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Abstract

We give an upper bound for the number of nested ovals of a real tetrago-
nal curve R embedded in an Hirzubruch surface in terms of the genus of the
curve.

1 Introduction

A real elliptic surface will be a morphism Π1 : Y −→ P1 defined over R, when Y
is a real algebraic surface such that over all but finitely many points in the basic
curve, the fibre is a nonsingular curve of genus one. See [18, Chapter 7]
We suppose that Π1 admits at least one singular fibre, the surface is called regu-
lar (H1(X,OX) = 0) and that no fibre of Π contains a (-1)-curve; the fibration is
called relatively minimal.

Now, one can associate to Π1 : Y −→ P1, its Jacobian fibration
Π : Jac(Y) −→ P1, defined over R. By construction Π′ admits a real section
s : P1 −→ Jac(Y). see[18, Chapter 7].

After contracting all components of the fibres of Π that do not intersect the
curve s(P1), we obtain the Weierstrass model of the Jacobian elliptic surface Jw

with a proper map Π̃ : Jw −→ B where Jw has at worst simple singular points,
and a section s′ : P1 −→ Jw not passing through the singular points of Jw. One
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can obtain J from Jw by resolving its singularities. The quotient of Jw by the fiber-
wise multiplication by (-1)-automorphism is a geometrically ruled surface F2n

over P1, the section s mapping to a section of pro : F2n −→ P1.
The projection Jw −→ F2n is a double covering defined by the (fiberwise) linear
system |2s′| on Jw; its branch curve is the disjoint union of the exceptional section
s′ and some trigonal curve C on F2n.
Over P1, the topology of real elliptic surfaces with real section and real trigonal
curves is due to F. Bihan and F. Mangolte, see [4].
Over a base of an arbitrary genus, the study of equivariant deformation of real
elliptic surfaces and real trigonal curves is due to to A. Degtyarev, I. Itenberg and
V. Kharlamov. see [7]
A reduced smooth curve is called tetragonal if it admits a (4 : 1)-cover to P1.
Then R admits a natural embedding into a certain Hirzebruch surface F.
The aim of the paper is to obtain an upper bound for the number of nested ovals
of a real tetragonal curve R embedded in an Hirzebruch surface in terms of the
genus of the curve as it is cited in theorem 7.4.
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helpful remarks and suggestions.
We are grateful to the referee for valuable comments on a previous version of the
paper.
We thank also J. C. Douai for many stimulating discussions and encouragement
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Finally, the second author would like to thank M. Reid and S. Siksek for a visit in
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This paper is partially supported by research team 05/UR/15-02 Bizerte and the
university of Monastir.

2 Main results

A real structure on a complex variety X is an anti-holomorphic involution
σX : X −→ X.
A real variety is a complex variety X equipped with a real structure σX. The
fixed points set Fix(σX) is called the real part of X and is denoted X(R). An
holomorphic map f : X −→ Y between two real varieties (X, σX) and (Y, σY) is
called real if it commutes with real structures.
The following diagram commutes:

X
f

−→ Y
σX ↓ ↓ σY

X
f

−→ Y

see [18, Chapter 1].
The paper is organized as follows:
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In section 3, we explicit the fiberwise double covering, defined over R, of a given
real projective rational surface branched along some real curve C.

Now, let pro1 : Fe −→ P1 be a real geometrically ruled surface1 with a real
curve R ⊂ Fe which induces a 4:1 map pro1 : R −→ P1 that we call real tetragonal
curve.
In section 5, we explicit the equivariant Recillas geometric construction of the
trigonal curve associated to the tetragonal curve R. Next, we prove:
PropositionTwo elliptic surfaces with double section are deformation equivalents
over C, if and only if g(R) = g(R′), where R and R′ are tetragonal curves associ-
ated to the given surfaces.

