Conjugate convolution operators and inner amenability

Ali Ghaffari

Abstract

Let G be a group and $L^\infty(G)$ be the C^*-algebra of bounded complex-valued functions on G. G is called inner amenable if there exists a positive norm 1 functional m on $L^\infty(G)$ such that $m(\rho(y)f) = m(f)$ for each $y \in G$, $f \in L^\infty(G)$ (where $\rho(y)f(x) = f(yxy^{-1})$); the functional m is called an inner invariant mean.

In this paper, among the other things, we prove a variety of characterizations of inner amenable groups. We also give sufficient conditions on an inner invariant mean to be a topologically inner invariant mean.

1 Introduction

There are a lot of results in abstract harmonic analysis on amenability of a locally compact group. A good deal of attention was paid to the study of inner amenable groups. The study of inner invariant means was initiated by Effros [5] and pursued by Akemann [1], Yuan [25] for discrete groups, Lau and Patterson [13] and Yuan [26] for locally compact groups, and Ling [15] and Mohammadzadeh and Nasr-Isfahani [18] for semigroups. Amenable locally compact groups and [IN]-groups are inner amenable. Furthermore when G is connected, then G is amenable if and only if G is inner amenable [16]. Amenability and inner amenability of Lau algebras is studied in [12] and [19]. For terminologies regarding invariant means on locally compact groups, the reader is
referred to [20]. Let \(\pi_\infty \) be the isometric representation of \(G \) on \(L^\infty(G) \) given by
\[\pi_\infty(x)f(t) = f(x^{-1}tx) \]
It is shown that \(L^\infty(G) \) has an inner invariant mean if and only if the commutant \(\pi_\infty(G)' \) of \(\pi_\infty(G) \) contains a nonzero compact operator [14]. The literature on inner amenability has grown substantially in recent years, see [9], [11] and [17].

In this paper, we investigate inner invariant means on \(L^\infty(G) \) and its closed subalgebra \(U^\infty(G) \) of all \(f \in L^\infty(G) \) for which the mapping \(y \mapsto \rho(y)f \) is continuous [7]. We also study topologically inner invariant means on certain closed subspaces \(X \) of \(U^\infty(G) \) and their relation with inner invariant means on \(X \). We show that every topologically inner invariant mean on \(L^\infty(G) \) is also inner invariant. The converse remains open. Sufficient conditions on an inner invariant mean to be a topologically inner invariant mean are given. We characterize inner amenable groups by introducing the so-called conjugate convolution operators which develop the techniques of the usual convolution operators. We give sufficient conditions and some necessary conditions for \(G \) to have an inner invariant mean.

\section{Preliminaries and notations}
Throughout this paper \(G \) will denote a locally compact group with left Haar measure \(dx \), modular function \(\Delta \), and identity \(e \). For \(1 \leq p < \infty \), \(L^p(G) \) is the space of complex-valued measurable functions \(\varphi \) on \(G \) such that \(\int |\varphi(x)|^p dx < \infty \). Let \(L^\infty(G) \) be the algebra of essentially bounded measurable complex-valued functions on \(G \). For \(y \in G \) and \(f \) a function on \(G \) we use the notation
\[yf(x) = f(y^{-1}x), \quad \rho(y)f(x) = f(xy^{-1}) \quad (x \in G). \]
If \(\varphi \in L^1(G) \), \(\psi \in L^p(G) \) \((1 \leq p < \infty)\) and \(f \in L^\infty(G) \), then \(\varphi \oplus \psi \) as member of \(L^p(G) \) is given
\[\varphi \oplus \psi(x) = \int \varphi(y)\psi(y^{-1}x)\Delta(y)^{\frac{1}{p}} dy \quad (x \in G) \]
while \(\varphi \odot f \) as member of \(L^\infty(G) \) is given by
\[\varphi \odot f(x) = \int \varphi(y)f(xy^{-1}) dy \quad (x \in G). \]
We have \(\| \varphi \oplus \psi \|_p \leq \| \varphi \|_1 \| \psi \|_p \) and \(\| \varphi \odot f \| \leq \| \varphi \|_1 \| f \| \). More information on this product can be found in [23] and [24]. More generally, for \(1 \leq p \leq \infty \), let \(\pi_p \) be the isometric representation of \(G \) on \(L^p(G) \) given by
\[\pi_p(y)\varphi(x) = \varphi(y^{-1}x)\Delta(y)^{\frac{1}{p}} \quad (x, y \in G, \ \varphi \in L^p(G)). \]
Thus for all \(y \in G \), we have \(\| \varphi \|_p = \| \pi_p(y)\varphi \|_p \). We denote by \(P^p(G) \) the convex set of all nonnegative functions \(\varphi \) in \(L^p(G) \) such that \(\| \varphi \|_p = 1 \). If \(A \) is measurable subset of \(G \), then \(|A| \) is the measure of \(A \). For any subset \(A \) of \(G \), \(1_A \) denotes the characteristic function of \(A \). If \(0 < |A| < \infty \), we also consider the mapping
\[\xi_A(x) = \frac{1_A(x)}{|A|} \quad \text{defined on } G. \]
Duality between Banach spaces is denoted by \(\langle \cdot, \cdot \rangle \); thus for \(f \in L^\infty(G) \) and \(\varphi \in L^1(G) \), we have \(\langle f, \varphi \rangle = \int f(x) \varphi(x) \, dx \). As far as possible, we follow [7] in our notation and refer to [22] for basic functional analysis and to [10] for basic harmonic analysis.

