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Abstract

Möbius inversion, originally a tool in number theory, was generalized to
posets for use in group theory and combinatorics. It was later generalized
to categories in two different ways, both of which are useful. We provide
a unifying abstract framework. This allows us to compare and contrast the
two theories of Möbius inversion for categories, and advance each of them.
Among several side benefits is an improved understanding of the follow-
ing fact: the Euler characteristic of the classifying space of a (suitably finite)
category depends only on its underlying graph.

Introduction

The history of Möbius inversion begins with August Ferdinand Möbius (1790–
1868), the basic aspects of whose work on this can be described in modern terms
as follows. Consider sequences α(1), α(2), . . . of complex numbers. Any two se-
quences α, β have a convolution product α ∗ β, defined by

(α ∗ β)(n) = ∑
k,m : km=n

α(k)β(m).

This product has a unit, and the constant sequence ζ = (1, 1, . . .) has a con-
volution inverse: the classical Möbius function µ, given by a well-known for-
mula involving prime factorizations. It has many uses in elementary and not-so-
elementary number theory. For example, every sequence α determines a formal
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Number-theoretic Möbius inversion

(Möbius 1832)

❄

Möbius inversion for posets

(Rota 1964, et al.)

�
�✠

Fine Möbius inversion for categories

(Leroux et al. 1975, ’80; Haigh 1980)

❅
❅❘

Coarse Möbius inversion for categories

(Haigh 1980; Leinster 2008)

Figure 1: Simplified history of Möbius inversion. This paper builds a bridge
between the two notions of Möbius inversion for categories. Notably missing
from the diagram are the finite difference calculus and the theories of Möbius
inversion developed by Cartier and Foata [7], Dür [10] and Lück [24].

Dirichlet series ∑
∞
n=1 α(n)/ns , where s is a formal variable. Convolution of se-

quences corresponds to multiplication of Dirichlet series. The constant sequence
ζ corresponds to the Riemann zeta function, and the relationship between ζ and
µ can be expressed as

∞

∑
n=1

1

ns
= 1

/ ∞

∑
n=1

µ(n)

ns
.

In the mid-twentieth century, it was realized that Möbius inversion could use-
fully be defined for general partially ordered sets, the original case being the set
of positive integers ordered by divisibility. This insight is usually associated with
the name of Gian-Carlo Rota [31]. Although Rota was not (as he made clear) the
first to generalize Möbius inversion to posets, he was responsible for harnessing
its power to solve problems in enumerative combinatorics.

Rota’s theory was subsequently generalized by multiple people in multiple
directions, but two particularly concern us here. Both are theories of Möbius
inversion for categories (Fig. 1).

The first was developed independently by Pierre Leroux and collaborators
and by John Haigh. (Leroux published a short announcement in 1975 [23]. The
full account, joint with Content and Lemay, appeared in 1980 [9], as did Haigh’s
paper [13].) The second was also introduced by Haigh (in Section 3 of [13]), in
just a dozen lines of text. It was developed more fully by the author [20] as part
of the theory of Euler characteristic of categories.

A comparison of the two theories would be hopelessly confusing if both were
referred to as ‘Möbius inversion’. We therefore introduce new terminology. The
first type of Möbius inversion is called ‘fine’, and the second ‘coarse’. These same
adjectives are applied systematically throughout; for example, the finiteness con-
dition used in the fine theory is renamed ‘fine finiteness’, and its coarse counter-
part ‘coarse finiteness’. This makes various relationships clear. The names are apt:
the fine Möbius function of a category is a more refined invariant, more sensitive
to the category’s structure than the coarse one. And there are far more categories
for which the coarse Möbius function is well-defined than the fine one: it is like
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a weed that grows almost anywhere, compared to a fine but delicate flower. See
Examples 1.2 and 1.4, and Theorem 1.6.

This paper proves results connecting the two theories, points out essential
differences between them, and advances each one further. But more importantly,
it provides a single abstract setting in which all of this takes place. As we shall see,
the two theories, together with a third intermediate one, arise from the inclusions
of categories

1 →֒ 2 →֒ Set

in a uniform manner (Fig. 2).
We begin with a review of fine and coarse Möbius inversion for categories,

introducing the new terminology (Section 1). The basic theorem connecting them
is stated. We see that the fine and coarse theories can help each other: for instance,
Corollaries 1.7, 1.8 and 3.10 are all stated purely in terms of fine Möbius inversion,
but proved using the coarse theory.

We also explore in Section 1 the following curious phenomenon. Every small
category gives rise to a topological space, its classifying space or geometric real-
ization. It is a fact that (under finiteness assumptions) the Euler characteristic of
that space is independent of the composition in the category. The theory of coarse
Möbius inversion sheds light on this.

The abstract framework is introduced in Section 2. The key is the covariant
functoriality of the incidence algebra construction. As the framework is devel-
oped, a third level naturally emerges, between coarse and fine. This allows the
coarse theory, previously confined for the most part to finite categories, to be ex-
tended to infinite categories (Section 3). There we generalize one of the main
theorems of Rota’s original paper [31].

Coarse Möbius inversion also makes sense for enriched categories (Section 4).
This fact has already been exploited in investigations of geometric measure in
metric spaces, as will be explained.

The remaining sections are contributions to the fine theory. The incidence
algebra construction is functorial in both the covariant and contravariant senses,
and in Section 5, we prove a Beck–Chevalley theorem enabling the two to be
unified. In Section 6, we prove a new characterization of the ‘Möbius categories’
of Leroux.

There are two appendices. Setting up the coarse theory for infinite categories
requires a nontrivial result on inverse matrices, proved in Appendix A. Finally,
Appendix B creates an abstract home for the notion of functor with unique lifting
of factorizations, important for Möbius inversion. The concept developed there,
‘pullback-homomorphism’, may also be of more general interest.

Related work I will not attempt to survey the large body of work on Möbius in-
version for posets; see [32] for a good overview. Lawvere and Menni’s paper [19]
contains further pointers to the literature on fine Möbius inversion for categories.
Coarse Möbius inversion is used in the theory of the Euler characteristic of a cat-
egory, which since the original paper [20] has been developed and applied by
Berger and Leinster [5], Fiore, Lück and Sauer [11, 12], Jacobsen and Møller [15],
and Noguchi [27, 28, 29, 30]. Sections 3 and 4 of the present work expand on
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points covered briefly in Sections 4 and 2, respectively, of [20]. We do not touch
here on the theory of Möbius inversion developed by Cartier and Foata [7] for
use in combinatorics, nor that of Dür [10] or Lück [24].

Many of the finiteness conditions arising in Möbius inversion for categories
were explored by Mitchell [26], as was the incidence algebra construction. The
question of which finite directed graphs admit a category structure, implicitly
raised by Lemma 3.4, has recently been answered by Allouch [1, 2].

Notation Given a small category A, we write A0 for its set of objects and A1 for
the set of all maps or morphisms in A. We often write a ∈ A to mean a ∈ A0, and
we write A(a, b) for the set of maps from a to b. Given a finite set X, we write #X
for its cardinality.