Then, we give a simple algebraic characterization for real elliptic surfaces with
double section (over C) which have real section.
Proposition Let Y be an elliptic surface over R given by the equation:

y2 = a0(t)x
4 + a1(t)x

3 + a2(t)x
2 + a3(t)x + a4(t)

and the triplet (Σ, R, P1) is the geometrically ruled surface pro : Σ −→ P1 with a
tetragonal curve R associated to Y.
Then Y admit a section over R if and only if there exist a fiberwise automorphism
defined over R which sends R to real tetragonal curve R′ given by the equation
a′0x4 + a′1x3 + a′2x2 + a′3x + a′4 = 0 where a′0 is a square of a real rational map de-

fined over P1C.

In section 6, we recall some basic results concerning topology of real part X(R)
of a given real smooth algebraic surface X.
Finally, in section 7, we study topology of the real part R(R) for a real tetragonal
curve embedded in an Hirzubruch surface and we show how one can use real el-
liptic surface with double real or complex conjugate section to compute topology
of the real part for real tetragonal curves.

We prove:

Proposition A real elliptic surface with double section (over C) is a (M − d)-
variety if and only if is the associated tetragonal curve is a (M − d)− curve.

From [4], we deduce :

Proposition Let C is a real trigonal curve in a geometrically ruled surface F2n.

If C has real scheme < a, b >, then a ≤ 5
g+2

6 and b ≤ 5
g+2

6 , where g is the genus
of C.

Next, we give a relation between the genus of the tetragonal curve and an as-
sociated trigonal curve.

1Miles Reid suggests that the ’F’ might stand for ’Fritz’ Hirzebruch’s firstname
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Proposition Let R be a tetragonal curve, and C be an associated trigonal curve.
Then,

g(R) = g(C)− 1.

Finally, we give bounds for the number of nested ovals (denoted by a) and
the others ovals (denoted by b) of a given real tetragonal curve embedded in an
Hirzubruch surface.

Theorem If R is a real tetragonal curve embedded in an Hirzubruch surface.
Then,

(i) a ≤
5

6
(g(R) + 3),

and

(ii) b ≤
5

6
(g(R) + 3).

In this present paper, we use the recent works of A. Degtyarev, I. Itenberg and
V. Kharlamov about equivariant deformation of real elliptic surfaces Π : Y −→
P1, not necessary with real section, see [7] and of some results of the second
author (joint with F. Mangolte), see [1].

3 Double covers of rational surfaces

Let Y a real smooth projective rational surface, B ⊂ Y a real reduced smooth
effective divisor on Y or zero. Suppose we have a real line bundle L on Y such
that OY(B) = L2 and a real section s ∈ Γ(Y,OY(B)) vanishing exactly along B (if
B = 0 we take for s the constant function 1).

We denote by L the total space of L and we let p : L −→ Y be the bundle
projection. If t ∈ Γ(L, p∗L) is the tautological section, then the zero divisor of
p∗s − t2 defines a real analytic subspace X in L.

If B 6= 0, since B is reduced and smooth, then also X is smooth Π = p/X
exhibits X as a real 2-fold ramified covering of Y with branch-locus B. We call
f : X −→ Y the real 2-cyclic covering (or real ramified double covering) of Y
branched along B, determined by L.

If B = 0, we take L 6= OY; in this case f : X −→ Y is called the real 2-cyclic
unramified covering of Y determined by L.
Conversely, given Π : X −→ Y a real finite morphism of degree two between
smooth real projective surfaces, we can recover B and L as follows:

Let τ : X −→ X be the sheet interchange equivariant involution, i. e. , τ2 = id,
Π ◦ τ = Π. Then B is the image under τ of the fixed set of τ and Π∗OX =
OY ⊕ L−1, where the direct sum decomposition corresponds to taking the +1
and −1 eigenspaces of τ acting on Π∗OX.

The morphism f : X −→ Y induces the natural real homomorphism

f ∗ : Pic(Y) −→ Pic(X).
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Now, Y and X are projective, by using the natural map f∗ : Pic(X) −→ Pic(Y)
between the group of divisors on X and on Y, one obtains a real homomorphism
f∗ : Pic(X) −→ Pic(Y).

Remark 3.1. The surface X has at most singularities over singular points of B. In
particular, if B is reduced and smooth then also X is smooth.

We recall a general theorem relation the 2-torsion in Br(X) of a double cover
X of rational surface to the 2-torsion of Jacobian J(C) of the branch curve.

