element

(x2
0, x2

1, . . . , x2
n, x0x1, x0x2, . . . , x0xn, x1x2, . . . , x1xn, . . . , xn−1xn),

where (x0, x1, . . . , xn) is a point of PG(n, K). Equivalently, if we consider a point
of PG(n(n + 3)/2, K) with projective coordinates

(y00, y11, . . . , ynn, y01, y02, . . . , y0n, y12, . . . , y1n, . . . , yn−1,n),

then it belongs to Vn if and only if rank(yij) = 1, with yij = yji if i > j.
The following theorem is our first main result and is the generalization of the
finite case, proved in [6].

Theorem 2.2. Let X be a Veronesean cap in Π = PG(N, K). Then K is a field and there
exists a natural number n ≥ 2 (called the index of X), a projective space Π′ := PG(n(n+
3)/2, K) containing Π, a subspace R of Π′ skew to Π, and a quadric Veronesean Vn of
index n in Π′, with R ∩ Vn = ∅, such that X is the (bijective) projection of Vn from R
onto Π. The subspace R can be empty, in which case X is projectively equivalent to Vn.

The above was also stated by Ferrara Dentice and Marino, but their argument
contains a gap. To be more precise, let V = (X, Σ) be a Veronesean cap, where
X is a set of points in PG(N, K), for some skew field K, and Σ its collection of
planes. Associated with V we can consider the geometry P having point set X
and as line set L the set Σ, endowed with the natural incidence. Then Ferrara
Dentice and Marino proved the above theorem under the extra assumption that
(X,L) is a finite-dimensional projective space (in fact, they derived that (X,L)
is a projective space from the unproved and unreferenced fact that, in (V3), the
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tangent lines at any point x ∈ X are not only contained in a common plane, but
cover the whole plane). In Section 3 we will prove that (X,L) is a projective
space using the Veblen-Young theorem. Moreover, we show that (X,L) is finite-
dimensional. The proof of Theorem 2.2 is then finished by quoting the proof for
the finite case contained in [5].
As an application, we will show the following characterization, which basically
replaces Condition (V2) with a dimension restriction, and (V3) with the condition
that the geometry of points and ovals is a projective space.

Theorem 2.3. Let X be a spanning set of points in the projective space PG(d, K), with
K any skew field of order at least 3. Suppose that

(V1*) X contains a set of plane ovals and that any two points x, y of X are contained in
exactly one of these ovals; we denote this oval by X[x, y];

(V2*) the set X endowed with all subsets X[x, y], has the structure of the point-line ge-
ometry of a projective space PG(n, F), for some skew field F, n ≥ 3, or of some
projective plane Π (and we put n = 2 in this case);

(V3*) d ≥ 1
2n(n + 3).

Then d = 1
2 n(n + 3) and X is the point set of a quadric Veronesean of index n in

PG(d, K). In particular, K and F are commutative, F ≡ K if n ≥ 3, and Π is iso-
morphic to PG(2, K) if n = 2.

3 Proof of the Main Result

Let V = (X, Σ) be a Veronesean cap, where X is a set of points in PG(N, K), for
some skew field K, and Σ its collection of planes.
Associated with V we can consider the geometry P having point set X and line
set the set Σ, endowed with the natural incidence.

Theorem 3.1. P is a projective space.

Proof. Recall that we denote by [x, y] the unique element of Σ through x, y ∈ X;
so [x, y] is a plane. Then we write X[x, y] for X ∩ [x, y]. The set of ovals X[x, y]
will be denoted by Ω.
Let x12, x23 and x13 be three points of X not contained in a common oval of Ω and
denote C1 = X[x12, x13], C2 = X[x12, x23] and C3 = X[x13, x23]. Let C4 be an oval
of Ω intersecting C1 in a point x14 and C2 in a point x24, both different from x12.
Our purpose is to show that Veblen’s axiom holds, which means that we have to
show that C4 intersects C3. Of course, we may assume that C3 6= C4 and that C4

does not contain x13 nor x23. First we claim that V := 〈C1, C2, C3〉 contains C4 and
may be assumed to be of dimension 5.
Indeed, let us first show that V contains C4. Since both Tx13

(C3) and Tx13
(C1) be-

long to 〈C1, C3〉 ⊆ V, it follows by Condition (V3) applied to the point x13 and the
oval C2 that also Tx13

([x13, x24]) does, and hence [x13, x24] = 〈Tx13
([x13, x24]), x24〉

is contained in V. Likewise, applying (V3) to x24 and C1 and reasoning as above
it follows that C4 is contained in V.
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Clearly V cannot be 3-dimensional by (V2). Now, if V were 4-dimensional, then,
again by (V2), C4 and C3 would meet, and Veblen’s axiom would follow automat-
ically. So we may assume that V is 5-dimensional.
Now we project V \ 〈C2〉 from 〈C2〉 onto a plane π of V disjoint from 〈C2〉. The
ovals C3 and C4 together with their tangents at their intersection point with C2

are mapped onto two full lines of π, say L3 and L4, respectively. Let x be the
intersection of L3 and L4. There are basically four different possibilities.

(1) There is a point xi of Ci \ C2 projected onto x from 〈C2〉, for i = 3, 4, and x3 6= x4.

In this case, since the space 〈x3, x4, C2〉 = 〈x, C2〉 is 3-dimensional, the line
〈x3, x4〉 meets the plane 〈C2〉 in a point y. This implies that the plane [x3, x4]
intersects 〈C2〉 in y, implying y ∈ X by (V2), contradicting X[x3, x4] being
an oval.