3 Main results

We start by recalling the following definition.

Definition 3.1. Let \(X \) be a subspace of \(L^\infty(G) \) with \(1_G \in X \) that is closed under complex conjugation:

(i) We say that \(X \) is invariant (topologically invariant), if \(\rho(y)f \in X \) \((\varphi \circ f \in X) \) whenever \(y \in G \), \(f \in X \) and \(\varphi \in P^1(G) \);

(ii) A mean on \(X \) is a norm one nonnegative functional \(m \) on \(X \) such that \(m(1_G) = 1 \);

(iii) Let \(X \) be an invariant subspace of \(L^\infty(G) \). A mean \(m \) on \(X \) is called inner invariant mean if \(\langle m, \rho(y)f \rangle = \langle m, f \rangle \) for all \(f \in X \) and \(y \in G \);

(iv) Let \(X \) be a topologically invariant subspace of \(L^\infty(G) \). A mean \(m \) on \(X \) is called topologically inner invariant mean if

\[
\langle m, \varphi \circ f \rangle = \langle m, f \rangle
\]

for all \(\varphi \in P^1(G) \) and \(f \in X \);

(v) A locally compact group \(G \) is called inner amenable group if it admits an inner invariant mean on \(L^\infty(G) \).

We denote by \(U^\infty(G) \) the Banach space consisting of the complex-valued functions \(f \) in \(L^\infty(G) \) that are uniformly continuous, that is, the mapping \(y \mapsto \rho(y)f \) from \(G \) into \(L^\infty(G) \) is continuous [7]. The present author has proved that \(U^\infty(G) \) is a Banach algebra and \(\varphi \circ f \in U^\infty(G) \) for every \(\varphi \in L^1(G) \) and \(f \in L^\infty(G) \) (see Lemma 2.3 in [7]). Clearly \(U^\infty(G) \) is an invariant subspace of \(L^\infty(G) \).

Lemma 3.2. Let \(G \) be a locally compact group. Then the following statements hold:

(i) Let \(X \) be a closed subspace of \(U^\infty(G) \). Then \(X \) is invariant if and only if it is topologically invariant;

(ii) Let \(X \) be a closed subspace of \(U^\infty(G) \) with \(1_G \in X \) that is closed under complex conjugation and topologically invariant. A mean \(m \) on \(X \) is inner invariant if and only if it is topologically inner invariant.

Proof. (i): By the same argument as used at the proof of Lemma 2.5 in [7], we see that \(X \) is invariant if and only if it is topologically invariant.
(ii): Let m be an inner invariant mean on X, and let $f \in X$ and $\varphi \in P^1(G)$. Since the measures in $P^1(G)$ with compact supports are norm dense in $P^1(G)$, without loss of generality we may assume that φ has a compact support. By Theorem 3.27 in [22],

$$\langle m, \varphi \odot f \rangle = \int \langle m, \rho(y)f \rangle \varphi(y)dy = \int \langle m, f \rangle \varphi(y)dy = \langle m, f \rangle.$$

This shows that m is topologically inner invariant mean.

To prove the converse, let m be a topologically inner invariant mean on X and fix $\varphi \in P^1(G)$. For $f \in X$ and $y \in G$,

$$\langle m, \rho(y)f \rangle = \langle m, \varphi \odot \rho(y)f \rangle = \langle m, y \varphi \odot f \rangle = \langle m, f \rangle.$$

Thus, m is an inner invariant mean on X.