Theorem 3.2. Let f : X −→ Y be a double cover of a smooth complex projective rational
surface Y branched along a smooth curve C. Let G = Z/2Z be the subgroup of Aut(X)
generated by the covering involution σ. Assume that σ acts trivially on Pic(X) is torsion-
free.

Then there is a natural inclusion

J(C)2 →֒ Br(X)2

with Br(X)2/J(C)2
∼= (Z/2Z)n and n = 2(1 + b2(Y)− b0(C))− ρ where

ρ = rank [NS(X)] and bi is the ith Betti number.

Proof: See [3].

Assume now, Y is a geometrically ruled surface. We denote it by Fn with
fibration pro : Fn −→ P1 which is the compactification of the line bundle O(n) ∈
Pic(P1) with a rational curve C∞ at infinity, and with self-intersection C2

∞ = −n.
It is well-known that this surface, is obtained by blowing up the cone in Pn+1

over the rational curve of degree n in the vertex, for n ≥ 1. In the case n = 0; the
surface F0 is isomorphic to the quadric surface P1 × P1.

Now, if f is a fiber of the fibration pro : Fn −→ P1, then

Pic(Fn) ∼= Z f ⊕ ZC∞; f 2 = 0; f C∞ = 1 C2
∞ = −n.

The image in Fn = O(n)∐ C∞ of a global section of O(n) is a section H of pro :
Fn −→ P1. It is also an hyperplane section of the cone in Pn+1 which doesn’t
meet the vertex.

The Chern class of canonical line bundle K on Fn is given by

c1(K) = −2C∞ − (n + 2) f .

In particular, K2 = 8.

4 Jacobian elliptic surface

In This section, we discuss certain complex aspects of Jacobian elliptic surfaces.
Most of the material presented here is not very original. It has a large overlap
with Bert Van Geemen’s paper [3].
Let Π : X −→ P1 be a regular elliptic surface with a section s : P1 −→ X. Then
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X is a double cover of a ruled surface pro : F2n −→ P1 for some positif integer n.
The branch locus of the double cover X −→ F2n consists of a section at infinity
C∞ and a curve C such that the restriction pro : C −→ P1 is a 3:1 covering of P1.

Hurwitz formula gives us

X (X) = 2X (F2n)−X (C ∐ C∞) = 8 − (2 − 2g + 2) = 4 + 2g

with g = g(C).

Now, we suppose the surface Π : X −→ P1 is relatively minimal. By Noether
formula, we have:

X (X) = 12X (OX) = 12n.

In particular,

g =
12n − 4

2
= 6n − 2, and g ≡ 4[6].

When Pic(X) ∼= Z2, we get

Br(X) ∼= H2(X, Q/Z)/(Pic(X) ⊗ Q/Z) ∼= (Q/Z)2g

and C is smooth and irreductible. Since H1(X, C) = 0, the second Betti number
of complex part is B2 = 2(g + 1).

Proposition 4.1. Let Π : X −→ P1 a regular elliptic surface with a section
s : P1 −→ X, and a fiberwise double cover X −→ F2n, with branch curve C ∐ C∞.

We assume that Pic(X) ∼= Z2. Then the injection J(C)2 →֒ Br2(X) is an iso-
morphism.

Proof: This follows from 3.2 applied to the double cover X −→ F2n. Note that
b0(C) = 2 and Pic(X) is generated by the class of a section and a fiber, so the
covering group Z/2Z acts trivially on Pic(X) ∼= Z2.

5 Double cover of jacobian fibration

Let X be a smooth projective surface with an elliptic fibration Π : X −→ P1,
with section. The Brauer group of X is isomorphic to the Tate-Shafarevich group
TS(X) = H1

ét(P
1, X#) where X# is the sheaf of groups on P1 of local sections of

pX : X −→ P1. [10]
A non trivial element of order n in TS(X) is a genus one fibration Π1 : Y −→ P1

(without a section) and n is the minimal degree of a multisection of Π1 : Y −→ P1

and in this case the surface X correspond to Jacobian of Y.
The description of the real version of the Tate-Shafarevich group is found in [7].