Acknowledgements I thank John Baez, Nathan Bowler, Joachim Kock, Matı́as
Menni, Mike Shulman, Todd Trimble and Russ Woodroofe for useful and en-
lightening conversations. I am also grateful for the comments of the anonymous
referee.

1 Fine and coarse M öbius inversion

Here we review the two types of Möbius inversion for categories, introducing
systematic new terminology. We then state the basic result connecting the fine
and coarse theories.

A rig (or semiring) is a ring without negatives: a set equipped with a commu-
tative monoid structure (+, 0) and a monoid structure (·, 1), the latter distributing
over the former. We take rig to mean commutative rig: one whose multiplication
is commutative. Similarly, ring means commutative ring. A rig is trivial if it has
only one element. For a natural number n and a rig k, we often use n to denote
the element n · 1 = 1 + · · ·+ 1 of k.

A module over a rig k is a commutative monoid acted on by k, in the evident
sense; algebras over k are defined similarly (and not assumed to be commuta-
tive). When k is a ring, k-modules are the same whether k is regarded as a rig or
as a ring. The same goes for algebras.

Fine Möbius inversion

The convolution of the opening paragraph involved a sum, and that sum is well-
defined because each positive integer has only finitely many factorizations into
two parts. Similarly, when developing Möbius inversion for categories, we need
to impose the following finiteness condition. A category A is finely finite if for
each map f : a → b in A, there are only finitely many diagrams

a
g
→ c

h
→ b

in A whose composite is f .



Notions of Möbius inversion 915

Let A be a finely finite category and k a rig. The fine incidence algebra kA is
the set of all functions A1 → k, made into a k-algebra as follows. Its k-module
structure is pointwise. The multiplication ∗ is given by

(α ∗ β)( f ) = ∑
hg= f

α(g) β(h),

where α, β ∈ kA and f ∈ A1. (Fine finiteness guarantees that the sum is finite.)
The multiplicative unit δ is given by δ(1a) = 1 whenever a ∈ A, and δ( f ) = 0
otherwise.

The fine incidence algebra has a special element: the fine zeta function ζA,
defined by

ζA( f ) = 1

for all f ∈ A1. We say that A has fine Möbius inversion over k if ζA has a multi-

plicative inverse in kA, which is called the fine Möbius function µA = ζ−1
A ∈ kA.

These terms are all new; let us compare them with previous usage. Where we
call a category finely finite, Leroux et al. [9] say that it ‘has finite decompositions
of degree 2’. What we call the fine incidence algebra and fine Möbius function,
they simply call the incidence algebra and Möbius function. They also have a
definition of ‘Möbius category’. Being a Möbius category is a stronger condition
than having fine Möbius inversion. The precise relationship is determined in
Section 6, but we will not need the concept of Möbius category elsewhere.

Haigh [13] removes the possibility of infinite sums by a different strategy:
he imposes no finiteness conditions on A, but considers only those functions
α : A1 → k such that α( f ) = 0 for all but finitely many maps f . He calls the
resulting algebra the ‘category algebra’; it only has a multiplicative identity if A
is finite. He calls a finite category A a ‘Möbius category’ if it has fine Möbius
inversion, in conflict with the usage of Leroux et al.

Both Haigh and Leroux et al. take k to be a ring, not a general rig.

Example 1.1. Let A be a partially ordered set, viewed as a category. It is finely
finite if and only if it is locally finite: for all a, b ∈ A, the set {c ∈ A | a ≤ c ≤ b}
is finite. (Rota’s theory proceeds on this assumption.) The fine incidence algebra
is the set of functions

{(a, b) ∈ A × A | a ≤ b} → k,

and the fine Möbius function µA, if it exists, is characterized by the equations

∑
c : a≤c≤b

µA(a, c) = ∑
c : a≤c≤b

µA(c, b) =

{

1 if a = b

0 otherwise

(a, b ∈ A). Hall [14] showed that when k is a ring, the Möbius function exists and
is given by

µA(a, b) = ∑
n∈N

(−1)n · #{chains a = a0 < · · · < an = b}.

For example, if A is the poset of positive integers ordered by divisibility, and
k = Z, then µA(a, b) = µ(b/a), where the µ on the right-hand side is the classical
Möbius function.
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Example 1.2. A group, viewed as a one-object category, is finely finite if and only
if it is finite. The fine incidence algebra kG of a finite group G is its group algebra.
No group has fine Möbius inversion, except when it or k is trivial.

Coarse M öbius inversion

A category is finite—or coarsely finite, for emphasis—if it has only finitely many
objects and arrows. For now, coarse Möbius inversion will be defined only for
finite categories. We will see how to relax this assumption in Section 3.

Let A be a finite category and k a rig. The coarse incidence algebra kcA is the
set of all functions A0 × A0 → k, made into a k-algebra as follows. Its k-module
structure is pointwise. The multiplication ∗ is given by

(α ∗ β)(a, b) = ∑
c∈A

α(a, c) β(c, b)

(α, β ∈ kcA, a, b ∈ A). The multiplicative unit is the Kronecker δ, defined by
δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise. If a total order is chosen on the n
objects of A, then kcA is just the algebra of n × n matrices over k.

The coarse incidence algebra has a special element: the coarse zeta function
ζA, defined for a, b ∈ A by

ζA(a, b) = #(A(a, b)) ∈ k.

We say that A has coarse Möbius inversion over k if ζA has a multiplicative

inverse in kcA. The coarse Möbius function is then µA = ζ−1
A ∈ kcA.

In [20], the algebra kcA is only considered in the case k = Q. What we call
coarse Möbius inversion and the coarse Möbius function here are simply called
Möbius inversion and the Möbius function there. The same is true in [5] and [21].

Example 1.3. Let A be a finite partially ordered set. The coarse incidence algebra
is the set of functions A × A → k. It contains the fine incidence algebra as a
subalgebra, consisting of those α : A × A → k such that α(a, b) = 0 whenever
a 6≤ b. The fine and coarse zeta functions, viewed as elements of the coarse
incidence algebra, are equal. Hence when A has fine Möbius inversion (e.g. when
k is a ring), the fine and coarse Möbius functions are also equal.

No confusion should be caused by writing ζA for both the fine and coarse
zeta functions. When we write ‘ζA( f )’, the ζA in question must be the fine one;
when we write ‘ζA(a, b)’, it must be the coarse one. A priori there could be an
ambiguity when A is a poset, since there we might use (a, b) to denote the unique
map a → b. But the previous example shows that in that case, the two meanings
of ζA(a, b) agree. The same goes for the fine and coarse Möbius functions µA.
Moreover, when A is understood, we write them as just ζ and µ.