Let G be a locally compact group. For $\varphi, \psi \in L^1(G)$, $f \in L^\infty(G)$ and $m, n \in L^\infty(G)^*$, the elements $f.\varphi$ and $n.f$ of $L^\infty(G)$ and $m.n \in L^\infty(G)^*$ are defined by

$$\langle f.\varphi, \psi \rangle = \langle f, \varphi \odot \psi \rangle, \quad \langle n.f, \varphi \rangle = \langle n, f.\varphi \rangle, \quad \langle m.n, f \rangle = \langle m, n.f \rangle,$$

respectively. Clearly $\|f.\varphi\| \leq \|f\|\|\varphi\|_{1,1}$, $\|n.f\| \leq \|n\|\|f\|$ and $\|m.n\| \leq \|m\|\|n\|$.

Elementary calculations shows that $\varphi \odot f = f.\varphi$ for every $f \in L^\infty(G)$ and $\varphi \in L^1(G)$.

For each $\varphi \in L^1(G)$, define a seminorm ρ_φ on the linear space $L^\infty(G)$ by $\rho_\varphi(f) = \|f.\varphi\|$, $f \in L^\infty(G)$. Note that $\mathcal{P} = \{\rho_\varphi; \varphi \in L^1(G)\}$ separates the points of $L^\infty(G)$. The locally convex topology on $L^\infty(G)$ determined by these seminorms is denoted by τ_c. We first remark that the τ_c-topology may be characterized in another manner. Indeed, it is a standard device to embed $L^\infty(G)$ into $B(L^1(G), L^\infty(G))$ by an operator T so that $T(f)(\varphi) = f.\varphi$, $f \in L^\infty(G)$, $\varphi \in L^1(G)$. Then T is one-to-one and linear. On the other hand, $B(L^1(G), L^\infty(G))$ naturally carries the strong operator topology. So T allows us to consider the induced topology on $L^\infty(G)$ which is the same as the τ_c-topology. In [8] the author studied the τ_c-topology on the dual $M_p(S)^*$ of the semigroup algebra $M_p(S)$ of a locally compact foundation semigroup S. From these observations we immediately deduce the following Lemma.

Lemma 3.3. Let G be a locally compact group. For each $\varphi \in L^1(G)$, the mapping $f \mapsto \varphi \odot f$ from $(L^\infty(G), \tau_c)$ into $(L^\infty(G), \|\|)$ is continuous.

We are now in a position to establish one of the main results of this section.

Theorem 3.4. Let G be a locally compact group, X a subspace of $L^\infty(G)$ with $1_G \in X$ that is closed under complex conjugation, invariant and topologically invariant. Then the following properties hold:

(i) Every topologically inner invariant mean m on X is τ_c-continuous;

(ii) An inner invariant mean on X is topologically inner invariant mean if and only if it is τ_c-continuous;
(iii) Let \(m \) be an inner invariant mean on \(X \). Suppose there is some \(\varphi_0 \in P^1(G) \) such that \(\langle m, \varphi_0 \circ f \rangle = \langle m, f \rangle \) for all \(f \in X \). Then \(m \) is topologically inner invariant mean.

Note that an analogue of statement (ii) for topological left invariant means has proved by Crombez, see Lemma 2.1 in [3]. Also, there is an argument similar to statement (iii) for topological left invariant means, see Proposition 22.2 in [21].

Proof. (i): Let \(m \) be a topologically inner invariant mean on \(X \), and let \(f_\alpha \to f \) in the \(\tau_c \)-topology of \(X \). By Lemma 3.3, for \(\varphi \in P^1(G) \), \(f_\alpha . \varphi \to f . \varphi \) in the norm topology. We conclude that

\[
\lim_{\alpha} \langle m, f_\alpha \rangle = \lim_{\alpha} \langle m, \varphi \circ f_\alpha \rangle = \lim_{\alpha} \langle m, f_\alpha . \varphi \rangle = \langle m, f . \varphi \rangle = \langle m, \varphi \circ f \rangle = \langle m, f \rangle.
\]

This shows that \(m \) is \(\tau_c \)-continuous.

(ii): Let \(m \) be an inner invariant mean on \(X \). If \(m \) is topologically inner invariant, then \(m \) is \(\tau \)-continuous; see (i).

To prove the converse, let \(m \) be an inner invariant mean on \(X \). Let \(f \in X \), \(\varphi \in P^1(G) \) and \(\varepsilon > 0 \) be given. We further assume that \(\varphi \) has a compact support, say \(K \). If \(\| f \| = 0 \), we have trivially \(\langle m, \varphi \circ f \rangle = \langle m, f \rangle \). We now consider the case \(\| f \| > 0 \). The sets

\[
V(\varphi \circ f, \varphi_1, ..., \varphi_n, \delta) = \{ h \in X; \| h . \varphi - (\varphi \circ f) . \varphi_i \| < \delta, i = 1, ..., n \}
\]

where \(\delta > 0 \) and \(\{ \varphi_1, ..., \varphi_n \} \) is a finite subset of \(L^1(G) \), form a basis of open neighborhoods of \(\varphi \circ f \) in the \(\tau_c \)-topology of \(X \). Now, we choose a neighborhood \(V(\varphi \circ f, \varphi_1, ..., \varphi_n, \delta) \) of \(\varphi \circ f \) in \(X \) such that \(|\langle m, h \rangle - \langle m, \varphi \circ f \rangle| < \varepsilon \) whenever \(h \in V(\varphi \circ f, \varphi_1, ..., \varphi_n, \delta) \).