Now, we consider a real genus one fibration Π1 : Y −→ P1 with a double section
and we recover the associated Jacobian fibration Π : X −→ P1. For this we use
the classical construction of the Jacobian of a double cover of P1 branched over
four points, due to Hermite.
This construction gives us a real conic bundle over X with corresponds to
α ∈ Br(X) defining Y.
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5.1 Jacobian fibration

Let Π1 : Y −→ P1 be a genus one fibration defined by an equation

Y : w2 = a0v4 + 4a1v3 + 6a2v2 + 4a3v + a4

Then, the Jacobian fibration of Π1 as above is the elliptic surface Π : X −→ P1

given by
X : y2 = 4x3 − px − q,

with
p = a0a4 − 4a1a3 + 3a2

2,

q = a0a2a4 − a0a2
3 − a2

1a4 + 2a1a2a3 − a3
2.

5.2 Trigonal curve

Definition 5.1. Let pro : Fn −→ P1 be a geometrically ruled surface with a section
at infinity C∞. A trigonal curve on Fn (called also trisection) is a reduced curve
C ⊂ Fn disjoint from C∞ and such that the restriction pro : C −→ P1 is a 3:1
covering of P1.

A trigonal curve C ⊂ Fn is called generic if the discriminant ∆ = 4p3 + 27q2

has only simple roots and g2, g3, ∆ have distinct roots.
A trigonal curve is a curve of bidegree (3,0) on Fn and C does not intersect C∞. In
other words, the intersection number of C with a fiber P1 is 3 and with the section
C∞ is 0, so deg C = 3.
Any trigonal curve can be given by an affine equation

x3 + g2x + g3 = 0

where g2 and g3 are certain sections of O(4n)and O(6n) such that g2 = −p
4 and

g3 = −q
4 .

Definition 5.2. The j-invariant of generic trigonal curve C ⊂ Fn is the function
j : P1 −→ P1 given by:

j =
4g3

2

∆
; ∆ = 4g3

2 + 27g2
3.

Geometrically, the value of j at a generic point b ∈ P1 is the usual j-invariant
of the quadruple of points cut by the union C

⋃
C∞ in the projective line pro−1(b).

The sections g2,g3 defining C must satisfy the following conditions:
(1) The discriminant ∆ = 4g3

2 + 27g2
3 is not identically zero.

(2) At each point b ∈ P1, one has min(3ordb(g2), 2ordb(g3)) < 12.
The explicit expression for p and q imply that the equation of C is the deter-

minant of a symmetric matrix M :

4x3 − px − q = det(M),
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M =




a0 a1 a2 + 2x
a1 a2 − x a3

a2 + 2x a3 a4


 .

The matrix M defines a real conic bundle on F2n which degenerates over the
curve C. In particular, it defines an étale 2 : 1 cover of C (the conics split in two
lines over points in C), thus we get a point α of order two in Pic(C).
When Π : X −→ P1 is real, the pull-back along ν : X −→ F2n gives an unramified
real conic bundle on ν−1(F2n − C).
Due to the branching of order two along C, this conic bundle extends to all of X
(locally near a point of X on the ramification locus, the conic bundle is defined by
a real homogeneous polynomial of the form X2 + Y2 + t2Z2, where t = 0 defines
the ramification curve. Changing coordinates Z = tZ, one can show that the
conic bundle does not ramify in codimension one, so does not ramify at all.

5.3 Geometric observation

We start with an example inspired by an example of R. Silhol [18, page 181].
We consider the surface X defined in P3 by x4 − y4 = z4 −w4. This is the equation
of a smooth quartic in P3, and hence of a K3 surface with a real elliptic fibration
over P1 whose fibers are the curves defined by:

{
x2 + y2 = t(z2 − w2)
t(x2 − y2) = z2 + w2

A generic fiber Xt of this elliptic fibration is the intersection of two quadrics
ϕt(x, y, z, w) = ϕ′

t(x, y, z, w) = 0. Let Yt be the curve parametrizing families
of lines on the quadrics of the pencil spanned by ϕt and ϕ′

t. Then Yt is canon-
ically identified with the degree 2 components Pic2(Xt) of the Picard group of
Xt: one associates to a family of lines on a quadric the divisor class of the in-
tersection of any line of this family with Xt. The curve Y comes with a map
ξ : Xt −→ Yt = Pic2(Xt) sending a point P to the divisor class of 2P.
Geometrically, this is the family of lines containing the tangent to Xt at P. On the
other hand, Yt is isomorphic to the curve

µ2 = det(λϕt − ϕ′
t)

5.4 Tetragonal curves

The quotient of Y by the fiberwise (−1)-automorphism is a geometrically ruled
surface Σ with some tetragonal curve

R : a0v4 + 4a1v3 + 6a2v2 + 4a3v + a4 = 0

which corresponds to g1
4 pencil over P1.

Now, there is a natural bijection between étale double covers of trigonal curves
and tetragonal curves. In fact the tetragonal construction associates to a 4 : 1
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cover of P1, that is an extension of degree four of k(P1) given by the Lagrange
resolvent and its natural quadratic extension. see [6] and [17]

Remark 5.3. The Recillas trigonal construction gives us a relation between (C, α)
and R with α is some point of order two in J(C).

5.5 Equivariant Recillas construction

Let Π1 : R −→ P1 a simple equivariant branched covering of degree 4. Let
the equivariant symmetric fibred product, quotient of R ×P1 R by the involution
which exchanges factors.

It is the union of the diagonal (isomorphic to R) and a real smooth curve R̃(Π1)

which is a branched covering of P1. Now, the natural P1-involution i over R̃(Π1):

if a ∈ P1 is not a branched point of Π1, a point of R̃a(Π1) is identified to a subset

A containing two elements of the fiber Π−1
1 (a) and then i(a) = Π−1

1 (a)− A. This

involution is without fixed points, then the curve R(Π1) = R̃(Π1)/i is smooth

and the natural map Π(Π1) : R̃(Π1) −→ R(Π1) is an étale real covering of de-
gree 2.
The projection from R(Π1) over P1 defines a simple equivariant branched cover-
ing g(Π1) : R(Π1) −→ P1 of degree 3.

Remark 5.4. Over C, two regular relatively minimal elliptic surfaces with no multi-
ple fibers are deformation equivalent if and only if their holomorphic Euler char-
acteristic are equal, see [13].

Proposition 5.5. Two elliptic surfaces X and Y with double section (over C) are defor-
mation equivalents over C, if and only if g(R) = g(R′) where R , R′ are tetragonal
curves associated to the given surface.

Proof. The surfaces X and Y have sections over C, so Y is deformation equivalent
to X over C if and only if X (Y) = X (X).
We have:

X (Y) = 2X (Σ)−X (R′) = 8 −X (R′)

X (X) = 2X (Σ)−X (R) = 8 −X (R)

Then X (X) = X (Y) equivalent g(R) = g(R′).

5.6 Resolution of singularities

Let Π1 : Y −→ P1 be a real elliptic surface over R with a double section given by
the affine equation

y2 = a0x4 + a1x3 + a2x2 + a3x + a4.

Double points at infinity are singular and give us a section defined over R,
which can be desingularised by taking the fiberwise isomorphism:

Y −→ Y∗

(x, y) 7−→ ( 1
x ,

y
x2 )



454 M. Smirani – M. Akriche

for x 6= 0, which is well defined by fiberwise (-1)-automorphism.
The quotient of Y by fiberwise (-1)-automorphism is the geometrically ruled sur-
face Σ with a tetragonal curve

R : a0x4 + a1x3 + a2x2 + a3x + a4 = 0

such that x = ∞ corresponds to the section at infinity, and x = 0 the zero section.
Over Σ, we set the fiberwise automorphism of the form

(
0 1
1 0

)

which sends the section at infinity to the zero section. Let R∗ be a tetragonal curve
given by

a4x4 + a3x3 + a2x2 + a1x + a0 = 0

The double cover of Σ ramified over R∗ is an elliptic surface Y∗ given by the
affine equation y2 = a4x4 + a3x3 + a2x2 + a1x + a0 such that the section at infinity

is sending to the section (0,±
√

a0(t)) which is defined over R if and only if a0(t)
is a square of a real rational map defined over P1C.
The affine equation of Y∗ given is y2 = a4x4 + a3x3 + a2x2 + a1x + a0, where the

section at infinity on Y is replaced by two sections (0,±
√

a0(t)) which is defined
over R if only if a0(t) is a square of a real rational map defined over P1C.