Example 1.4. Let M be a finite monoid. Then kcM = k, and ζ = #M ∈ k. So,
for instance, if k is a field of characteristic 0 then every finite monoid has coarse
Möbius inversion over k. Contrast Example 1.2.
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A category with coarse Möbius inversion over a nontrivial rig must be skele-
tal, that is, isomorphic objects must be equal. (For if not, the matrix ζ would have
two identical rows.) But since every category is equivalent to some skeletal cat-
egory, this is not a serious restriction. Large classes of finite skeletal categories
have coarse Möbius inversion over Q: all posets, groupoids and monoids, all
categories containing no nontrivial idempotents, and all categories admitting an
epi-mono factorization system. See [20] for details.

The Euler characteristic of a finite category A with coarse Möbius inversion is
χ(A) = ∑a,b∈A µA(a, b). (This can be taken as a definition, although in fact Euler
characteristic can be defined under weaker hypotheses [20].) The name is largely
justified by the following fact. Let A be a finite skeletal category containing no
nontrivial endomorphisms. Write |NA| for its classifying space, that is, the geo-
metric realization of its simplicial nerve NA. Proposition 2.11 of [20] states that
χ(A) = χ(|NA|). Further results in [20] relate the Euler characteristic of cate-
gories to other invariants of size: the Euler characteristics of graphs, posets and
orbifolds, the cardinality of sets, and the Baez–Dolan cardinality of groupoids [3].

The coarse Möbius function of a category does not depend on its composition,
just its underlying directed graph. The same is therefore true of Euler character-
istic. Of course, every nontrivial invariant throws away some information, but to
throw away the composition of a category might be thought extravagant.

Nevertheless, there is an important precedent. Consider homotopically tame
spaces—say, finite CW-complexes. Any such space X can be built up from a stock
of points, intervals, disks, etc., by gluing them together, and it hardly needs say-
ing that the topology of X depends entirely on how they are glued together. But
the Euler characteristic does not. Topologically important as Euler characteristic
is, it is independent of gluing.

The result on classifying spaces implies:

Proposition 1.5. Let A and A′ be finite skeletal categories containing no nontrivial
endomorphisms. If they have the same underlying directed graph then χ(|NA|) =
χ(|NA′|).

Now, the theory of group homology is set up so that the homology of a group
is equal to the homology of its classifying space. If we wish the analogous state-
ment to be true of Euler characteristic of categories (under finiteness conditions),
Proposition 1.5 forces it to be independent of composition.

One could, nonetheless, develop the theories of coarse Möbius inversion and
Euler characteristic for arbitrary directed graphs. Many of the results in [20]
and [5] involve categorical concepts: automorphisms, epi-mono factorization,
equivalences, adjunctions, fibrations, . . . . In principle, it must be possible to
rephrase them purely in terms of graphs, but it is not yet clear that it is fruit-
ful to do so. Perhaps the following situation is comparable. Limits in a category
C are usually phrased in terms of a functor I → C , even though the definition of
limit does not use the category structure on I. One could therefore rephrase all
results about limits in terms of graphs I; but it is not clear that this is a useful step
to take.



918 T. Leinster

Comparison between fine and coarse

In the interests of describing the relationship between fine and coarse Möbius
inversion as soon as possible, we first state a result under unnecessarily restrictive
hypotheses. It first appeared as Proposition 3.6 of Haigh [13], and was also stated
at the end of Section 4 of [20]. The unrestricted form appears as Theorem 3.9
below.

Fix a rig k.

Theorem 1.6 (Haigh). Let A be a finite category. If A has fine Möbius inversion over k
then A also has coarse Möbius inversion over k, given for a, b ∈ A by

µA(a, b) = ∑
f∈A(a,b)

µA( f ).

This can easily be proved by a direct calculation, but a proof also arises natu-
rally in our abstract development (Section 2).

The following corollary is due to Matı́as Menni (private communication, 2010).

Corollary 1.7 (Menni). Let A and A′ be finite categories with fine Möbius inversion
over k. Suppose that A and A′ have the same underlying directed graph. Then for all
objects a, b,

∑
f : a→b

µA( f ) = ∑
f : a→b

µA′( f ).

Proof. By Theorem 1.6, A and A′ have coarse Möbius inversion and the equa-
tion is equivalent to µA(a, b) = µA′(a, b). This is true because the coarse Möbius
function of a category depends only on its underlying graph.

Corollary 1.8. Let A and A′ be finite categories with fine Möbius inversion over k.
Suppose that A and A′ have the same underlying directed graph. Then

✷ ∑
f∈A1

µA( f ) = ∑
f∈A′

1

µA′( f ).

The two sides of this equation are the Euler characteristics of A and A′. But
note that Corollaries 1.7 and 1.8, while proved using the coarse theory, refer only
to the theory of fine Möbius inversion.

2 Functoriality

We have seen that each sufficiently finite category A gives rise to a k-algebra kA,
for each rig k. Here we show how this process can be made functorial in A.
Although we deal primarily with fine incidence algebras, the coarse ones enter
naturally as the story unfolds.

There is a well-known way to make A 7→ kA functorial in the contravariant
sense, using functors with unique lifting of factorizations. This is discussed in
Section 5, but is not needed to achieve the main aims of this paper. Instead, we
make A 7→ kA into a covariant functor.
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Let A and B be finely finite categories. Let F : A → B be a functor with finite
fibres, meaning that for each g ∈ B1, the set { f ∈ A1 | F f = g} is finite. (This
implies the analogous condition on objects.) There is an induced k-linear map

F! : kA → kB

defined for α ∈ kA and g ∈ B1 by

(F!α)(g) = ∑
f : F f=g

α( f ).

This covariant functoriality was introduced by Content, Lemay and Leroux [9].
The following result is close to their Proposition 5.6.

Proposition 2.1. Let A and B be finely finite categories, and let F : A → B be a functor
with finite fibres. Then F! : kA → kB is an algebra homomorphism for all rigs k if and
only if F is bijective on objects.

Proof. First consider preservation of identities. For each map g in B, we have

(F!δA)(g) = ∑
f : F f=g

δA( f ) = #{a ∈ A0 | 1F(a) = g} ∈ k.

If g is not an identity then (F!δA)(g) = 0 = δB(g). If g is an identity, say g = 1b,
then

(F!δA)(1b) = #{a ∈ A0 | Fa = b}

and δB(1b) = 1. Hence if F is bijective on objects then F!δA = δB. Conversely, if
F!δA = δB for k = Z then F is bijective on objects.

A straightforward calculation shows that if F is injective on objects then F!

preserves binary multiplication.

Write Cat! for the category whose objects are finely finite categories and whose
maps are bijective-on-objects functors with finite fibres. There is a functor Cat! →
k-Alg defined by A 7→ kA and F 7→ F!.

Example 2.2. Given a category A, write CA for the codiscrete category with the
same objects as A; thus, there is precisely one map a → b in CA for each pair
(a, b) of objects. There is a unique identity-on-objects functor A → CA. Assume
now that A is (coarsely) finite. Then CA is finely finite and A → CA has finite
fibres.

The coarse incidence algebra of A is the fine incidence algebra of the codiscrete
category on A:

kcA ∼= k(CA).

So the functor A → CA induces a homomorphism of k-algebras

Σ : kA → kcA.

