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Abstract

We consider the heat equation on a polygonal domain Ω of the plane in
weighted Lp-Sobolev spaces

∂tu − ∆u = h, in Ω × ]0, T[,
u = 0, on ∂Ω × [0, T],

u(·, 0) = 0, in Ω.
(0.1)

Here h belongs to Lp(0, T; L
p
µ(Ω)), where L

p
µ(Ω) = {v ∈ L

p
loc(Ω) : rµv ∈

Lp(Ω)}, with a real parameter µ and r(x) the distance from x to the set of
corners of Ω. We give sufficient conditions on µ, p and Ω that guarantee
that problem (0.1) has a unique solution u ∈ Lp(0, T; L

p
µ(Ω)) that admits

a decomposition into a regular part in weighted Lp-Sobolev spaces and an
explicit singular part.

1 Introduction

In this work we consider the Cauchy-Dirichlet problem for the heat equation (0.1)
on a polygonal domain Ω of the plane. We give the singular decomposition of the
solution of (0.1) in weighted Lp-Sobolev spaces with precise regularity informa-
tion on the regular and singular parts. The classical Fourier transform techniques
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do not allow to handle such a general case. Hence we use the theory of sums
of operators as in G. Da Prato and P. Grisvard [4] and G. Dore and A. Venni [7].
These results have been fruitfully used to prove the singular behavior of elliptic
problems in non-Hilbertian Sobolev spaces in [10].

Although the analysis of the heat equation is well developed in weighted
L2-Sobolev spaces [9, 12, 11, 2] or in Lp-Sobolev spaces [10], to the best of our
knowledge such a singularity result does not exist in the framework of weighted
Lp-Sobolev spaces. For maximal regularity type results in weighted Lp-Sobolev
spaces, we refer to [4, 13, 16, 14, 15].

In [6], we have considered the same kind of results for the periodic-Dirichlet
problem

∂tu − ∆u = g, in Ω × ]− π, π[,
u = 0, on ∂Ω × [−π, π],

u(·,−π) = u(·, π), in Ω.

Some of the results presented there are useful in our context too.

The first step, which consists in the study of the Helmholtz equation

−∆u + zu = g, in Ω, u = 0, on ∂Ω, (1.1)

where z is a complex number, was performed in [5].

The paper is organized as follows: In section 2 we apply the approach of Da
Prato-Grisvard [4] to obtain a decomposition but with non-optimal regularity in-
formations. Section 3 is devoted to the proof of the regularity of (∂t − ∆)S, where
S is the singular part of the solution obtained before. The use of the approach of
Dore-Venni [7] and the results from section 3 allows to get the optimal regularity
result in section 4.

In the whole paper the notation a . b means the existence of a positive con-
stant C, which is independent of the quantities a, b (and eventually of the above
parameter z) under consideration such that a ≤ Cb.

2 Application of Da Prato-Grisvard’s approach [4]

Let us assume in the future that the assumptions of [6, Theorem 2.3] are satisfied,
i.e.,

(H) Let p ≥ 2 and Ω be a bounded polygonal domain of R2, i.e., its boundary is
the union of a finite number of line segments. Denote by Sj, j = 1, . . . , J, the
vertices of ∂Ω enumerated clockwise and, for j ∈ {1, 2, . . . , J}, let ψj be the
interior angle of Ω at the vertex Sj and λj =

π
ψj

.

For all j = 1, . . . , J, let µj > −λj satisfy 2 − 2
p − µj 6= kλj, for all k ∈ Z∗, and

µj <
2p − 2

p
if p > 2; µj ≤ 1 if p = 2; |µj| <

2
√

p − 1

p
λj. (2.1)

We shall apply the results from [4] (see also [6, Theorem 2.1]) on the space

E = Lp(I; L
p
~µ(Ω)) with L

p
~µ(Ω) = { f ∈ L

p
loc(Ω) | w f ∈ Lp(Ω)},
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where I = [0, T], w(x) ≃ r(x)µj near Sj, w(x) ≃ 1 far from the corners and with
the operators

A : D(A) ⊂ E → E : u 7→ −∆u, with

D(A) = Lp(I; D(∆p,~µ)) where D(∆p,~µ) = {u ∈ H1
0(Ω) |∆u ∈ L

p
~µ
(Ω)},

and
BT : D(BT) ⊂ E → E : u 7→ ∂tu, with

D(BT) = W
1,p
left(I; L

p
~µ
(Ω)) = {u ∈ E | ∂tu ∈ E, u(·, 0) = 0}.

