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Abstract

We consider the heat equation on a polygonal domain () of the plane in
weighted LP-Sobolev spaces

oiu—Au=nh, inQx]|0,T|,
u=0, on dQ) x [0, T, 0.1)
u(-,00=0, inQ.

Here h belongs to L¥(0, T; Ly(QY)), where Ly(Q) = {v € L] (Q) : r'v €
LP(Q))}, with a real parameter y and r(x) the distance from x to the set of
corners of (2. We give sufficient conditions on y, p and () that guarantee
that problem (0.1) has a unique solution u € LP(0,T;L},(Q)) that admits
a decomposition into a regular part in weighted LP-Sobolev spaces and an
explicit singular part.

1 Introduction

In this work we consider the Cauchy-Dirichlet problem for the heat equation (0.1)
on a polygonal domain () of the plane. We give the singular decomposition of the
solution of (0.1) in weighted LP-Sobolev spaces with precise regularity informa-
tion on the regular and singular parts. The classical Fourier transform techniques
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do not allow to handle such a general case. Hence we use the theory of sums
of operators as in G. Da Prato and P. Grisvard [4] and G. Dore and A. Venni [7].
These results have been fruitfully used to prove the singular behavior of elliptic
problems in non-Hilbertian Sobolev spaces in [10].

Although the analysis of the heat equation is well developed in weighted
L2-Sobolev spaces [9, 12, 11, 2] or in LP-Sobolev spaces [10], to the best of our
knowledge such a singularity result does not exist in the framework of weighted
LP-Sobolev spaces. For maximal regularity type results in weighted LP-Sobolev
spaces, we refer to [4, 13, 16, 14, 15].

In [6], we have considered the same kind of results for the periodic-Dirichlet
problem

ot — Au = g, inQx|—m,m|,
u=0, on Q) X [—7, 7],
u(-,—m) =u(-,m), inQ.

Some of the results presented there are useful in our context too.

The first step, which consists in the study of the Helmholtz equation
—Au+zu=g,inQ, u=0,ondQ), (1.1)

where z is a complex number, was performed in [5].

The paper is organized as follows: In section 2 we apply the approach of Da
Prato-Grisvard [4] to obtain a decomposition but with non-optimal regularity in-
formations. Section 3 is devoted to the proof of the regularity of (d; — A)S, where
S is the singular part of the solution obtained before. The use of the approach of
Dore-Venni [7] and the results from section 3 allows to get the optimal regularity
result in section 4.

In the whole paper the notation 2 < b means the existence of a positive con-
stant C, which is independent of the quantities a, b (and eventually of the above
parameter z) under consideration such thata < Cb.

2 Application of Da Prato-Grisvard’s approach [4]

Let us assume in the future that the assumptions of [6, Theorem 2.3] are satisfied,
ie.,

(H) Let p > 2 and Q) be a bounded polygonal domain of IR?, i.e., its boundary is
the union of a finite number of line segments. Denote by S;,j =1,...,], the
vertices of 0Q) enumerated clockwise and, for j € {1,2,...,]}, let ; be the

interior angle of () at the vertex S;and A; = =

P;°

Forallj=1,...,],lety; > —A; satisfy 2 — % — 1 # kAj, for allk € Z*, and
2p —2 2 -1
Hi < PP ifp>2 p<1ifp=2 |y]-]<7V’;A]-. 2.1)

We shall apply the results from [4] (see also [6, Theorem 2.1]) on the space
E = LP(L; L}(Q)) with LE(Q) = {f € L}, (Q) | wf € LP(Q)},

loc
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where [ = [0, T], w(x) ~ r(x)" near S;, w(x) ~ 1 far from the corners and with
the operators
A:D(A) CE—E:uw— —Au, with
D(A) = LV (I; D(A,,;)) where D(A, ) = {u € Hy(Q)|Au € LZ(Q)},

and
Br:D(Br) CE — E:uw du, with

D(Br) = Wh(I;LE(Q)) = {u € E | € E,u(-,0) = 0},

Proposition 2.1. Under assumptions (H), the operator A + Bt has an inverse closure
ie., forall g € LP(I; LZ(Q)), there exists a unique strong solution u € LP(I; LZ(Q))
of (A+ Br)u = g ie. there exists (un)y C D(A) N D(Br) such that u, — u and
Auy + Bru, — g. Moreover we have