Explicitly,
(Σα)(a, b) = ∑

f∈A(a,b)

α( f ) (1)

(α ∈ kA, a, b ∈ A). The image under Σ of the fine zeta function ζA ∈ kA is the
coarse zeta function ζA ∈ kcA. This proves Haigh’s comparison theorem:
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Figure 2: Abstract origins of the three incidence algebras.

Proof of Theorem 1.6 Σ : kA → kcA is an algebra homomorphism mapping

ζA ∈ kA to ζA ∈ kcA, so it also maps µA = ζ−1
A ∈ kA to µA = ζ−1

A ∈ kcA.

A preorder on a set is a reflexive transitive binary relation. The 2-categories
of preordered and partially ordered sets are equivalent, so the difference between
the two types of structure is inessential; both will be referred to as ‘posets’.

Example 2.3. Let A be a small category. There is a preorder on the set of objects
of A defined by a ≤ b if and only if there is at least one map a → b. Denote the
resulting poset by PA. There is a unique identity-on-objects functor A → PA.

In order for this to induce a homomorphism kA → k(PA), and in order for the
algebras kA and k(PA) to be defined at all, some finiteness conditions must hold.
We defer precise discussion of those conditions to the next section, temporarily
making the simplifying assumption that A is coarsely finite. This suffices.

Write
kpA = k(PA).

Thus, kpA consists of the functions {(a, b) ∈ A0 × A0 | A(a, b) 6= ∅} → k. It can
also be seen as a subalgebra of kcA:

kpA ∼= {α ∈ kcA | A(a, b) = ∅ ⇒ α(a, b) = 0}. (2)

The functor A → PA induces a homomorphism Σ : kA → kpA, given by equa-
tion (1) above. So we have a commutative triangle of k-algebras as in Fig. 2(d).

This commutative triangle also arises inexorably from very simple origins,
by applying standard categorical constructions. We start with the inclusions of
categories

1 →֒ 2 →֒ Set.

Here 2 is the full subcategory of Set consisting of the empty set ∅ and the one-
element set 1, and 1 is the subcategory consisting of 1 alone. Both inclusions
have left adjoints, giving the commutative triangle of Fig. 2(a). Moreover, all
the categories have finite products and all the functors preserve them. So we may
apply the 2-functor V 7→ V -Cat, giving the commutative triangle of Fig. 2(b). The
adjunction Poset ⇄ Cat induces a monad P on Cat, the adjunction Set ⇄ Cat
induces a monad C on Cat, and the adjunction Poset ⇄ Set induces a map of
monads P → C. So for each A ∈ Cat, we obtain a commutative triangle as in
Fig. 2(c).

The categories PA and CA, and all three functors, are the same as in the ex-
plicit descriptions above. In particular, the functors are bijective on objects. So
assuming that A is finite, we may take fine incidence algebras throughout, and
the result is the commutative triangle of Fig. 2(d).
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3 Möbius inversion for infinite categories

Here we extend the theory of coarse Möbius inversion to a class of infinite cat-
egories. The relationship between coarse and fine Möbius inversion, stated in
Theorem 1.6, persists.

Fix a rig k. Assume that k has characteristic zero, in the sense that 0 is the only
natural number n satisfying n · 1 = 0 ∈ k.

The finiteness condition that we are about to introduce can be motivated both
pragmatically and abstractly.

Pragmatically, we seek the minimal finiteness conditions on a category A al-
lowing the apparatus of coarse Möbius inversion to be set up. First, for ζA to
make sense, the homsets of A must be finite. Second, if ζA is to belong to an
incidence algebra with the usual kind of convolution product, then in particular
ζA ∗ ζA must be defined; and since we have no way of handling infinite sums,
we require that for each a, b ∈ A, there are only finitely many c ∈ A such that
ζA(a, c)ζA(c, b) 6= 0. For that to be true over all rigs, for each a, b there can be
only finitely many c such that there exist maps a → c → b.

We will see that these two requirements suffice.

Definition 3.1. Let a and b be objects of a category A. The patch [a, b]A is the full
subcategory of A with objects {c ∈ A | there exist maps a → c → b}.

(A patch might also be called a ‘coarse interval’, and the intervals of [19] ‘fine
intervals’.)

Lemma 3.2. The following conditions on a category A are equivalent:

i. for all a, b ∈ A, the patch [a, b]A is a finite category

ii. A is finely finite and has finite homsets

iii. for all a, b ∈ A, the set {c ∈ A | there exist maps a → c → b} is finite, and A has
finite homsets.

A category A is patch-finite if it satisfies the equivalent conditions of
Lemma 3.2. For example, a poset A is patch-finite if and only if it is locally fi-
nite (Example 1.1).

We have met three finiteness conditions: coarse, patch and fine. They are
not ad hoc. To see how they arise systematically, recall from Section 2 that the
inclusions 1 →֒ 2 →֒ Set give rise to three monads Q on Cat, namely, C, P and
the identity. To make k(QA) into an algebra, we require QA to be finely finite.
To furnish k(QA) with a zeta function, we want to transport the zeta function of
kA along the unit map A → QA, and for that we require A → QA to have finite
fibres. So: to make the basic definitions, we require QA to be finely finite and
A → QA to have finite fibres.

In the case Q = id, this just says that A is finely finite. In the case Q = P, it
says that A is patch-finite (by Lemma 3.2(iii)). In the case Q = C, it says that A is
coarsely finite. In fact, the three conditions are successively stronger:

coarsely finite ⇒ patch-finite ⇒ finely finite.
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Let A be a patch-finite category. Then the algebra kpA = k(PA) is defined and
the induced map Σ : kA → kpA is a homomorphism; the coarse zeta function
ζA ∈ kpA is the image under Σ of ζA ∈ kA. Explicitly, kpA is the submodule of
kcA specified in (2), and the product on kpA is given by

(α ∗ β)(a, b) = ∑
c∈[a,b]A

α(a, c) β(c, b)

(α, β ∈ kpA, a, b ∈ A). (There is no product defined on the larger module kcA
unless A is finite.) As before, the zeta function is given explicitly by ζA(a, b) =
#(A(a, b)) ∈ k.

For example, when A is a locally finite poset, kp A is the classical incidence
algebra.

Definition 3.3. A patch-finite category A has coarse Möbius inversion if ζA ∈
kpA is invertible. In that case, its coarse Möbius function is µA = ζ−1

A ∈ kpA.

Prima facie, we should have used different terminology: ‘patch Möbius inver-
sion/function’. After all, when A is a finite category, kpA is in general a proper
subalgebra of kcA, so one might think that it would be easier to invert ζA in kcA
than in kpA. It is a nontrivial fact that it makes no difference (Corollary 3.6).
Definition 3.3 is therefore consistent with the definitions for finite categories.

Lemma 3.4. Let A be a finite category, n ≥ 0, and a0, . . . , an ∈ A. Then

ζ(a0 , a1) · · · ζ(an−1, an) 6= 0 ⇒ ζ(a0 , an) 6= 0.