Proposition 2.1. Under assumptions (H), the operator A + BT has an inverse closure
i.e., for all g ∈ Lp(I; L

p
~µ(Ω)), there exists a unique strong solution u ∈ Lp(I; L

p
~µ(Ω))

of (A + BT)u = g i.e. there exists (un)n ⊂ D(A) ∩ D(BT) such that un → u and
Aun + BTun → g. Moreover we have

u =
1

2πi

∫

γ
(A + z I)−1(z I − BT)

−1g dz, (2.2)

with γ : R → C defined for example by γ(s) = |s| e−i(π
2 +δ) for s ≤ 0, γ(s) =

|s| ei(π
2 +δ) for s > 0, with δ ∈ ]0, θA − π

2 [ and θA ∈]π
2 , π[ given by [6, Theorem 2.3].

Proof. The proof follows the lines of [6, Proposition 3.1] with minor changes con-
cerning BT: a simple calculation proves that ρ(BT) = C and, in the verification
that, for all θB <

π
2 , there exists M ≥ 0 such that, for all µ ∈ SBT

= {µ ∈ C |
| arg(µ)| ≤ θB}, ‖(BT + µ I)−1‖ ≤ M|µ|−1, denoting v = wp|u|p−2ū, we have to
replace

p

2

(

∫

Ω

∫ π

−π
v∂tu dtdx +

∫

Ω

∫ π

−π
v∂tu dtdx

)

= 0,

valid in the periodic case, by

p

2

(

∫

Ω

∫ T

0
v∂tu dtdx +

∫

Ω

∫ T

0
v∂tu dtdx

)

=
∫

Ω
|u(x, T)|pw(x)p dx.

The remainder of the proof follows in the same way as in [6, Proposition 3.1].

Remark 2.1 As in [6, Remark 3.1], we obtain also

(1 + |z|) ‖(z I − BT)
−1g‖Lp(I;L

p
~µ(Ω)) . ‖g‖Lp(I;L

p
~µ(Ω)).

As it is clear that, for each t, we have

[(A + z I)−1h](t) = (−∆ + z I)−1(h(t)),

we can use the decomposition in regular and singular parts of the solution of the
Helmholtz equation (1.1) obtained in [6] (see [6, (2.4)]) and rewrite (2.2) as

u = uR +
J

∑
j=1

ηj ∑
k∈N:0<λ′

j=kλj<2− 2
p−µj

uλ′
j
, (2.3)

where

uR =
1

2πi

∫

γ
R(z)(z I − BT)

−1g dz, uλ′
j
=

1

2πi

∫

γ

〈

Tλ′
j
(z), (z I − BT)

−1g
〉

ψ̃λ′
j,z

dz,

(2.4)
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with R(z) : L
p
~µ(Ω) → V

2,p
~µ (Ω) the operator which gives the regular part of the so-

lution of (1.1), Tλ′
j
(z) : L

p
~µ
(Ω) → C : g 7→ cλ′

j
(z) = 〈Tλ′

j
(z), g〉 the one which gives

the singular coefficient of the solution of (1.1); ηj is a radial cut-off function such
that ηj ≡ 1 in a small ball centered at Sj and ηj ≡ 0 outside a larger ball; Pj,λ′

j
(s) =

lj,λ′
j
−1

∑
i=0

si

i!
with lj,λ′

j
> 2 − µj − 2

p − λ′
j and ψ̃λ′

j,z
(r, θ) = Pj,λ′

j
(r
√

z)e−r
√

z r
λ′

j sin(λ′
jθ).

Recall that V
2,p
~µ (Ω) is defined as the closure of C∞

S (Ω) = {v ∈ C∞(Ω) | Sj 6∈
supp v} with respect to the norm

‖u‖
V

2,p
~µ (Ω)

= ( ∑
|γ|≤2

∫

Ω
|Dγu(x)|p wp(x) r(|γ|−k)p(x) dx)1/p .

For more details, see [6, end of Section 2].

Proposition 2.2. Let the assumptions (H) be satisfied and denote σj := 1 − 1
p −

µj+λ′
j

2 .