_ 1 -1 -1

u= 2711'/7(A+ZI) (zI —Br) "gdz, (2.2)
with ¢ : R — C defined for example by v(s) = |s|e (1) fors < 0, y(s) =
5| /(279) for s > 0, with 6 €]0,04 — Z[and 04 €)%, 7| given by [6, Theorem 2.3].
Proof. The proof follows the lines of [6, Proposition 3.1] with minor changes con-
cerning Br: a simple calculation proves that p(Br) = C and, in the verification
that, for all g < 7, there exists M > 0 such that, for all p € Sp, = {p € C |
larg(p)| < 05}, ||(Br + pI)7|| < M|u|~t, denoting v = w” |u|P~2i, we have to

replace
7T 7T
d </ / VOt dtdx+/ / Uatudtdx> =0,
2 QJ—n OJ—mn

valid in the periodic case, by

T T
P (/ / Uatudtdx—i—/ / Uatudtdx> :/ lu(x, T)|[Pw(x)? dx.
2 \JalJo aJo 0

The remainder of the proof follows in the same way as in [6, Proposition 3.1]. =

Remark 2.1 Asin [6, Remark 3.1], we obtain also
_ -1 <
(1+1z|) [[(zI — Br) gHLP(I;Lg(Q)) ~ ||g||LP([;L§(Q))'
As it is clear that, for each t, we have

[(A+zD)7'h)(t) = (=A+z]) 7 (h(t)),

we can use the decomposition in regular and singular parts of the solution of the
Helmholtz equation (1.1) obtained in [6] (see [6, (2.4)]) and rewrite (2.2) as

J
w=ug+) 1 )3 Uty (2.3)
j=1 keN:o<A;.:kAj<2—%_yj
where
u :L/R(z)(zl—B)—l dz u/:i/<T/(z) (ZI—B)_1>~/dz
R = 5 y T) §4%, AT o . Nz, T) g Lij,Z ,

(2.4)
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with R(z) : LZ(Q) — V;’P (Q)) the operator which gives the regular part of the so-
lution of (1.1), T)\} (z): LZ(Q) —-C:9~ Cx (z) = (TA; (z), g) the one which gives
the singular coefficient of the solution of (1.1); 7; is a radial cut-off function such
that 77; = 1in a small ball centered at Sj and #7; = 0 outside a larger ball; P; X, (s) =

I —1
N

st .

Z(:) 7 with > 12— — % — Ajand gbA;’Z(r,G) = M}(r\/_) “rVE  sin(A70).
1=

Recall that Vﬁ’p (Q) is defined as the closure of CZ(Q) = {v € C®(Q) | S; ¢

supp v} with respect to the norm
lelly2r / D7 u(x)|P wb (x) r1770P () d) 7.
' I’rl<2

For more details, see [6, end of Section 2].

. i AN
Proposition 2.2. Let the assumptions (H) be satisfied and denote 0j := 1 — % _ b 5.

Then for all s €]0,min(1 — ¢, 1/p)|, for all g € WP(I, LZ(Q)), there exist
gv € WP (1) and E,: such that u,, defined by (2.4) can be written as
] ] ]

Uy = (EA} st qA;) i sin(/\;G). (2.5)
Moreover we have
1 -1
qr, = ﬁ/y@ﬂy(z)r(ﬂ — Br) g> dz,
EA/ x, t) —/ e’:tP N (r/i€) e ™VEdE,  (2.6)

and the operator U : WP (I, LZ(Q)) — WHOP(1) : ¢ v g,/ is continuous.
]

Proof. Recall that for all f € LS(Q), the mapping C — C : z — <TA§ (z),f> is

holomorphic on A := {z € C | | arg(z)| < 6,4} and continuous on A (see [6]).
Step 1: Extension. Let us consider the extension of g to () x IR, defined by

g(x,t) = g(x,t)ift €10, T], g(x,t) =0ift £1[0,T],
and denote by #I; = (z I — Bs) 1§, the solution of
zii—oi =§ inQ xR, i(-,0) =0 inQ.