Proof. Since k has characteristic zero, an equivalent statement is that if the set
A(a0, a1) × · · · × A(an−1, an) is nonempty then so is A(a0, an). But since A is a
category, there is a map from the first set to the second, and the result follows.

Theorem 3.5. Let A be a finite category with coarse Möbius inversion over k. Let
a, b ∈ A. Then ζA(a, b) = 0 ⇒ µA(a, b) = 0.

Proof. In the terminology of Appendix A, Lemma 3.4 states that ζA is transitive.
The result follows from Theorem A.4 on inverse matrices.

Corollary 3.6. Let A be a finite category. The coarse zeta function of A is invertible in
kpA if and only if it is invertible in kcA.

Consider, for example, a finite poset A. The algebra kA = kp A consists of the
k-valued functions on pairs (a, b) ∈ A × A such that a ≤ b, whereas the algebra
kc A consists of the k-valued functions on all pairs (a, b). When k is a ring, the
zeta function is always invertible in kA (and therefore in kcA), by the formula in
Example 1.1. But for other rigs, it might not be invertible in kA, and Corollary 3.6
then implies that it is not invertible in the larger algebra kcA either. These and
earlier remarks tell us, in short, that the results on categorical Möbius inversion
presented here give no more for posets than was already known to Rota et al.

When a patch-finite category has coarse Möbius inversion, its Möbius func-
tion is determined ‘locally’, that is, patchwise:
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Proposition 3.7. Let A be a patch-finite category. Then A has coarse Möbius inversion
if and only if each patch [a, b]A does. In that case, the coarse Möbius function of each
patch [a, b]A is the restriction of that of A.

This was stated without proof in the case of finite A as Corollary 4.3 of [20].

Proof. First suppose that A has coarse Möbius inversion, with coarse Möbius
function µ ∈ kpA. Let a, b ∈ A. We have to prove that for all x, y ∈ [a, b]A,

∑
z∈[a,b]A

µ(x, z) ζ(z, y) = δ(x, y), (3)

and similarly with µ and ζ interchanged. By definition of µ, this equation holds
when the sum is taken over all z ∈ [x, y]A. But [x, y]A ⊆ [a, b]A, and conversely if
z ∈ [a, b]A with µ(x, z)ζ(z, y) 6= 0 then z ∈ [x, y]A (since µ ∈ kpA). This gives (3).

Conversely, suppose that for each a, b ∈ A, the patch [a, b]A has coarse Möbius
inversion, with coarse Möbius function µa,b. Define µ ∈ kpA by

µ(a, b) =

{

µa,b(a, b) if A(a, b) 6= ∅

0 otherwise.

We prove that µ is the coarse Möbius function of A. Indeed, let a, b ∈ A. Then

∑
c∈[a,b]A

µ(a, c) ζ(c, b) = ∑
c∈[a,b]A

µa,c(a, c) ζ(c, b). (4)

It is straightforward to show that [a, c]([a,b]A) = [a, c]A whenever c ∈ [a, b]A, using

composition. So by the first part of the proof (with [a, b]A playing the role of A),
the coarse Möbius function of [a, c]A is the restriction of that of [a, b]A. The right-
hand side of (4) is therefore unchanged if we replace µa,c(a, c) by µa,b(a, c), and
the result follows by definition of µa,b.

Examples 3.8. i. Let Dinj be the category whose objects are the natural num-
bers and whose maps m → n are the order-preserving injections
{1, . . . , m} → {1, . . . , n}. For a, b ∈ N, the patch [a, b]Dinj

is the full subcat-

egory on {n ∈ N | a ≤ n ≤ b}. This is always finite, so Dinj is patch-finite.
It has coarse Möbius inversion: ζ(m, n) = (n

m) and µ(m, n) = (−1)n−m(n
m).

(Compare Example 1.2(c) of [20].)

ii. The same is true with surjections in place of injections; now ζ(m, n) = (m−1
n−1)

and µ(m, n) = (−1)m−n(m−1
n−1).

We can now generalize Haigh’s comparison theorem and Menni’s corollary:

Theorem 3.9. Theorem 1.6 holds when A is merely patch-finite.

Corollary 3.10. Corollary 1.7 holds when A and A′ are merely patch-finite.

Rota’s seminal paper [31] on Möbius inversion contained two ‘main theo-
rems’. The first, Theorem 1, described the compatibility of Möbius functions
across a Galois connection between posets. It was generalized in [20] to adjunc-
tions between finite categories. We now generalize it further, to patch-finite cate-
gories.
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Proposition 3.11. Let A and B be patch-finite categories with coarse Möbius inversion.

Let A
F //

B
G

oo be functors with finite fibres, with F left adjoint to G. Then for all a ∈ A

and b ∈ B,

∑
a′ : F(a′)=b

µA(a, a′) = ∑
b′ : G(b′)=a

µB(b
′, b).

Proof. Exactly as for Proposition 4.4 of [20].

4 Möbius inversion for enriched categories

The theory of fine Möbius inversion does not seem to generalize to enriched cat-
egories in an obvious way, speaking as it does of individual morphisms. Coarse
Möbius inversion, however, generalizes easily. All one needs is a notion of size
for the objects of the enriching category. In fact, coarse Möbius inversion for en-
riched categories has already been used extensively in the case of metric spaces
(Example 4.1(iii)).

We confine ourselves to enriched categories with a finite number of objects,
although by imitating the previous section, the theory can also be set up for in-
finitely many objects.

Fix a monoidal category V = (V,⊗, I), a rig k, and a monoid homomorphism

| · | : (V0/∼=,⊗, I) → (k, ·, 1)

where the domain is the monoid of isomorphism classes of objects of V.
Let A be a V-category with finitely many objects. The coarse incidence alge-

bra kcA is defined exactly as in the non-enriched case. The coarse zeta function
ζA ∈ kcA is given by

ζA(a, b) = |A(a, b)| ∈ k

(a, b ∈ A). If ζA has an inverse in kcA then A has coarse Möbius inversion over
k, and its coarse Möbius function is µA = ζ−1

A ∈ kcA.
The assumption that | · | is a monoid homomorphism was not needed in order

to make these definitions, but will be used in Proposition 4.2.

Examples 4.1. i. Taking V to be the category of finite sets, with |X| = n · 1 ∈ k
when X is an n-element set, we recover the definitions for non-enriched
categories.

ii. Take V to be the category 2 = (0 → 1) with min as tensor product. Take
k = Z, and put |0| = 0 and |1| = 1. Then a V-category is a poset, and every
finite V-category has coarse Möbius inversion (Example 1.3).

iii. Let V be the poset ([0, ∞],≥), with monoidal structure given by addition.
As shown by Lawvere [17], a V-category is a generalized metric space. Put
k = R and |x| = e−x (x ∈ [0, ∞]). This gives a notion of Möbius inversion for
metric spaces. Most metric spaces have Möbius inversion, in a sense made
precise by Proposition 2.2.6(i) of [21]. For example, all finite subspaces of
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Euclidean space do (Theorem 2.5.3 of [21]); more generally, so do all finite
subspaces of Lp[0, 1] whenever 0 < p ≤ 2 (Theorem 3.6 of [25]).