Then for all s ∈ ]0, min(1 − σj, 1/p)[, for all g ∈ Ws,p(I, L
p
~µ(Ω)), there exist

qλ′
j
∈ Ws+σj,p(I) and Eλ′

j
such that uλ′

j
defined by (2.4) can be written as

uλ′
j
= (Eλ′

j
∗t qλ′

j
) r

λ′
j sin(λ′

jθ). (2.5)

Moreover we have

qλ′
j
=

1

2πi

∫

γ

〈

Tλ′
j
(z), (z I − BT)

−1g
〉

dz,

Eλ′
j
(x, t) =

1

2π

∫

R

eiξtPj,λ′
j
(r
√

iξ) e−r
√

iξ dξ, (2.6)

and the operator U : Ws,p(I, L
p
~µ(Ω)) → Ws+σj,p(I) : g 7→ qλ′

j
is continuous.

Proof. Recall that for all f ∈ L
p
~µ(Ω), the mapping C → C : z 7→

〈

Tλ′
j
(z), f

〉

is

holomorphic on A := {z ∈ C | | arg(z)| < θA} and continuous on A (see [6]).

Step 1: Extension. Let us consider the extension of g to Ω × R, defined by

g̃(x, t) = g(x, t) if t ∈ [0, T], g̃(x, t) = 0 if t 6∈ [0, T],

and denote by ũz = (z I − B∞)−1 g̃, the solution of

zũ − ∂tũ = g̃ in Ω × R, ũ(·, 0) = 0 in Ω.

Observe that, by uniqueness of the solution of the Cauchy problem, we have
ũz|[0,T]×Ω = (z I − BT)

−1g. Moreover we easily see that

ũz(x, t) = 0, if t < 0,

= −
∫ t

0
ez(t−s)g(x, s) ds, if t ∈ [0, T],

= −ezt
∫ T

0
e−zsg(x, s) ds, if t > T.

Consider the function

ũλ′
j
(x, t) =

1

2πi

∫

γ

〈

Tλ′
j
(z), (z I − B∞)

−1 g̃
〉

ψ̃λ′
j,z
(r, θ) dz. (2.7)
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Observe that ũλ′
j
|Ω×[0,T] = uλ′

j
and that, for t > T, z = ρe±iθ0 with ρ > 0,

θ0 = π
2 + δ, using [6, (2.6)], we have

∣

∣

∣

〈

Tλ′
j
(z), (z I − B∞)−1 g̃

〉

ψ̃λ′
j,z
(r, θ)

∣

∣

∣
.
∣

∣

∣

〈

Tλ′
j
(z), (z I − B∞)−1 g̃

〉
∣

∣

∣

. |ez(t−T)| ‖Tλ′
j
(z)‖(L

p
~µ
(Ω))′

∥

∥

∥

∥

∫ T

0
ez(T−s)g(x, s) ds

∥

∥

∥

∥

L
p
~µ(Ω)

. e−ρ| cos θ0|(t−T) 1

1 + ρσj

(

∫ T

0
e−qρ| cos θ0|(T−s) ds

)1/q

‖g‖Lp(0,T;L
p
~µ
(Ω))

. e−ρ| cos θ0|(t−T) 1

1 + ρσj
‖g‖Lp(0,T;L

p
~µ(Ω)).

On the other hand, for 0 < t < 2T and |z| = ρ we have, by Remark 2.1,

|
〈

Tλ′
j
(z), (z I − B∞)−1g̃

〉

ψ̃λ′
j,z
(r, θ)| . |

〈

Tλ′
j
(z), (z I − B∞)−1 g̃

〉

|

. |
〈

Tλ′
j
(z), (z I − B2T)

−1g̃
〉

| . 1

1 + ρσj

1

1 + ρ
‖g‖Lp(0,T;L

p
~µ
(Ω)).

Step 2: For all x ∈ Ω, the function ũλ′
j
(x, ·) ∈ L2(R) and hence admits a partial Fourier

transform in t. For all t > 2T by the previous considerations, we have

|ũλ′
j
(x, t)| .

∣

∣

∣

∣

∫

γ

〈

Tλ′
j
(z), (z I − B∞)

−1 g̃
〉

ψ̃λ′
j,z
(r, θ) dz

∣

∣

∣

∣

.
∫ ∞

0
e−ρ| cos θ0|(t−T) dρ ‖g‖Lp(0,T;L

p
~µ(Ω)) .

1

t − T
‖g‖Lp(0,T;L

p
~µ(Ω)).