Observe that, by uniqueness of the solution of the Cauchy problem, we have
Iz|jom)x0 = (21 — Br)~!g. Moreover we easily see that

f(xt) = 0, ift <0,
= —/ ez(t_s)g(x,s) ds, iftel0,T],
0 .
= —eZt/ e ®g(x,s)ds, ift>T.
0

Consider the function

iy = g [ (Ty(@ 1= Bo) ') a0yt @)
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Observe that ﬁA;|QX[O,T} = uy and that, for t > T, z = pe™% with p > 0,
6o = 5 + 9, using [6, (2.6)], we have

[Ty (2), (21— Bo)71g) (1, ‘< ‘<TA, (21— Bx)'2)
< e )] 1T (2)] (o #T=5)g(x,s) ds
Lh()
[cos|(t-T)__L T apleostol(T—5) gg) "
—p| cos - —qp| cos —s
Se 0 1+ 00 (/o e 0 ds) ||g||Lp(o,T,-L§(Q))

< o—Plcosp|(t=T)

1+ 0% ||g||LP(0,T;L§(Q))‘
On the other hand, for 0 < < 2T and |z| = p we have, by Remark 2.1,

(T (@), (21 = Bo)718) (1, O)] S 1 (T (2), (2 - Boo>1—1g~> |
1
< | <TA}(Z),(ZI—BZT) g> S 1+P ; 1+p||g||m OTL Q)

Step 2: For all x € Q, the function il /(x, ) € L?(R) and hence admits a partial Fourier
]

transform in t. For all t > 2T by the previous considerations, we have
1y 0] < ]/ Ty (2), (21— B)7'g) . (r,0)
1

—p|cos 6| (t—T)
< /O e 1o bl dp gl o () S 7= I8l nz)y

For t < 2T we use a similar argument using here the last estimate of Step 1. This
shows that, for all x € Q, ii;,(x,-) € L?>(R), and we can take its partial Fourier
]

transform in ¢.
Step 3: The partial Fourier transform in t of 1i,/(x, -) satisfies, for all { # 0,
]

Filii)(x,8) = = (T (i), Fi(2)(,8) ) By ().
As ﬁ/\; (x,) € L?(R), using [17, Cor 1, p.154], we know that

k .
Filiiy)(x,8) = lim / e (x, 1) d.
j k—o0 J—k j
Hence by the above computations we have, for k > 2T,

dp dt

T/\/ pei sgn(p)@o) (pei sgn(P)Gol _ Boo)_lg> 1;,/\/‘ peisgn(p)ﬂo(x)e_igtei sgn(p)6o
]/

2T +oo 1 iod
t
(/ 1—|—,011+p oAt

+oo 1
—p|cosby|(t—T)
/ / 1+p0fe ¢ dpdt) ||g||LP(0,T;L§(Q))
2T p+oo
dt
(// 1—i—p‘711—|-p pk+

1
/ZT | cos 6| (t —T) dt) HgHU’(O/T;L,’;(Q)) < oo

Hence, by Fubini’s theorem, we obtain
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Fa)(8) = 5 [ (Ty(), A1 -8 >—1g~><-,5>>4h;.,z<x>dz
— 5 | (1@ T e

The rest of the proof follows [6, Step 2 of the Proof of Proposition 3.2] observ-
ing that, by Holder inequality, we have

P
P “Elg(x,t)dt| d
[ | foe ot as

/pr(x) (/R|g~(x,t)|dt)pdx
< [wre ([ lstniar) ax s 181y 10

Step 4: The operator U : WP (I; LZ(Q)) — WT9P(T) : ¢ — q, with q,, given by
] ]
(2.6) is continuous. By the results of [8],as 0 < s < 1/p, we know that

Iy g

A

W (LLE(Q) = {g €E| /OOPSPHBT(BT —peEHI) | Epdp < 00} :
0

We have a similar characterization of W**%""(I) by considering the operator
N:D(N)C LP(I) = LP(I) s du with D(N) = {u € WYP(I) | u(0) = 0}.