(2) There is a point x3 of C3 \ C2 projected onto x from 〈C2〉, and the tangent line
Tx24

(C4) := L4 to C4 at x24 projects onto x from 〈C2〉.

In this case, clearly L4 is contained in 〈C2, x3〉, which also contains Tx24
(C2).

Hence, by our axioms, the 3-space 〈C2, x3〉 also contains Tx24
([x13, x24]) (since

the ovals C2, C4 and X[x13, x24] all intersect C1). Similarly, since the ovals
X[x13, x24], C2 and X[x3, x24] all meet the conic C3, the line Tx24

([x3, x24]) be-
longs to 〈C2, x3〉, which implies that X[x3, x24] belongs to the 3-space 〈C2, x3〉
and so [x3, x24] meets 〈C2〉 in a line, contradicting our axioms.

(3) The tangent lines Tx2i
(Ci) =: Li to Ci at x2i project onto x from 〈C2〉, for all

i ∈ {3, 4}.

In this case, as above, the 3-space 〈C2, x〉 contains Tx24
([x13, x24]). It follows

that the 4-space U := 〈C2, x, x13〉 contains X[x13, x24], C2 and C3. But, as
above, one easily deduces that U also contains C1, and so U coincides with
V, a contradiction.

(4) The only remaining possibility is that there is a point z of (C3 ∩ C4) \ C2 pro-
jected onto x from 〈C2〉. But then C3 ∩ C4 is nonempty, and that is exactly
what we had to prove.

Hence we have shown that Veblen’s axiom holds.

Remark At this point it is not yet clear why P is finite-dimensional. If P is
finite-dimensional we call the dimension of P the index of the Veronesean cap.
To finish the proof of Theorem 2.2 for index n = 2, we first claim that in this
case the point set of P generates a 5-dimensional space. Indeed, the argument in
the third paragraph of the proof of Theorem 3.1 shows that P generates a space
of dimension at most 5, and (V2) implies that this dimension is at least 4. Sup-
pose that the dimension is exactly 4. We consider a point x ∈ X and three ovals
C1, C2, C3. Then any 3-space containing C1 and not containing the tangent lines at
x to C2 and C3, respectively, intersects C2 ∪ C3 in two points x2, x3 distinct from x,
with xi ∈ Ci, i = 1, 2. Then the intersection of [x2, x3] with C1 lies on the line of
PG(4, K) spanned by x2, x3, contradicting the fact that [x2, x3] is an oval. Hence
the claim follows and N = 5.
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We project from a projective line intersecting X in two points x and y onto a
3-dimensional space Γ skew to this line. Considering the projections of all ovals
through x or y, except for X[x, y] itself, we obtain two sets of affine lines spanning
Γ and such that each affine line of one set meets every affine line of the other set.
It follows easily that the corresponding (projective) lines form the two generator
sets of a hyperbolic quadric Q, from which two generators are removed, one of
each class. Hence K is a field.
Remark The missing generators contain the projections of the tangents Tx([x, z])
and Ty([y, z]), for z ranging through the points of X \ {x, y}. Hence the subspace
Σy generated by y and the tangents at x of all ovals containing x is 3-dimensional
(which also follows from (V3)). So the images of the planes of the ovals through
these points yield two opposite reguli.
Now the general case for finite index to prove that K is a field follows as in [6].
Finally, to exclude the possibility of P being infinite-dimensional, the above ar-
gument with the two opposite reguli shows

Lemma 3.2. If x ∈ X and π ∈ Σ with x /∈ π, then T(x, π)\{x} is the disjoint union
of Tx([x, y])\{x}, with y ranging over X ∩ π.

This is Lemma 2.1 from [5]. Similarly as in that article it now follows that the
tangent space T(x) of a Veronesean cap has the same dimension as the projective
space P (here, T(x) is the space generated by all the tangents at x to conics X[x, y],
y ∈ X \ {x}). Since the tangent space is contained in PG(N, K), and N is finite, it
follows immediately that P is finite-dimensional.

4 An application of quadric Veronesean caps

Using the classification of Veronesean caps, we can now show Theorem 2.3. In
order to do so, we show (V2) and (V3). But, as in the finite case (see Section 3 of
[6]), one shows that, if n ≥ 3, the space spanned by the points of X corresponding
to a plane of PG(n, F) has dimension 5. Hence it suffices to consider the case
n = 2.
For ease of notation, we will call oval any oval of the form X[x, x′], with x, x′ ∈ X.
Proof of Theorem 2.3

Take two distinct points x, y ∈ X. Let C1, C2 be two distinct ovals through x not
containing y. Denote H := 〈C1, C2, y〉. Let C be an arbitrary oval through y, but
not through x. Then C meets C1 ∪ C2 in two distinct points and hence contains
three noncollinear points of H and is thus contained in H. It follows easily that
X ⊆ H and so H coincides with PG(5, K). This firstly shows (V2) and secondly
implies that the projections of C1 \ {x} and C2 \ {x} from the line 〈x, y〉 onto a
solid Γ skew to 〈x, y〉 are two non-coplanar affine lines A1 and A2, respectively
(an affine line is just the point set of a line with one point removed). As in the
remark above the subspace Γy generated by y and the tangents at x of all ovals
containing x is 3-dimensional. Replacing y by any other point y′ of X distinct
from x and such that y′ /∈ X[x, y], we see that all mentioned tangents together
with y′ are also contained in a solid Γy′ . If Γy = Γy′ , then it would contain two
ovals. Renaming them as C1, C2 and picking a point not on these, we obtain a
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contradiction to the above result that H is 5-dimensional. Hence all tangents at x
are contained in the plane Γy ∩ Γy′ and the theorem is proved.
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