For t < 2T we use a similar argument using here the last estimate of Step 1. This
shows that, for all x ∈ Ω, ũλ′

j
(x, ·) ∈ L2(R), and we can take its partial Fourier

transform in t.

Step 3: The partial Fourier transform in t of ũλ′
j
(x, ·) satisfies, for all ξ 6= 0,

Ft(ũλ′
j
)(x, ξ) = −

〈

Tλ′
j
(iξ),Ft(g̃)(·, ξ)

〉

ψ̃λ′
j,iξ

(x).

As ũλ′
j
(x, ·) ∈ L2(R), using [17, Cor 1, p.154], we know that

Ft(ũλ′
j
)(x, ξ) = lim

k→∞

∫ k

−k
e−itξ ũλ′

j
(x, t) dt.

Hence by the above computations we have, for k > 2T,
∫ k

−k

∫

R

∣

∣

∣

∣

〈

Tλ′
j
(ρei sgn(ρ)θ0), (ρei sgn(ρ)θ0 I − B∞)

−1 g̃
〉

ψ̃
λ′

j,ρei sgn(ρ)θ0
(x)e−iξtei sgn(ρ)θ0

∣

∣

∣

∣

dρ dt

.

(

∫ 2T

0

∫ +∞

0

1

1 + ρσj

1

1 + ρ
dρ dt+

∫ k

2T

∫ +∞

0

1

1 + ρσj
e−ρ | cos θ0|(t−T) dρ dt

)

‖g‖Lp(0,T;L
p
~µ
(Ω))

.

(

∫ 2T

0

∫ +∞

0

1

1 + ρσj

1

1 + ρ
dρ dt+
∫ k

2T

1

| cos θ0|(t − T)
dt

)

‖g‖Lp(0,T;L
p
~µ
(Ω)) < +∞.

Hence, by Fubini’s theorem, we obtain
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Ft(ũλ′
j
)(x, ξ) =

1

2πi

∫

γ

〈

Tλ′
j
(z),Ft((zI − B∞)−1 g̃)(·, ξ)

〉

ψ̃λ′
j,z
(x) dz

=
1

2πi

∫

γ

〈

Tλ′
j
(z),

Ft(g̃)(·, ξ)

z − iξ

〉

ψ̃λ′
j,z
(x) dz.

The rest of the proof follows [6, Step 2 of the Proof of Proposition 3.2] observ-
ing that, by Hölder inequality, we have

‖Ft(g̃)(·, ξ)‖p

L
p
~µ (Ω)

=
∫

Ω
wp(x)

∣

∣

∣

∣

∫

R

e−iξtg̃(x, t) dt

∣

∣

∣

∣

p

dx

.
∫

Ω
wp(x)

(

∫

R

|g̃(x, t)| dt

)p

dx

.
∫

Ω
wp(x)

(

∫ T

0
|g(x, t)| dt

)p

dx . ‖g‖p

Lp(I;L
p
~µ
(Ω))

.

Step 4: The operator U : Ws,p(I; L
p
~µ(Ω)) → Ws+σj,p(I) : g 7→ qλ′

j
with qλ′

j
given by

(2.6) is continuous. By the results of [8], as 0 < s < 1/p, we know that

Ws,p(I; L
p
~µ(Ω)) =

{

g ∈ E |
∫ ∞

0
ρsp‖BT(BT − ρe±i(π

2 +δ) I)−1g‖p
E ρ−1dρ < ∞

}

.

We have a similar characterization of Ws+σj,p(I) by considering the operator

N : D(N) ⊂ Lp(I) → Lp(I) : u 7→ ∂tu with D(N) = {u ∈ W1,p(I) | u(0) = 0}.

Hence if s + σj < 1/p, we have

Ws+σj,p(I) =

{

g ∈ Lp(I) |
∫ ∞

0
τ(s+σ)p‖N(N + τ I)−1g‖p

Lp(I)
τ−1dτ < ∞

}

,

while if s+ σj > 1/p, defining W
s+σj,p

left (I) = {g ∈ Ws+σj,p(I) | g(0) = 0}, we have

W
s+σj,p

left (I) =

{

g ∈ Lp(I) |
∫ ∞

0
τ(s+σ)p‖N(N + τ I)−1g‖p

Lp(I)
τ−1dτ < ∞

}

.