Since the mapping \(y \mapsto y . \varphi_i \) is continuous [6], for every \(y \in K \), there exists a relatively compact neighbourhood \(U_y \) of \(y \) in \(G \) such that \(\| y . \varphi_i - x . \varphi_i \| < \frac{\delta}{\| f \|} \) whenever \(x \in U_y \) and \(i \in \{1, ..., n\} \). Now cover \(K \) by \(\{ U_y; y \in K \} \). By compactness we may extract a finite subcover \(U_{y_1}, ..., U_{y_l} \) of \(K \). We can find \(l \) Borel subsets \(A_1, ..., A_l \) of \(K \) such that

\[
K = \bigcup_{j=1}^{l} A_j, \ A_j \cap A_r = \emptyset (j \neq r), \ \| y . \varphi_i - x . \varphi_i \|_1 < \frac{\delta}{\| f \|}
\]

whenever \(y \in A_j \) and \(i \in \{1, ..., n\} \). If \(j \in \{1, ..., l\} \), we also put \(a_j = \int_{A_j} \varphi(y)dy \).

Then \(\sum_{j=1}^{l} a_j = 1 \). For every \(i \in \{1, ..., n\} \),

\[
| \sum_{j=1}^{l} a_j \rho(y_j) f . \varphi_i - (\varphi \circ f) . \varphi_i | = | \sum_{j=1}^{l} a_j y_j . \varphi_i \circ f - \varphi_i \circ (\varphi \circ f) | \\
\leq \sum_{j=1}^{l} \int_{A_j} \varphi(z) | y_j . \varphi_i \circ f - \varphi_i \circ f | dz \\
\leq \sum_{j=1}^{l} \int_{A_j} \varphi(z) \| y_j . \varphi_i - \varphi_i \|_1 \| f \| dz < \delta.
\]
This shows that \(\sum_{j=1}^{l} \alpha_i \rho(y_j)f \in V(\varphi \odot f, \varphi_1, ..., \varphi_n, \delta) \), and so

\[
|\langle m, f \rangle - \langle m, \varphi \odot f \rangle| = \left| \langle m, \sum_{j=1}^{l} \alpha_i \rho(y_j)f \rangle - \langle m, \varphi \odot f \rangle \right| < \epsilon.
\]

As \(\epsilon > 0 \) may be chosen arbitrarily, we have \(\langle m, f \rangle = \langle m, \varphi \odot f \rangle \). Finally, if \(\varphi \) is any element in \(P^1(G) \), let \(\{\varphi_n\} \subseteq P^1(G) \) be a sequence of elements with compact support such that \(\varphi_n \to \varphi \). Then from the above special case, we conclude that \(\langle m, \varphi \odot f \rangle = \langle m, f \rangle \).

(iii): Let \(m \) be an inner invariant mean and \(\langle m, \varphi_0 \odot f \rangle = \langle m, f \rangle \) for all \(f \in X \). To show that \(m \) is topologically inner invariant mean, it is sufficient to prove that \(m \) is \(\tau_c \)-continuous. But suppose \(f_\alpha \to f \) in the \(\tau_c \)-topology. Since \(\varphi_0 \odot f_\alpha = f_\alpha \cdot \varphi_0 \to f \cdot \varphi_0 = \varphi_0 \odot f \) in the norm topology, we see that

\[
\lim_{\alpha} \langle m, f_\alpha \rangle = \lim_{\alpha} \langle m, \varphi_0 \odot f_\alpha \rangle = \langle m, \varphi_0 \odot f \rangle = \langle m, f \rangle.
\]

Hence \(m \) is topologically inner invariant mean.

Let \(G \) be a compact nondiscrete abelian group. By Proposition 22.3 in [21], there exists a left invariant mean \(m \) on \(L^\infty(G) \) such that \(\langle m, \varphi \odot f \rangle \neq \langle m, f \rangle \) for some \(f \in L^\infty(G) \) and \(\varphi \in P^1(G) \). This shows that \(m \) can not be a topologically left invariant mean. It is easy to see that every topologically inner invariant mean on \(L^\infty(G) \) is inner invariant mean on \(L^\infty(G) \). We do not know whether or not the converse holds. The next theorem of this section exhibits a number of assertions which are equivalent to inner amenability of a locally compact group \(G \).