The magnitude of a metric space, defined for finite spaces as ∑a,b µ(a, b),
is especially significant. The definition extends to a large class of compact
metric spaces [21, 25], where its geometric meaning begins to emerge: to
take the simplest example, the magnitude of a straight line segment is one
plus half its length. Further connections with geometric measure are estab-
lished in [21, 22, 25, 33, 34].

iv. Let V be the category of finite-dimensional vector spaces with its usual ten-
sor product, let k be any rig, and put |X| = (dim X) · 1 ∈ k. Then we obtain
a notion of coarse Möbius inversion for linear categories.

v. Let V be the category of finite categories with Euler characteristic [20], made
monoidal by cartesian product. Let k = Q, and put |X| = χ(X) ∈ Q. (This
is a monoid homomorphism, by Proposition 2.6 of [20].) We obtain a notion
of coarse Möbius inversion for (some) finite 2-categories.

vi. Let V be the category FinSetN of sequences of finite sets, with (X ⊗ Y)n =
∑p+q=n Xp × Yq. A V-category is a category in which each map f has a

degree deg( f ) ∈ N, such that for each a, b, there are only finitely many
maps a → b of each degree, and deg(g ◦ f ) = deg( f ) + deg(g). Let k =
Q((t)), the ring of formal Laurent series over Q. Put |X| = ∑n∈N #Xn · tn.
We obtain a notion of coarse Möbius inversion for graded categories.

For example, let G be a finite directed graph. The free category FG on G
need not be finite, but is naturally V-enriched: a map in FG is a path in G,
with degree defined as length. It has Möbius inversion, as follows. Write G0

and G1 for the sets of vertices and edges of G, and, for a, b ∈ G, write G(a, b)
for the set of edges from a to b. Define ζG ∈ kcA by ζG(a, b) = #G(a, b). Then
ζFG = ∑n∈N(ζG · t)∗n and µFG = δ − ζG · t. It follows that ∑a,b µFG(a, b) =
#G0 − #G1 · t. (For instance, if G has just one vertex and m edges then FG is
the free monoid on m generators and ∑a,b µFG(a, b) = 1 − mt.) When t = 1,
this is the Euler characteristic of G; compare Proposition 2.10 of [20].

Coarse Möbius inversion interacts well with tensor product of enriched cat-
egories. Assume now that V is symmetric, so that the tensor product of V-
categories is defined. The following result generalizes Lemma 1.13(b) of [20],
and is proved using the multiplicative property of | · |.

Proposition 4.2. Let A and B be V-categories with finite object-sets. If A and B have
coarse Möbius inversion over k then so does A ⊗ B, with

µA⊗B((a, b), (a′ , b′)) = µA(a, a′)µB(b, b′)

(a, a′ ∈ A, b, b′ ∈ B).

There is a similar result on coproducts, generalizing Lemma 1.13(a) of [20].
(Compare also Proposition 1.4.4 of [21].) Our generalization of Rota’s main theo-
rem (Proposition 3.11) also extends easily to the enriched setting.
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5 Functoriality revisited

The incidence algebra construction is functorial in two ways: covariant and con-
travariant. We have already used the covariant functoriality. Here we examine
its contravariant counterpart. We then show that the two types of functoriality
interact well enough that they can, in fact, be unified into a single functor.

A functor F : A → B has unique lifting of factorizations, or is ULF, if when-
ever f is a map in A and F f = g2 ◦ g1 in B, there are unique maps f1, f2 in A such
that f2 ◦ f1 = f , F f1 = g1 and F f2 = g2:

·
f2

��
a

f1

@@

f
// b

F
7−→

·
g2

  A
AA

AA
AA

A

Fa

g1

>>~~~~~~~~

F f
// Fb.

This definition is implicit in Théorème 4.1 of [9], and is made explicit in Section 4
of [18]. Appendix B places the ULF concept into an abstract context.

Let F : A → B be a functor between finely finite categories. For each rig k,
there is an induced k-linear map

F∗ : kB → kA

defined by
(F∗β)( f ) = β(F f )

where β ∈ kB and f is a map in A. It is a fact that F is ULF if and only if F∗ is
an algebra homomorphism for all rings k: again, this is implicit in Théorème 4.1
of [9], and it is made explicit in Theorem 9.21 of [19]. Our Proposition 2.1 is a
covariant companion of this fact.

For example, whenever X is an object of a category C , the forgetful functor
X/C → C is ULF. Lawvere (Section 4 of [18]) and Lawvere and Menni (Ex-
ample 9.22 of [19]) point out the following. When C is the additive monoid of
natural numbers, viewed as a one-object category (N,+, 0), this is the functor
(N,≤) → (N,+, 0) sending the map m → n in (N,≤) to the map n − m in
(N,+, 0), whenever m ≤ n. It induces an algebra homomorphism k(N,+, 0) →
k(N,≤), thus relating the monoid Möbius inversion of Cartier and Foata [7] to
the poset Möbius inversion of Rota et al.

The class of ULF functors is closed under composition, so there is a cate-
gory Cat∗ of finely finite categories and ULF functors. There is then a functor
Cat∗op → k-Alg defined by A 7→ kA and F 7→ F∗.

The covariant and contravariant constructions are linked by a result with a
strong formal resemblance to the Beck–Chevalley theorem.
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Theorem 5.1. Let

D
F′

//

G′

��

B

G
��

A
F

// C

be a pullback square in Cat. Suppose that all four categories are finely finite, F is ULF,
and G is bijective on objects and has finite fibres. Then F′ is ULF, G′ is bijective on objects
and has finite fibres, and the square

kD
F′

! // kB

kA
F!

//

G′∗

OO

kC

G∗

OO

commutes for all rigs k.

Proof. That F′ is ULF follows from the fact that the pullback of an ULF functor
along an arbitrary functor is again ULF, which can be checked directly and also
follows from Proposition B.4. That G′ is bijective on objects and has finite fibres
is straightforward. Now let α ∈ kA and g ∈ B1. We have

(G∗F!α)(g) = (F!α)(Gg) = ∑
f∈A1 : F f=Gg

α( f ).

On the other hand,

(F′
! G′∗α)(g) = ∑

h∈D1 : F′h=g

α(G′h) = ∑
f∈A1 : F f=Gg

α( f )

since the square is a pullback.

We can now unify the two types of functoriality for incidence algebras.
The bicategory of spans in Cat [4] has a sub-bicategory Cat∗! , defined as fol-

lows. The objects are the finely finite categories. The 1-cells from A to B are the
spans

A C
F

ULF
oo G

BO, FF
// B (5)

in which F is ULF and G is bijective on objects and has finite fibres. The 2-cells
are the isomorphisms. We may also view k-Alg as a bicategory, with only identity
2-cells.

Corollary 5.2. There is a strict functor Cat∗! → k-Alg defined on objects by k 7→ kA

and on 1-cells by sending (5) to the composite homomorphism kA
F∗

→ kC
G!→ kB.