Proposition 5.6. Let Y be an elliptic surface over R given by the equation:

y2 = a0(t)x
4 + a1(t)x

3 + a2(t)x
2 + a3(t)x + a4(t)

and the triplet (Σ, R, P1) is the geometrically ruled surface pro : Σ −→ P1 with a
tetragonal curve R associated to Y.
Then Y admit a section over R if and only if there exist a fiberwise automorphism defined
over R which sends R to real tetragonal curve R′ given by the equation a′0x4 + a′1x3 +
a′2x2 + a′3x + a′4 = 0 where a′0 is a square of a real rational map defined over P1C.

Proof. Let Y is an elliptic surface given by the equation:

y2 = a0(t)x
4 + a1(t)x

3 + a2(t)x
2 + a3(t)x + a4(t).

If a0(t) is a square of real rational map defined over P1C then Y admit a section
over R.
Conversely, if Y admits a section, the quotient by fiberwise (-1)-automorphism
on Y gives a geometrically ruled surface Σ with an exceptional section and a
tetragonal curve R given by the equation ax4 + bx3 + cx2 + dx + e = 0. With
a fiberwise automorphism of ruled surfaces, one constructs a tetragonal curve

R′ : a′0x4 + a′1x3 + a′2x2 + a′3x + a′4 = 0,

and sending the exceptional section of Σ to the infinity section of Σ, in this case
a′0 will be a square of a real rational map defined over P1C.
The double cover of Σ ramified over the curve R′ gives an elliptic surface Y′, with
a section , given by the affine equation y2 = a′0x4 + a′3x3 + a′2x2 + a′3x + a′4 such

that a′0 is a square of a real rational map defined over P1C.
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Now, we suppose that the Jacobian fibration Π : X −→ P1 has only singular
fibers of type I1. [18, Chapter 7]. The fibration is said generic. Note that the fiber
of type I1 is a singular cubic and the singular point has distinct real tangents(real
type I−1 ) or has two complex conjugate tangents (real type I+1 ) . See [1]
By silhol’s classification of structure of the fibers of an elliptic surface, the singular
fibers of the fibration Π1 : Y −→ P1 must be of type I+1 , or I−1 or (I1 with an

isolated real point). We also say Π1 : Y −→ P1 generic elliptic fibration (not
necessary with real section). See[19]

Remark 5.7. From now, we suppose that the fibrations Π1 is generic and we con-
fuse Π1 with its non-singular projective completion.

Let Fe be a real geometrically ruled surface with fibration pro1 : Fe −→ P1

and R ⊂ Fe a real tetragonal curve. The fibration pro1 : Fe −→ P1 induces a 4:1
map
pro1 : R −→ P1.

Now, the double cover of Fe with branch-locus R, gives us a real elliptic sur-
face Π1 : Y −→ P1(with double section). Let Π : X −→ P1 the Jacobian fibration
associated to Π1 and pro : C ⊂ F2n −→ P1 the associated trigonal curve.

Lemma 5.8. Let a ∈ P1R generic point.
If pro−1

1/R(a)(R) = ∅, then pro−1
/C(a)(R) contains exactly 3 points.

Proof: The double cover of P1 ramified at pro−1
1/R(a) is a curve E of genus one.

Now, E(R) = ∅ (see[18, Chapter 7]). Then, J(E)(R) has two components. So,

pro−1
/C(a)(R) contains exactly 3 points. See [7]

Example: We consider the trivial product C × P1 = Σ with an affine tetragonal
curve defined by

R : −x4 + 6(t − 1)x2 + 36t = 0

The double cover of Σ in a fiber preserving manner ramified over R is an elliptic
surface given by the equation

y2 = −x4 + 6(t − 1)x2 + 36t

and note that the fiber over t = 0 is of type I1(see [14]). This implies that the
singular fibre is defined by

y2 = −x4 − 6x2

which has one isolated real point.