Claim 1: For τ ≥ 0, we have

N(N + τI)−1qλ′
j
=

1

2πi

∫

γ

〈

Tλ′
j
(z), BT(zI − BT)

−1g
〉 dz

z + τ
. (2.8)

First observe that

N(N + τI)−1qλ′
j
=

1

2πi

∫

γ

〈

Tλ′
j
(z), BT(BT + τI)−1(zI − BT)

−1g
〉

dz

=

(

1

2πi

∫

γ

〈

Tλ′
j
(z), B∞(B∞ + τI)−1(zI − B∞)

−1 g̃
〉

dz

)
∣

∣

∣

∣

Ω×[0,T]

.

Let us show that we can take the Fourier transform in t of

1

2πi

∫

γ

〈

Tλ′
j
(z), B∞(B∞ + τI)−1(zI − B∞)

−1 g̃
〉

dz.

We have
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B∞(B∞ + τI)−1(zI − B∞)−1g̃ = (zI − B∞)−1 g̃ − τ (B∞ + τI)−1(zI − B∞)−1 g̃
=: ṽz(x, t)− τ ṽzτ(x, t).

Observe that, for t > T, we have ṽz(x, t) = −ez(t−T)
∫ T

0
ez(T−s)g(x, s) ds and

ṽzτ(x, t) = −
∫ T

0
e−τ(t−s)

∫ s

0
ez(s−σ)g(x, σ) dσds

−
∫ t

T
e−τ(t−s)ez(s−T)

∫ T

0
ez(T−σ)g(x, σ) dσds

= −
∫ T

0

ez(t−σ) − e−τ(t−σ)

z + τ
g(x, σ) dσ.

Hence, for τ ≥ 0 and if t > 2T we have as above, using [6, (2.6)],

∣

∣

∣

∣

1

2πi

∫

γ

〈

Tλ′
j
(z), B∞(B∞ + τI)−1(zI − B∞)−1 g̃

〉

dz

∣

∣

∣

∣

.
1

t − T
‖g‖Lp(I;L

p
~µ(Ω)) +

∣

∣

∣

∣

∣

∫

γ

τ|ez(t−T)|
|z + τ|

∣

∣

∣

∣

〈

Tλ′
j
(z),

∫ T

0
ez(T−σ)g(x, σ) dσ

〉
∣

∣

∣

∣

dz

+
∫

γ

τ|e−τ(t−T)|
|z + τ|

∣

∣

∣

∣

〈

Tλ′
j
(z),

∫ T

0
e−τ(T−σ)g(x, σ) dσ

〉
∣

∣

∣

∣

dz

∣

∣

∣

∣

∣

≤
(

1

t − T
+

∣

∣

∣

∣

∫

γ

τ

|z + τ| |e
z(t−T)| dz

∣

∣

∣

∣

+

∣

∣

∣

∣

τe−τ(t−T)
∫

γ

1

(|z + τ|)(1 + |z|σj)
dz

∣

∣

∣

∣

)

‖g‖Lp(I;L
p
~µ
(Ω))

.

(

1

t − T
+

1

sin θ0

1

| cos θ0|
1

t − T

+τe−τ(t−T)
∫ ∞

1

1

1 + ρσj

1

ρ sin θ0
dρ +

e−τ(t−T)

sin θ0

)

‖g‖Lp(I;L
p
~µ
(Ω)).

We conclude that this function belongs to L2(R, L
p
~µ
(Ω)) and we can take its Fourier

transform in t. By Cauchy theorem, we obtain, as in [6], that its Fourier transform
in t is given by

−
〈

Tλ′
j
(iξ),Ft(g̃)(·, ξ)

〉 iξ

iξ + τ
. (2.9)

In the same way, we can take the Fourier transform in t of the right-hand side of
(2.8) since, for t > 2T we have
∣

∣

∣

∣

1

2πi

∫

γ

〈

Tλ′
j
(z), B∞(zI − B∞)−1 g̃(x, t)

〉 dz

z + τ

∣

∣

∣

∣

=

∣

∣

∣

∣

− 1

2πi

∫

γ
zez(t−T)

〈

Tλ′
j
(z),

∫ T

0
ez(T−s)g(x, s) ds

〉

dz

z + τ

∣

∣

∣

∣

.
1

t − T
.

Hence by Cauchy theorem, as in [6], its Fourier transform in t is given by (2.9).
As the Fourier transform of the two functions coincide, the two functions are

equal.