Proof. Theorem 5.1 implies that composition is preserved, and the rest is trivial.

A cruder version of the same result uses the category Cat∗! whose maps are the
isomorphism classes of spans (5). We still obtain a functor Cat∗! → k-Alg.
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6 The Möbius categories of Leroux

In the work of Leroux et al. [9, 23], a central role is played by the ‘Möbius cat-
egories’. (Beware that Haigh [13] uses the same term differently.) A category is
Möbius if it is finely finite and satisfies the equivalent conditions of the following
theorem.

Theorem 6.1 (Content–Lemay–Leroux). Let A be a finely finite category. The follow-
ing conditions on A are equivalent:

i. Every isomorphism or idempotent in A is an identity.

ii. Each map in A can be expressed as a composite of a finite sequence of non-identity
maps in only finitely many ways.

iii. For all rings k, an element α ∈ kA is invertible if and only if α(1a) ∈ k is invertible
for all a ∈ A.

Proof. This is nearly Théorème 1.1 of [9], except that where we have condition (i),
they have the conjunction of two conditions: (a) if g ◦ f = 1a in A then g = f = 1a,
and (b) if h is an endomorphism in A with hm = hn for some natural numbers
m 6= n then h is an identity.

Certainly (a) and (b) together imply (i). The converse does not seem to have
been stated completely explicitly before, although essentially it goes back to [23]
(and it is proved for finite categories in Proposition 3.5 of [19]). Suppose that (i)
holds. For (a), if g ◦ f = 1a in A then f ◦ g is idempotent, so f ◦ g is an identity, so f
and g are isomorphisms and therefore identities. For (b), suppose that hn = hn+k

for some n, k ≥ 1; then hnk is idempotent, so hnk = 1, which by (a) implies that h
is an identity.

Being Möbius is a strictly stronger condition than having fine Möbius inver-
sion over all rings. It is stronger by (iii), and strictly stronger by the following
example.

Example 6.2. Let A be the category freely generated by objects and maps a
s //b
i

oo

subject to si = 1b. It is easily shown that A has fine Möbius inversion over all
rings (with µ(1a) = 1, µ(1b) = 2, µ(s) = µ(i) = −1, and µ(is) = 0). But A is not
Möbius, since it contains the nontrivial idempotent is.

This example can be viewed as follows. By Theorem 6.1(ii), every subcategory
(full or not) of a Möbius category is Möbius. In particular, every subcategory of a
Möbius category has fine Möbius inversion over all rings. However, A contains
the subcategory B consisting of the object a, the identity 1a, and the idempotent
e = is 6= 1a, which does not have fine Möbius inversion over all rings: the Möbius
function would have to satisfy 2µB(e) = −1.

So, having a subcategory without fine Möbius inversion is an obstruction to
being Möbius. The main result of this section is that it is the only obstruction.
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Theorem 6.3. Let A be a finely finite category. The following conditions on A are equiv-
alent:

i. A is Möbius

ii. every subcategory of A has fine Möbius inversion over every ring

iii. every subcategory of A has fine Möbius inversion over Z.

Proof. We have just seen that (i) ⇒ (ii), and (ii) ⇒ (iii) trivially. Now suppose (iii).
We prove condition (i) of Theorem 6.1.

Let i : a → b be an isomorphism in A. Since A is finely finite, 1a has only
finitely many factorizations into two factors; write them as g1 ◦ f1, . . . , gn ◦ fn. Then
the distinct factorizations of i are (ig1) ◦ f1, . . . , (ign) ◦ fn. But A itself has fine
Möbius inversion over Z, and

n

∑
r=1

µA( fr) = δ(1a),
n

∑
r=1

µA( fr) = δ(i),

so δ(i) = δ(1a) = 1 ∈ Z. Hence i is an identity.
Now let e : a → a be an idempotent in A. As above, the subcategory consisting

of the object a and the maps 1a and e can only have fine Möbius inversion over Z

if e = 1a.

Further characterizations of Möbius categories can be found in [9, 19, 23].

A Zeros of the M öbius function

To extend the definition of coarse Möbius inversion to categories with infinitely
many objects, we made essential use of Theorem 3.5, the proof of which depended
in turn on a fact about matrices: Theorem A.4 below. Our task here is to prove
this.

The same result was proved in the case k = Q as Theorem 4.1 of [20]. For
arbitrary rigs, the proof is complicated by the need to avoid subtraction.

Fix a rig k. Write the (i, j)-entry of a matrix X as Xij.

Definition A.1. An n × n matrix Z over k is transitive if for all p ≥ 0 and
i1, . . . , ip ∈ {1, . . . , n},

Zi0ip
= 0 ⇒ Zi0i1 Zi1i2 · · · Zip−1ip

= 0.

The case p = 0 states that Zii = 0 ⇒ 1 = 0; that is, if k is nontrivial then
Zii 6= 0.

For an n × n matrix X over k, write

det+X = ∑
σ∈An

n

∏
r=1

Xr,σ(r), det−X = ∑
σ∈Sn\An

n

∏
r=1

Xr,σ(r).
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Thus, det X = det+X − det−X. Let adj+ X and adj− X be the n × n matrices with
entries

adj+ij X = ∑
σ∈An : σ(j)=i

∏
r 6=j

Xr,σ(r), adj−ij X = ∑
σ∈Sn\An : σ(j)=i

∏
r 6=j

Xr,σ(r).

Thus, adj+ X − adj− X is the adjugate (classical adjoint) adj X.

Lemma A.2. The following identities hold, for n × n matrices X and Y over k.

i. det+ I = 1 and det− I = 0.

ii. (det+X)(det+Y) + (det−X)(det−Y) + det−(XY) =
(det+X)(det−Y) + (det−X)(det+Y) + det+(XY).

iii. X(adj+ X) + (det−X)I = X(adj− X) + (det+X)I.

Proof. Part (i) is immediate. For (ii), first note that the general identity det(XY) =
(det X)(det Y) can be regarded as an identity in the ring of polynomials over Z in
2n2 variables. Substituting det = det+−det− gives the equation shown, which is
again an identity in this polynomial ring. But all coefficients are nonnegative, so
it is also an identity in the rig of polynomials over N in 2n2 variables. The result
follows. Part (iii) is proved similarly, using the identity X(adj X) = (det X)I and
the fact that adj = adj+− adj−.

Lemma A.3. Let Z be an invertible, transitive n × n matrix over k. Suppose that
Z1n = 0. Then:

i. Both (det+Z)(Z−1)1n and (det−Z)(Z−1)1n have additive inverses in k.

ii. adj+1n Z = adj−1n Z = 0.

Proof. First I claim that if σ ∈ Sn with σ(n) = 1 then ∏
n−1
r=1 Zr,σ(r) = 0. To prove

this, choose the least p ≥ 1 such that σp(1) = 1. We have σp−1(1) = n, and the
numbers 1, σ(1), . . . , σp−2(1) are all distinct and less than n, so

Z1,σ(1)Zσ(1),σ2(1) · · · Zσp−2(1),n | Z1,σ(1)Z2,σ(2) · · · Zn−1,σ(n−1).