Hence if s + 0; < 1/p, we have
WSHP(]) = {g e LP(I) | /0°° TP | N(N + t1)~gllf, T T < oo},
while if s +0; > 1/p, defining W, left o (1) = {g € WH9P(I) | (0) = 0}, we have
Wt (1) = {g e LP(I) | /Ow TCFPIN(N + D) g|lf, ) T T < oo} .

Claim 1: For T > 0, we have

1 dz
1. , -1
N(N +t1) gy = — [, <TAj(z),BT(zI Br) g> —— 2.8)
First observe that
1
1, , 1,7 _ poy—1
N(N +71)lgy = 27?, L <TAj(z),BT(BT—|—TI) (zI — Br) g> dz
N ) -1 _ 1
_ <2m_ A <TAj(z),Boo(Boo—|—TI) (zI — Boo) g> dz) o

Let us show that we can take the Fourier transform in f of

1 A <TA;(Z),BOO(BOO D)zl — Bw)—1g> dz.

271
We have
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Beo(Boo + TI) 1 (zI — Boo) "¢

(zI — Boo) 1§ — T (Beo + TI) "} (2] — Boo) "¢
=: Ty(x,t) — TOc(x, f).

T
Observe that, for t > T, we have 6, (x, t) = —¢?(!=7) / e?T=%)¢(x,s) ds and
0

Oyr(x,t) = — /Te_T(t_s)/Sez(s_‘T) (x,0)dods
zt\X,T) = 0 0 gix,

¢ T
B / e—r(t—s)eZ(S—T)/ eZ(T—U)g(x, o) dods
T 0
/T ez(t—a) _ e—T(f—U)
0

- Z+T
Hence, for T > 0 and if t > 2T we have as above, using [6, (2.6)],

g(x,0)do.

L.[Y<TA;(Z),BOO(BOO+TI)_1(ZI—B )—1g~> dz

271
1 Tle T B
S F—T ||g||m LLE(O ‘/ | | ‘ A' z), /o e U)g(x,a) da>‘ dz

T|e—Tt T T i
—I—/ Clz+T| <T/\;.(Z)//0 e g(x,0) d0>

1 ST
<f—T+'/7|Z+T’|€ )| dz

1
O
’Te v (lz+ 7)) (1 + |z|7) z H8HLP(1,L§(Q))
t—T sinfy|cosby|t —T

+T€_T(t_T)/oo ! ! d —i—@ gl
| T+p%psinf, * " “singy ) 'Slrraii@)

dz

IN

A

We conclude that this function belongs to L?(IR, LZ (Q)) and we can take its Fourier
transform in t. By Cauchy theorem, we obtain, as in [6], that its Fourier transform
in t is given by
(T (i), F D)) oo
j ic+T
In the same way, we can take the Fourier transform in t of the right-hand side of
(2.8) since, for t > 2T we have

LL<TA;(Z),BW(21—Boo)—lg(x,t)>

2711

(2.9)

Z+T

1 T dz 1
. z(t—T) , z(T—s) <
27 /726 <TAJ'(Z)'/0 ¢ g(x,s)ds> z+T

~ME-T
Hence by Cauchy theorem, as in [6], its Fourier transform in ¢ is given by (2.9).

As the Fourier transform of the two functions coincide, the two functions are
equal.

Claim 2: For 0 < s < min(1—0;,1/p), the operator U : W*P(I; LZ(Q)) — WSTTGP(T) -
g+ q, 1s continuous. The proof is the same as the corresponding one in [6].
]
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Conclusion. By Step 3, we have, for all § # 0,

Filin) (x,8) = = (T (i8), Fu@) (- 8) ) B se(). (2.10)
Let
Iy(®) = 5 [ (Ty), (1= B) 5, 0) e 1)

As previously we can take its Fourier transform and we see, applying again the
Cauchy theorem as above, that its Fourier transform is given by

" i z—1¢
Consider the function E,/(x, t) which has as Fourier transform in ¢
]

FiEr)(x,) = Py (rV/iT) e V.