Claim 2: For 0 < s < min(1−σj, 1/p), the operator U : Ws,p(I; L
p
~µ
(Ω)) → Ws+σj,p(I) :

g 7→ qλ′
j

is continuous. The proof is the same as the corresponding one in [6].
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Conclusion. By Step 3, we have, for all ξ 6= 0,

Ft(ũλ′
j
)(x, ξ) = −

〈

Tλ′
j
(iξ),Ft(g̃)(·, ξ)

〉

ψ̃λ′
j,iξ

(x). (2.10)

Let
q̃λ′

j
(t) =

1

2πi

∫

γ

〈

Tλ′
j
(z), (z I − B∞)

−1 g̃(·, t)
〉

dz. (2.11)

As previously we can take its Fourier transform and we see, applying again the
Cauchy theorem as above, that its Fourier transform is given by

F (q̃λ′
j
)(ξ) =

1

2πi

∫

γ

〈

Tλ′
j
(z),

Ft(g̃)(·, ξ)

z − iξ

〉

dz = −
〈

Tλ′
j
(iξ),Ft(g̃)(·, ξ)

〉

.

Consider the function Eλ′
j
(x, t) which has as Fourier transform in t

Ft(Eλ′
j
)(x, ξ) = Pj,λ′

j
(r
√

iξ) e−r
√

iξ .

As Pj,λ′
j
(r
√

iξ) e−r
√

iξ ∈ L∞(R) and by [18, p.113], L∞(R) ⊂ S ′, we have also

by [18, Thm-Def 3.3, p.114] that Eλ′
j
(x, ·) ∈ S ′. Now observe that by [18, p.112],

S ′ ⊂ D′. As q̃λj
∈ L2(R), there exists a sequence (qn)n ⊂ D(R) such that qn → q̃λj

in L2(R). By [18, Thm 6.3, p.120] or [17, Thm 6, p.160], as Ft(Eλ′
j
) is bounded, we

have that

Ft(Eλ′
j
∗ qn) = Ft(Eλ′

j
)Ft(qn) → Ft(Eλ′

j
)Ft(q̃λj

), in L2(R).

Hence, we have Eλ′
j
∗ qn → Eλ′

j
∗ q̃λj

, in L2(R), which proves that

ũλ′
j
= (Eλ′

j
∗t q̃λ′

j
) r

λ′
j sin(λ′

jθ)
and the result follows.

As in [6] we can extend the previous Proposition to g ∈ Lp(I, L
p
~µ
(Ω)).

Theorem 2.3. Let the assumptions (H) be satisfied and denote σj := 1 − 1
p − µj+λ′

j

2 .

Then for all g ∈ Lp(I, L
p
~µ(Ω)), the problem (0.1) has a unique strong solution u which

can be written in the form

u = uR +
J

∑
j=1

ηj ∑
k∈N:0<λ′

j=kλj<2− 2
p−µj

uλ′
j
,

where uR (resp. uλ′
j
) is given by (2.4) (resp. (2.5)) with qλ′

j
∈ Wσj,p(I) and Eλ′

j
given by

(2.6). Moreover the mapping Lp(I, L
p
~µ(Ω)) → Wσj ,p(I) : g 7→ qλ′

j
is continuous.
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3 Regularity of qλ′
j
→ ( ∂

∂t − ∆)(ηjuλ′
j
)

In order to consider the regularity of uR we observe that uR satisfies

∂tuR − ∆uR = g −
J

∑
j=1

∑
k∈N:0<λ′

j=kλj<2− 2
p−µj

(∂t(ηjuλ′
j
)− ∆(ηjuλ′

j
)). (3.1)

Hence we need informations on the regularity of ∂t(ηjuλ′
j
)− ∆(ηjuλ′

j
). This is the

aim of this section.

Lemma 3.1. The kernel H defined on R+ × R by

H(r, t) =
1

2π

∫

R

√

iξ e−r
√

iξ eiξt dξ (3.2)

satisfies, for all ℓ ∈ N, ∣

∣

∣

∣

∣

∂ℓ

∂rℓ
H(r, t)

∣

∣

∣

∣

∣

. (|t|+ r2)−
3+ℓ

2 . (3.3)

Proof. Let E be the elementary solution of the heat equation in R2, i.e.,

E(r, t) =
M(t)√

4πt
e−

r2

4t , (3.4)

where M(t) = 1 if t > 0 and M(t) = 0 if t < 0. Recall that E is a tempered
distribution. We easily check that the partial Fourier transform FtE in t of E is
given by

FtE(r, ξ) =
e−|r|√iξ

2
√

iξ
.