6 Bounds for the number of connected components

In this section, we give some classical restrictions on the topology of a real alge-
braic surface (X, σ) in term of the numerical invariants of the complex surface
X.
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Let (X, σ) be a real algebraic manifold. We will use the following notations:
Bi(X) = dimHi(X, Z/2) the ith mod 2 Betti number of X,

hi(X(R)) = dimHi(X(R), Z/2) the i-th mod 2 Betti number of X(R),

h∗(X(R)) = ∑ hi(X(R)),

B∗(X) = ∑ Bi(X).

The first important prohibition is given by the Milnor-Smith-Thom inequality.

Proposition 6.1. (Milnor-Smith-Thom inequality) Let (X, σ) be a real algebraic mani-
fold, then

h∗(X(R)) ≤ B∗(X);

B∗(X)− h∗(X(R)) ≡ 0 mod 2.

Proof: See [18, Chapter 2].

Let 2d = B∗(X) − h∗(X(R)). A real algebraic surface is an M-surface if d = 0
and an (M-d)-surface if d 6= 0. Other restrictions of Euler characteristic of the real
part of a real algebraic surface, in the case of M-surface or (M-1)-surface, given in
term of congruence. See [4] or [9]

The Smith-Thom inequality gives bounds for the number of connected com-
ponents and the first Betti number h1(X(R)) = dimZ/2H1(X(R), Z/2) of a real
elliptic surface.
Remember that a surface X is regular if the Hodge number h0,1 = 0.
For a real algebraic surface X, we have

2#X(R) + h1(X(R)) ≤ 2 + 2B1 + B2

where Bi is the i-th Betti number of X.
In the case of X a real elliptic surface, relatively minimal, we have h0,1(X) = 0,
X (X) = 12X (OX), (Noether formula).
On the other hand, the Hodge decomposition theorem give h1,1(X) = B2 −
2h0,2(X), and X is regular, then B2 = 12X (OX) − 2 and h0,2(X) = X (OX) − 1,
then

2#X(R) + h1(X(R)) ≤ 12X (OX).

In particular, #X(R) ≤ 6X (OX).

Theorem 6.2. (Kharlamov)Let Π : X −→ P1 be a real regular elliptic surface with no
multiple fibers, then

h1(X(R)) ≤ h1,1(X)

Remark 6.3. Recall that Π : X −→ P1 is relatively minimal, with no multiple fiber.
Using the Hodge decomposition, we get

B1(X) = B3(X) = 0 , h1,1(X) = 10X (OX)

We obtain,
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Theorem 6.4. [15] Let Π : X −→ P1 be a real regular relatively minimal elliptic surface
with no multiple fibers, then

h1(X(R)) ≤ 10X (OX)

Proof. See [1].

Theorem 6.5. Let Π : X −→ P1 be a real regular elliptic surface with a real section,
then

#X(R) ≤ 5X (OX)

For k ≥ 1, there exist a real elliptic surface X with a real section such that
X (OX) = k and #X(R) = 5X (OX).
Proof: See [1].

7 Ovals of a real tetragonal curve

Consider a real geometrically ruled surface F2n and C a real non singular trigonal
curve in F2n.
We consider the non singular curve C∪C∞ which is of bidegree (3, 0)+ (1,−2n) =
(4,−2n). Since the bidegree is even, the polynomial H defining C ∪ C∞ has well-
defined sign on F2n(R).
Hence the ovals of C can be divided into two groups according to the sign of H
in the interior of each oval.
It follows that, with the exception of C(R) consisting of three pseudo-lines, the
real scheme of C,that is the pair (F2n(R), C(R)) up the homeomorphism, is uni-
quely determined by the numbers a and b of ovals in each of these two groups
and will be denoted by < a, b >. See [4].
One can combine proposition 4. 5 and proposition 4. 3 of [4] to get:

Proposition 7.1. Let C is a real trigonal curve in a geometrically ruled surface F2n. If

C has real scheme < a, b >, then a ≤ 5
g+2

6 and b ≤ 5
g+2

6 , where g is the genus of C.