As Pj’A}(r\/ﬁ) e~V ¢ [®(R) and by [18, p.113], L°(R) C S’, we have also
by [18, Thm-Def 3.3, p.114] that EA}(x, -) € §’. Now observe that by [18, p.112],
S'C D' Asqy € L%(R), there exists a sequence (g,), C D(R) such thatg, — 0
in L?(R). By [18, Thm 6.3, p.120] or [17, Thm 6, p.160], as ./—"t(E/\;) is bounded, we
have that

Fi(Ey xqn) = Fi(Ex) Filan) = Fi(Ey) Fi(@y),  inL*(R).

F@ = g [ (T, TEE) b2 -~ (10, 701, 0)

Hence, we have E A E A ;. in L%(R), which proves that

iy = (Ey %) 7™ sin(Aj0)
and the result follows. ! ! ! n

As in [6] we can extend the previous Proposition to g € LP(I, LZ(Q))

. . AL
Theorem 2.3. Let the assumptions (H) be satisfied and denote 0j := 1 — % — %

Then for all g € LP(I, LE(Q)), the problem (0.1) has a unique strong solution u which
can be written in the form i

u:uR—i-ZUj Z u/\;,

J=1 0 keN:0<Aj=kA;<2— 2 —y;
where ug (resp. uy) is given by (2.4) (resp. (2.5)) with q,, € WP (1) and E,, given by
] ] ]
(2.6). Moreover the mapping LP (I, LE(Q)) — WP(I) : g — q, is continuous.
]
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3 Regularity of q,, — (£ — A)(17;u,)
j j
In order to consider the regularity of ur we observe that up satisfies
J
Qg —Aug =g — ) ). (9e(jttp) — Alnjun)). (3.1)

i— <N =k <2 —2 .
= ReEN0<Ai=kA <2~ 2 —;

Hence we need informations on the regularity of d¢(#;u,:) — A(#ju,). This is the
] ]
aim of this section.

Lemma 3.1. The kernel H defined on R™ x R by

_ 1 = /i it
H(r,t) = 271/111\/76 et dg (3.2)
satisfies, for all ¢ € N,
O Hir )| < (1 + ) (3.3)
T ' '
Proof. Let E be the elementary solution of the heat equation in R?, i.e.,
M(t) _2
E(r,t) = —=e %, 3.4
) =70 64

where M(t) = 1ift > 0and M(t) = 0if t < 0. Recall that E is a tempered
distribution. We easily check that the partial Fourier transform FE in t of E is
given by

IE e—lf\\/f
t (i", g) - 2\/@ .
top @ VE (79
i& i/ H(|r|,t
ft(ﬁE) = ﬁ(}}E) =5 ¢ Vg — go(r) = Ft(T — 6o(r)do(t)),
and since J; is an isomorphism from S’(IR?) into itself, we deduce that
92
H(|r|,t) = ZﬁE(r,t) + 260(7)do (£).
Hence, forr > 0, H(r,t) = 2%27]25(;’, t) and we conclude as in [6]. u
Y
Theorem 3.2. Under assumptions (H) and recalling that o; = 1 — % b er L, the map-

ping qn — (& — N)(njuy) is continuous from WP (1) into LP(I; LE(Q))
] ]

Proof. Recall that, by [6, Remark 3.2], 0 < o < 1.
Case 1: P]}?\} =1lie )\} +ui—1+ % > 0. As in the proof of Proposition 2.2,
consider the functions § X, given by (2.11) and i X given by (2.7).