Theorem 3.5. A locally compact group \(G \) is inner amenable if and only if there exists a net \(\{\varphi_\alpha\} \) in \(P^1(G) \) satisfying any one of the following conditions:

(i) For every \(\varphi, \psi \in P^1(G) \), \(\lim_{\alpha} \| \psi \odot (\varphi \odot \varphi_\alpha) - \psi \odot \varphi_\alpha \|_1 = 0 \);

(ii) For every \(\varphi \in P^1(G) \) and \(f \in U^\infty(G) \), \(\lim_{\alpha} \langle f, \varphi \odot \varphi_\alpha - \varphi_\alpha \rangle = 0 \);

(iii) For every compact subset \(K \) of \(G \) and every \(f \in U^\infty(G) \),

\[
\lim \sup \{ |\langle f, \pi_1(y)\varphi_\alpha - \varphi_\alpha \rangle| ; \ y \in K \} = 0.
\]

Proof. Let \(G \) be inner amenable. By Theorem 2 in [24], there exists a net \(\{\varphi_\alpha\} \) in \(P^1(G) \) such that \(\lim_{\alpha} \| \varphi \odot \varphi_\alpha - \varphi_\alpha \|_1 = 0 \) for every \(\varphi \in P^1(G) \). For every \(\varphi, \psi \in P^1(G) \),

\[
\lim_{\alpha} \| \psi \odot (\varphi \odot \varphi_\alpha) - \psi \odot \varphi_\alpha \|_1 \leq \lim_{\alpha} \| \varphi \odot \varphi_\alpha - \varphi_\alpha \|_1 = 0.
\]

(i) implies (ii): Let \(f \in U^\infty(G) \) and \(\varphi \in P^1(G) \). By Cohen’s factorization theorem, \(U^\infty(G) = L^1(G) \odot L^\infty(G) \) [23]. Therefore \(f \) is of the form \(f = \psi_0 \odot f_0 \) for some \(\psi_0 \in L^1(G) \) and \(f_0 \in L^\infty(G) \). By considering Jordan decomposition, it is clear that statement (i) holds for any \(\psi \in L^1(G) \). Hence

\[
\lim_{\alpha} \langle f, \varphi \odot \varphi_\alpha - \varphi_\alpha \rangle = \lim_{\alpha} \langle f_0, \psi_0 \odot (\varphi \odot \varphi_\alpha) - \psi_0 \odot \varphi_\alpha \rangle = 0.
\]
(ii) implies G is inner amenable: It suffices to show that $U^\infty(G)$ has a topologically inner invariant mean. By Proposition 3.3 in [21], the net $\{\varphi_\alpha\}$ admits a subnet $\{\varphi_\beta\}$ converging to a mean m in the weak* topology of $L^\infty(G)$. For all $f \in U^\infty(G)$ and $\varphi \in P^1(G)$,

$$\langle m, \varphi \circ f - f \rangle = \lim_{\beta} \langle f, \varphi \otimes \varphi_\beta - \varphi_\beta \rangle = 0.$$

(iii) implies G is inner amenable: This is similar to the last implication. Let $\{\varphi_\alpha\}$ be as in statement (iii) and define m as above. Then for $f \in U^\infty(G)$ and $x \in G$,

$$\langle m, \rho(x)f - f \rangle = \lim_{\beta} \langle f, \pi_1(x)\varphi_\beta - \varphi_\beta \rangle = 0.$$

Inner amenable implies (iii): This is an immediate consequence of Theorem 1 of [24].

Theorem 3.6. Let $1 < p, q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. A locally compact group G is inner amenable if and only if

$$\inf\{\sup\{\inf\{\langle \pi_p(y)\varphi + \varphi, \varphi \rangle; y \in K\}; \varphi \in P^p(G), \varphi \in P^q(G)\}; K \in \mathcal{K}\} = 2,$$

where \mathcal{K} is the family of compact subsets of G.