But by transitivity and the hypothesis Z1n = 0, the left-hand side is 0, so the
right-hand side is also 0, as claimed.

For (i), it is enough to prove that (∏n
r=1 Zr,σ(r))(Z

−1)1n has an additive inverse

for each σ ∈ Sn. When σ(n) = 1, this follows from the claim. Suppose, then, that
σ(n) 6= 1. We have

n

∑
i=1

Zσ−1(1),i(Z
−1)in = Iσ−1(1),n = 0,

so Zσ−1(1),1(Z
−1)1n has an additive inverse, and the result follows.

Part (ii) follows immediately from the claim.

Theorem A.4. Let Z be an invertible, transitive, n × n matrix over k. Let i, j ∈
{1, . . . , n}. Then

Zij = 0 ⇒ (Z−1)ij = 0.
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Proof. If i = j then Zii = 0, so by transitivity, k is trivial and the result holds. So
we may suppose without loss of generality that i = 1 and j = n.

Applying Lemma A.2(iii) to Z, then premultiplying by Z−1, we have

adj+ Z + (det−Z)Z−1 = adj− Z + (det+Z)Z−1 .

Now taking the (1, n) entries on each side and using Lemma A.3(ii), we have

(det−Z)(Z−1)1n = (det+Z)(Z−1)1n. (6)

On the other hand, we may take X = Z and Y = Z−1 in Lemma A.2(ii), which,
with the aid of Lemma A.2(i), gives

(det+Z)(det+Z−1) + (det−Z)(det−Z−1) =

(det+Z)(det−Z−1) + (det−Z)(det+Z−1) + 1. (7)

Multiply (7) by (Z−1)1n on each side. By (6), the result is an equation of the form
λ = λ + (Z−1)1n, where, by Lemma A.3(i), λ ∈ k has an additive inverse. Hence
(Z−1)1n = 0.

B Pullback-homomorphisms

Here we place the notion of ULF functor into an abstract context. In doing so, we
discover a new analogy between ULF functors and local homeomorphisms.

Definition B.1. Let T = (T, η, µ) be a monad on a category E . A homomorphism

TA
T f

//

��

TB

��
A

f
// B

(8)

of T-algebras is a pullback-homomorphism if the square (8) is a pullback.

Proposition B.2. Let T be the free category monad on the category of directed graphs.
Then the pullback-homomorphisms of T-algebras are precisely the ULF functors.

Proof. Let F : A → B be a functor between small categories, regarded as a homo-

morphism of T-algebras. Write An for the set of paths a0
f1
→ · · ·

fn
→ an in A, and

similarly Bn. Since limits in a presheaf category are computed pointwise, F is a
pullback-homomorphism if and only if the squares

A0
//

1
��

B0

1
��

A0
// B0

∑n∈N An //

◦
��

∑n∈N Bn

◦
��

A1
// B1
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are pullbacks in Set. (Here ∑ denotes coproduct.) The left-hand square certainly
is, and the right-hand square is a pullback if and only if

An
//

◦
��

Bn

◦
��

A1
// B1

is a pullback for each n ∈ N. This reduces by induction to the cases n = 0 and
n = 2. For the n = 2 square to be a pullback is precisely the ULF property. The
n = 0 square is a pullback if and only if F reflects identities; but this is always
true if F is ULF.

Pullback-homomorphisms have a three-for-two property: given homomor-

phisms ·
f
→ ·

g
→ · with g a pullback-homomorphism, g ◦ f is a pullback-homo-

morphism if and only if f is. This follows from the elementary properties of
pullbacks, and applies in particular to ULF functors.

Here are the pullback-homomorphisms for some other monads. Proofs are
omitted.

Examples B.3. i. Fix a group G and consider the monad G ×− on Set, whose
algebras are G-sets. Then every map of G-sets is a pullback-homomorphism.

ii. At the other extreme, when T is the free group monad on Set, the only
pullback-homomorphisms are the isomorphisms.

iii. Take the monad 1 +− on Set, adjoining to each set a new element. Its cat-
egory of algebras is equivalent to the category of sets and partial functions.
The pullback-homomorphisms are the total functions.

iv. Let P be the powerset monad on Set. Its algebras are the complete lat-
tices; the homomorphisms are the maps preserving joins. Among them, the
pullback-homomorphisms are the injections whose images are downwards
closed.

v. Let A be a small category. The forgetful functor SetA → SetA0 is monadic.
So, writing T for the induced monad, the homomorphisms of T-algebras
are the natural transformations between functors A → Set. The pullback-
homomorphisms are the cartesian natural transformations: those for which
every naturality square is a pullback.

The unwirable maps of Bowler [6] provide further examples.
We have observed that the class of pullback-homomorphisms is closed un-

der composition. For a general monad T, it is not stable under pullback (Exam-
ple B.6); that is, the pullback of a pullback-homomorphism along an arbitrary
homomorphism need not be a pullback-homomorphism. However:

Proposition B.4. Let E be a category with pullbacks and T a monad on E whose functor
part preserves pullbacks. Then the class of pullback-homomorphisms of T-algebras is
stable under pullback along arbitrary homomorphisms.
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Proof. Elementary manipulation of pullbacks.

Since the free category monad on directed graphs preserves pullbacks, the
class of ULF functors is stable under pullback. Proposition B.4 also implies that
the class of pullback-homomorphisms is stable under pullback in Examples B.3(i),
(iii), (v). Furthermore, the same is true in Examples B.3(ii) and (iv), not by the
proposition but by the explicit description of pullback-homomorphisms given
there. This covers all of our examples so far.

It is now useful to extend the terminology.

Definition B.5. Let E be a category with pullbacks and T a monad on E . A homo-
morphism f : (A, α) → (B, β) of T-algebras is a stable pullback-homomorphism
if for every homomorphism g : (C, γ) → (B, β) of T-algebras, the pullback of f
along g is a pullback-homomorphism.

Thus, the class S of stable pullback-homomorphisms is the largest subclass
of the pullback-homomorphisms that is stable under pullback along arbitrary ho-
momorphisms. In all of our examples so far, every pullback-homomorphism is
stably so.

We finish with a suggestive example in which pullback-homomorphisms are
not stable under pullback. I thank Mike Shulman for pointing it out.

Example B.6. Let T be the ultrafilter monad on Set, whose algebras are the com-
pact Hausdorff spaces. It is shown in [8] that not every pullback-homomorphism
of T-algebras is stably so. It is also shown that the stable pullback-homomor-
phisms are precisely the local homeomorphisms.

According to Lawvere and Menni, ‘The definition of ULF-functor should be
compared with that of local homeomorphism’ ([19], p.230). We now have a gen-
eral concept, stable pullback-homomorphism, of which both ULF functors and
local homeomorphisms (between compact Hausdorff spaces) are special cases.
A further possibility, suggested by Joachim Kock, is that there might also be a
connection via the axiomatic notion of étale map [16].
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