Let us take the Fourier transform in t of f(x,t) = nj(r)(% — A)ﬁA;(x, t). We

obtain

d _ . .
Fif(x,8) = nj(r) Fi((5; — B)ity) = 11;(r) (iG] = B) Fi(iLy)-
As in Step 3 of the proof of Proposition 2.2, we have
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Filig) (5,8) = = (Ty (i), F(@)(,©)) ().
and hence
(E1—8)Fi(iy) = —cp(i€) (i1 4) (Ve rsin(1/0))

= —cn(ig) Ve VEN sin(A0) (20 + 1),
]
with cA}(ig) = <TA;(1'§),.7-",5 (£)(-,¢) = —Ft(qA})(g). Using the kernel H given by
(3.2), as previously, we obtain that

flr ) = (HxGy)(r) (4] +1) N sin(A9) (1)
As

/ H(r,s)ds = / e "CH(r,t) dt‘ = FiH(r,0) = /ige "V
R R e=0

=0,
£=0

we have
N=1 . ~ ~
flat) = A+ 1) sin(A30) 7;(r) /]RH(r,s) [qA;(t —3) — qA;(t)] ds.
From this point on, the proof proceeds as in [6].
Case 2: deg(P; /) =1; \» —1 > 1. This case is treated as in [6] using Lemma 3.1. =
"y "

4 Application of Dore-Venni’s approach [7]

Now we are able to consider the regularity of ug and to prove our main result.

Theorem 4.1. Let p > 2, Q) be a bounded polygonal domain of R2. Denote by Si,j =
1,...,], the vertices of Q) enumerated clockwise and, for j € {1,2,...,]}, let P, be the
interior angle of () at the vertex Sjand A; = . Forall j =1,...,], let y; satisfies

P;

2/p—1

T)L].
and, forallk € Z*,2 — % —pj # kAjand pj+kA; # 1. Forevery g € LF(0, T; LE(Q)),
there exists a unique solution u € LF (0, T; LE(Q)) of

2p — 2
—Aj < pj < pp , ]yj|<

o —Au=g, inQx]0,T],
u=0, on Q) x [0, T],
u(-,0)=0, inQ.

Moreover u admits the decomposition

J
u:uRJrZUj Z uA;,

J=1 keIN:O</\;:kA]-<2—%—y]-
with /
ug € LP(L;V;7(Q) N WP (L LE(Q)) and uy = (Ey 1 q),)r" sin(Aj6),

s 1 . .
where v € W(T]'Afp(l) and EA;(x,t) = E/RelgtP]-IA;(r\/f) e "VE4E, with

, __]/t]'—i-/\;._i_ 1
A~ 2 p
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Proof. Asin [6], we prove that ug defined by (2.4) satisfies, for all 6 €]0,1],

ug € LV (L (LE(Q), V77 (Q))).

We now observe that up is a strong solution of (3.1) with a right-hand side in
LP(I; LZ (Q))) according to the previous results.

Then we apply Dore-Venni’s approach [7] (see also Theorem 2.2 of [6]) with
E=LP(I; LZ.(Q)), and
A:D(A) CE—E:uw —Au, with D(A)=LP(;D(A,z)),
B:D(B) CE— E:uw o, with D(B)=W.([; L5(Q)).
The assumptions (H3), (Hy), (Hs) of [6] can be verified as in [6]. To verify (Hg) we
apply the following result of Coifman - Weiss (see [3] or for example [1]).
If —C is the infinitesimal generator of a strongly continuous contraction semi-group in
E which preserves the positivity then there exists K > 0 such that, for all s € R,
IC™]| < K(1+Js]) €% P,

For what concerns the operator A, the argument is the same as in [6]. For
what concerns B, we already know that —B is the generator of a Cy semigroup
of contractions S. It remains to verify that S preserves the positivity. As usual it
suffices to check that its resolvent preserves positivity: Namely for A > 0 consider
the solution u € D(B) of

o+ Au=f >0, u(0)=0.
t
Thenu(x,t) = (B+AI)"1f = / e M=5) £(x,5) ds which is clearly non negative.
0
We conclude as in [6] that ug € LP(I; V;p(())) NWLP(I; LZ(Q)) ]
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