Proof. Suppose that G is inner amenable. Let K be a compact subset of G and $\varepsilon > 0$. By Theorem 1 in [26], there exists $\varphi \in P^1(G)$ such that, for every $y \in K$,

$$\|\pi_1(y)\varphi - \varphi\|_1 < \varepsilon^p.$$

For $a \geq 0$, the map $x \mapsto x^p - a^p - (x - a)^p$ is increasing from $\mathbb{R}^+ \to \mathbb{R}$. So that $(b - a)^p \leq b^p - a^p$ for all $b \geq a$. Let $\varphi = \varphi^\frac{b}{p}$. For every $y \in K$, we obtain

$$\|\pi_p(y)\varphi - \varphi\|_p^p = \int |\varphi^\frac{1}{p}(y^{-1}xy)\Delta(y)^\frac{1}{p} - \varphi^\frac{1}{p}(x)|^p dx \leq \int |\varphi(y^{-1}xy)\Delta(y) - \varphi(x)| dx \leq \|\pi_1(y)\varphi - \varphi\|_1 < \varepsilon^p.$$

Now let $\varphi = \varphi^\frac{q}{p}$. For every $y \in K$,

$$\langle \pi_p(y)\varphi + \varphi, \varphi \rangle = \langle \pi_p(y)\varphi - \varphi, \varphi \rangle + 2\langle \varphi, \varphi \rangle > 2 - \varepsilon.$$

As $\varepsilon > 0$ and $\varepsilon \in \mathcal{K}$ are arbitrary, we have

$$\inf\{\sup\{\inf\{\langle \pi_p(y)\varphi + \varphi, \varphi \rangle; y \in K\}; \varphi \in P^p(G), \varphi \in P^q(G)\}; K \in \mathcal{K}\} = 2.$$

Conversely if the condition holds, let K be a compact subset of G and $\varepsilon > 0$. Then there exist $\varphi \in P^p(G)$ and $\psi \in P^q(G)$ such that $\langle \pi_p(y)\varphi + \varphi, \psi \rangle > 2 - \varepsilon$ for every $y \in K$. It follows that $\|\pi_p(y)\varphi + \varphi\|_p > 2 - \varepsilon$ for every $y \in K$. For every $y \in K$, by the Clarkson’s inequalities, we obtain

$$\|\pi_p(y)\varphi + \varphi\|_p^p + \|\pi_p(y)\varphi - \varphi\|_p^p \leq 2^{p-1}(\|\pi_p(y)\varphi\|_p^p + \|\varphi\|_p^p) = 2^p.$$

Conjugate convolution operators and inner amenability

35
in case \(p \geq 2 \), and so \(\|\pi_p(y)\varphi - \varphi\|_p^p < 2^p - (2 - \epsilon)^p \). We have

\[
\|\pi_p(y)\varphi + \varphi\|_p^p + \|\pi_p(y)\varphi - \varphi\|_p^p \leq 2^{q+1-p}(\|\pi_p(y)\varphi\|_p^p + \|\varphi\|_p^p)^{p-1} = 2^q
\]

in case \(1 < p < 2 \), and so \(\|\pi_p(y)\varphi - \varphi\|_p^q < 2^q - (2 - \epsilon)^q \). Since this holds for all \(y \in K \), we conclude that \(G \) is inner amenable [24].

Corollary 3.7. Let \(1 < p, q < \infty \) and \(\frac{1}{p} + \frac{1}{q} = 1 \). The following conditions are equivalent:

(i) \(G \) is inner amenable;

(ii) \(\inf\{\sup\{\langle \phi \otimes \varphi + \varphi, \psi \rangle ; \varphi \in P^p(G), \psi \in P^q(G)\}, \phi \in P^1(G)\} = 2. \)

Proof. (i) implies (ii): Let \(\phi \in P^1(G) \) and \(\epsilon \in (0, 1) \). Choose \(\phi_1 \in C_c(G)^+ \) with compact support \(K \) such that \(\|\phi - \phi_1\|_1 < \epsilon \), hence \(\|\phi_1\|_1 > 1 - \epsilon \) [10]. By Theorem 3.6, we may determine \(\varphi \in P^p(G) \) and \(\psi \in P^q(G) \) such that \(\langle \pi_p(y)\varphi + \varphi, \psi \rangle > 2 - \epsilon \) for all \(y \in K \). By integration, we obtain \(\langle \phi_1 \otimes \varphi + \varphi, \psi \rangle \geq (2 - \epsilon)\|\phi_1\|_1 > (2 - \epsilon)(1 - \epsilon) \). We have

\[
\langle \phi \otimes \varphi + \varphi, \psi \rangle \geq \langle \phi_1 \otimes \varphi + \varphi, \psi \rangle \geq (2 - \epsilon)(1 - \epsilon).
\]

This shows that \(\inf\{\sup\{\langle \phi \otimes \varphi + \varphi, \psi \rangle ; \varphi \in P^p(G), \psi \in P^q(G)\}, \phi \in P^1(G)\} = 2. \)