Consider a real geometrically ruled surface Fe and R a real non singular tetrag-
onal curve in Fe. Each oval of R(R) has a well-defined interior (homeomorphic
to a disc). We say that two ovals are nested if one lies in the interior of the other.
We denote a by the number of nested ovals and b otherwise. See [21], [12], [22],
[16].

The following proposition states that a real elliptic surface with double section
(over C) and its branch curve have same discrepancy.

Proposition 7.2. A real elliptic surface with double section (over C) is a (M− d)-surface
if and only if is the associated tetragonal curve is a (M − d)-curve.

Proof. Let Π1 : Y −→ P1 a real genus one fibration with a double section which
can be real or complex conjugate and we recover the associated Jacobian fibration
Π : X −→ P1. Over C, Y has a section, then Y is simply connected, see[11,
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Proposition 2. 2. 1], gives Y is regular, the other Betti numbers are controlled
using the Riemann-Hurwitz formula

X (Y) = 2X (Σ)−X (R) = 8 −X (R)

and Poincaré duality.
The Betti numbers of the real part Y(R) are found using simple comparaison

with the description of nested ovals of R(R) and others components of R(R) .

Let now, Π1 : Y −→ P1 be a real algebraic elliptic surface with double section
(over C), and Π : X −→ P1 the Jacobian fibration associated to Y. Over C, the
map Π1 admits a section. So, it hasn’t multiple fibers. By a simple comparaison
of singular fibres of Π1 and Π [18, chapitre7], we get

h1(Y(R)) ≤ h1(X(R)),

and

#Y(R) ≤ #X(R).

Next, we will give a relation between the genus of tetragonal curve and the
associated trigonal curve.

Proposition 7.3. Let R be a tetragonal curve, and C be an associated trigonal curve.
Then,

g(R) = g(C)− 1.

Proof. Let Π : X −→ P1 be the complex regular elliptic surface associated to the
curve C (See section 4) and Π1 : Y −→ P1 be the complex regular elliptic surface
associated to the curve R (see section 5).
Over C, Y ∼= X then X (X) = X (Y).
We have: X (X) = 4+ 2g(C). Similar to the proof of the proposition 7.2, we have

X (Y) = 8 −X (R) = 8 − (2 − 2g(R)) = 6 + 2g(R),

While X (Y) = X (X), then 6 + 2g(R) = 4 + 2g(C). Finally, we have g(R) =
g(C)− 1.

Now, we give upper bounds for the number of nested ovals and others ovals of
a given real tetragonal curve embedded in Hirzebruch surface in terms of the
genus of the curve.

Theorem 7.4. If R is a real tetragonal curve embedded into a certain Hirzebruch surface
Fn. Then,

(i) a ≤
5

6
(g(R) + 3),

and

(ii) b ≤
5

6
(g(R) + 3).
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Proof. (i) Let Y be the ramified double cover of Fn with ramification locus R. The
lift of the ruling on Fn endows Y with an elliptic fibration with a double section.
Thus, the fibration is without multiple fibers. Recall that h1(Y(R)) must be even
[1].
Following the same idea of the proposition 7.2, we get a ≤ 1

2h1(Y(R)).

We consider the Jacobian fibration Π : X −→ P1 associated to the elliptic fibration
Π1 : Y −→ P1. By construction Π : X −→ P1 has a real section. We get,

h1(Y(R)) ≤ h1(X(R)).

Using the theorem 6.4 we obtain a ≤ 5X (OX).
Recall the formula X (X) = 6 + 2g(R) obtained in the proof of the proposition
7.3. The assertion is obtained by using the Noether Formula.

(ii) In order to prove the statement about the others of ovals of the given
tetragonal curve R, we remember that b ≤ #Y(R).
Now using the theorem 6.5, we obtain

#Y(R) ≤ #X(R) ≤ 5X (OX).

We conclude using the same idea of the last part of the proof of (i).
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