(ii) implies (i): Let \(\phi \in P^1(G) \). By assumption, given \(\epsilon \in (0, 1) \), there exist \(\varphi \in P^p(G) \) and \(\psi \in P^q(G) \) such that \(\langle \phi \otimes \varphi + \varphi, \psi \rangle > 2 - \epsilon \). It follows that \(\langle \phi \otimes \varphi, \psi \rangle > 1 - \epsilon \). We consider \(L_\varphi : L^p(G) \to L^p(G) \) by \(L_\varphi(\psi) = \phi \otimes \varphi \). Clearly \(\|L_\varphi\| > 1 - \epsilon \), and so \(\|L_\varphi\| = 1 \). Since this holds for all \(\phi \in P^1(G) \), by a form of the Riesz-Thorin Convexity Theorem ([4], VI.10.11), \(L_\varphi : L^2(G) \to L^2(G) \) has norm 1. Define \(\omega_1 : \{L_\varphi; \phi \in L^1(G)\} \to \mathbb{C} \) by \(\omega_1(L_\varphi) = \int \varphi(x)dx \). By the Hahn Banach theorem for states (see Proposition 2.3.24 in [2]), we can extend \(\omega_1 \) to a state \(\omega \) on the algebra \(B(L^2(G)) \) of bounded operators on \(L^2(G) \). Therefore \(G \) is inner amenable by Theorem 2 in [26].

Lau and Paterson [13] gave a necessary condition on a locally compact group \(G \) to have an inner invariant mean \(m \) such that \(\langle m, 1_V \rangle = 0 \) for some compact neighborhood \(V \) of \(G \) invariant under the inner automorphisms. Let \(A \) be a Borel subset of \(G \). In the following theorem, we provide a necessary and sufficient condition for \(G \) to have an inner invariant mean \(m \) with \(\langle m, 1_A \rangle = 1 \).

Theorem 3.8. Let \(G \) be an inner amenable group and let \(A \) be a Borel subset of \(G \). Then the following statements are equivalent:

(i) There is a topologically inner invariant mean on \(L^\infty(G) \) such that \(\langle m, 1_A \rangle = 1 \);

(ii) \(\inf\{\sup\{\langle \pi_1(y)\varphi, 1_A \rangle ; y \in K \}; \varphi \in P^1(G)\}; K \in K \} = 1. \)
Conjugate convolution operators and inner amenability

Proof. (i) implies (ii): Assume that there is a topologically inner invariant mean m on $L^\infty(G)$ such that $\langle m, 1_A \rangle = 1$. As $P^1(G)$ is weak* dense in the convex set of all means on $L^\infty(G)$ (see Proposition 3.3 in [21]), there exists a net $\{\varphi_\alpha\}$ in $P^1(G)$ such that, for every $\varphi \in P^1(G)$, $\{\varphi \otimes \varphi_\alpha - \varphi_\alpha\}$ converges to 0 in the weak topology of $L^1(G)$. Let $\varphi_0 \in P^1(G)$ be fixed and put $\varphi_\alpha = \varphi_0 \otimes \varphi_\alpha$. It is easy to see that $\{\psi_\alpha\}$ converging to φ_0,m in the weak* topology of $L^\infty(G)$, and also $\langle \varphi_0,m,1_A \rangle = 1$. Let $\epsilon > 0$ and $K \subseteq G$ compact be given. As $\varphi_0 \in L^1(G)$, the mapping $y \mapsto y\varphi_0$ is continuous [10], so there exists an open neighbourhood V of e in G such that, for all $y \in V$, $\|y\varphi_0 - \varphi_0\|_1 < \frac{\epsilon}{2}$ [6]. We may determine a subset $\{y_1, ..., y_n\}$ in K such that $K \subseteq \bigcup_{i=1}^n y_i V$ and $\|y\varphi_0 - y_i\varphi_0\|_1 < \frac{\epsilon}{2}$ whenever $y \in y_i V \cap K$ and $i \in \{1, ..., n\}$. There exists $a_0 \in I$ such that, for every $\alpha \in I$ with $\alpha \geq a_0$ and every $i \in \{1, ..., n\}$

$$\left|\langle \sigma_1(y_i)\varphi_\alpha - \varphi_\alpha, 1_A \rangle\right| \leq \left|\langle \sigma_1(y_i)\varphi_\alpha - \varphi_\alpha, 1_A \rangle\right| + \left|\langle \varphi_\alpha - \varphi_\alpha, 1_A \rangle\right|$$

$$\leq \left|\langle \sigma_1(y_i)\varphi_\alpha - \varphi_\alpha, 1_A \rangle\right| + \left|\langle \varphi_\alpha - \varphi_\alpha, 1_A \rangle\right|$$

$$\leq \left|\langle \sigma_1(y_i)\varphi_\alpha - \varphi_\alpha, 1_A \rangle\right| + \begin{cases} \frac{\epsilon}{2} & \text{if } \varphi_\alpha \geq a_0 \text{ on } K \end{cases}$$

For any $y \in K$, there exist $i \in \{1, ..., n\}$ and $v \in V$ such that $y = y_i v$. Then we have

$$\left|\langle \sigma_1(y)\varphi_\alpha - \varphi_\alpha, 1_A \rangle\right| = \left|\langle \sigma_1(y)\varphi_\alpha - \sigma_1(y_i)\varphi_\alpha + \sigma_1(y_i)\varphi_\alpha - \varphi_\alpha, 1_A \rangle\right|$$

$$\leq \left|\langle \sigma_1(y)\varphi_\alpha - \sigma_1(y_i)\varphi_\alpha, 1_A \rangle\right| + \begin{cases} \frac{\epsilon}{2} & \text{if } \varphi_\alpha \geq a_0 \text{ on } K \end{cases}$$

for every $\alpha \geq a_0$. This shows that $\lim_\alpha \langle \sigma_1(y)\varphi_\alpha - \varphi_\alpha, 1_A \rangle = 0$ uniformly on compacta.

Now let K be a compact subset of G and $\epsilon > 0$. Then there is some $a_0 \in I$ such that

$$\left|1 - \langle \psi_0, 1_A \rangle\right| = \left|\langle \varphi_0,m, 1_A \rangle - \langle \psi_0, 1_A \rangle\right| < \frac{\epsilon}{2}$$

and $\left|\langle \sigma_1(y)\psi_0 - \psi_0, 1_A \rangle\right| < \frac{\epsilon}{2}$ for all $y \in K$. Clearly $\langle \sigma_1(y)\psi_0, 1_A \rangle > 1 - \epsilon$ for all $y \in K$. We conclude that

$$\inf\{\sup\{\inf\{\langle \sigma_1(y)\varphi, 1_A \rangle; y \in K\}; \varphi \in P^1(G)\}; K \in \mathcal{K}\} = 1.$$

(ii) implies (i): We consider the directed set $I = \mathcal{K} \times (0, 1)$ where, for $\alpha = (K, \epsilon) \in I$, $\alpha' = (K', \epsilon') \in I$, $\alpha' \geq \alpha$ in case $K \subseteq K'$ and $\epsilon' \leq \epsilon$. By assumption, given $\alpha = (K, \epsilon)$, there exist $\varphi_\alpha \in P^1(G)$ such that $\langle \sigma_1(y)\varphi_\alpha, 1_A \rangle > 1 - \epsilon$ for all $y \in K$. Let $\varphi \in P^1(G)$ be such that φ is supported on K. We have

$$\langle \varphi \otimes \varphi_\alpha, 1_A \rangle = \int \langle \sigma_1(y)\varphi_\alpha, 1_A \rangle \varphi(y)dy \geq 1 - \epsilon.$$
if \(m_0 \) is an inner invariant mean on \(L^\infty(G) \), then \(m_0|_{U^\infty(G)} \) is an inner invariant mean on \(U^\infty(G) \). By Lemma 3.2, \(m_0|_{U^\infty(G)} \) is a topologically inner invariant mean. On the other hand, any topologically inner invariant mean on \(U^\infty(G) \) may be extended to a topologically inner invariant mean on \(L^\infty(G) \). Thus we can find a topologically inner invariant mean \(m_1 \) on \(L^\infty(G) \). Clearly \(m = m_1.n \) is a mean on \(L^\infty(G) \). Let \(\{\psi_\gamma\} \) be a net in \(P^1(G) \) converging to \(m_1 \) in the weak* topology of \(L^\infty(G) \). We have

\[
|\langle m, 1_A \rangle| = |\langle m_1.n, 1_A \rangle| = |\langle m_1, n.1_A \rangle| = \lim_\gamma |\langle \psi_\gamma, n.1_A \rangle|
= \lim_\gamma |\langle n, 1_A, \psi_\gamma \rangle| = 1.
\]

It is straightforward to verify that \(m \) is a topologically inner invariant mean (since \(m_1 \) is) on \(L^\infty(G) \). This completes our proof.

Acknowledgements I would like to thank the referee for his/her careful reading of my paper and many valuable suggestions.

References

Conjugate convolution operators and inner amenability

Department of Mathematics, Semnan University, P.O.Box 35195-363, Semnan, Iran
email:aghaffari@semnan.ac.ir