As

Ft(
∂2

∂r2
E) =

∂2

∂r2
(FtE) =

√
iξ

2
e−|r|√iξ − δ0(r) = Ft(

H(|r|, t)

2
− δ0(r)δ0(t)),

and since Ft is an isomorphism from S ′(R2) into itself, we deduce that

H(|r|, t) = 2
∂2

∂r2
E(r, t) + 2δ0(r)δ0(t).

Hence, for r > 0, H(r, t) = 2 ∂2E
∂r2 (r, t) and we conclude as in [6].

Theorem 3.2. Under assumptions (H) and recalling that σj = 1 − 1
p −

µj+λ′
j

2 , the map-

ping qλ′
j
→ ( ∂

∂t − ∆)(ηjuλ′
j
) is continuous from Wσj,p(I) into Lp(I; L

p
~µ(Ω)).

Proof. Recall that, by [6, Remark 3.2], 0 < σj < 1.

Case 1: Pj,λ′
j
≡ 1 i.e. λ′

j + µj − 1 + 2
p > 0. As in the proof of Proposition 2.2,

consider the functions q̃λ′
j

given by (2.11) and ũλ′
j

given by (2.7).

Let us take the Fourier transform in t of f (x, t) = ηj(r)(
∂
∂t − ∆)ũλ′

j
(x, t). We

obtain

Ft f (x, ξ) = ηj(r)Ft((
∂

∂t
− ∆)ũλ′

j
) = ηj(r) (iξ I − ∆)Ft(ũλ′

j
).

As in Step 3 of the proof of Proposition 2.2, we have
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Ft(ũλ′
j
)(x, ξ) = −

〈

Tλ′
j
(iξ),Ft(g̃)(·, ξ)

〉

ψ̃λ′
j,iξ

(x).

and hence
(iξ I − ∆)Ft(ũλ′

j
) = −cλ′

j
(iξ) (iξ I − ∆) (e−r

√
iξ r

λ′
j sin(λ′

jθ))

= −cλ′
j
(iξ)

√
iξ e−r

√
iξ r

λ′
j−1

sin(λ′
jθ) (2λ′

j + 1),

with cλ′
j
(iξ) = 〈Tλ′

j
(iξ),Ft(g̃)(·, ξ)〉 = −Ft(q̃λ′

j
)(ξ). Using the kernel H given by

(3.2), as previously, we obtain that

f (x, t) = (H ∗t q̃λ′
j
)(r) (2λ′

j + 1) r
λ′

j−1
sin(λ′

jθ) ηj(r).

As
∫

R

H(r, s) ds =
∫

R

e−itξ H(r, t) dt

∣

∣

∣

∣

ξ=0

= FtH(r, 0) =
√

iξe−r
√

iξ
∣

∣

∣

ξ=0
= 0,

we have

f (x, t) = (2λ′
j + 1) r

λ′
j−1

sin(λ′
jθ) ηj(r)

∫

R

H(r, s) [q̃λ′
j
(t − s)− q̃λ′

j
(t)] ds.

From this point on, the proof proceeds as in [6].

Case 2: deg(Pj,λ′
j
) = lj,λ′

j
− 1 ≥ 1. This case is treated as in [6] using Lemma 3.1.

4 Application of Dore-Venni’s approach [7]

Now we are able to consider the regularity of uR and to prove our main result.

Theorem 4.1. Let p ≥ 2, Ω be a bounded polygonal domain of R2. Denote by Sj, j =
1, . . . , J, the vertices of ∂Ω enumerated clockwise and, for j ∈ {1, 2, . . . , J}, let ψj be the
interior angle of Ω at the vertex Sj and λj =

π
ψj

. For all j = 1, . . . , J, let µj satisfies

−λj < µj <
2p − 2

p
, |µj| <

2
√

p − 1

p
λj,

and, for all k ∈ Z∗, 2− 2
p −µj 6= kλj and µj + kλj 6= 1. For every g ∈ Lp(0, T; L

p
~µ(Ω)),

there exists a unique solution u ∈ Lp(0, T; L
p
~µ(Ω)) of

∂tu − ∆u = g, in Ω × ]0, T[,
u = 0, on ∂Ω × [0, T],

u(·, 0) = 0, in Ω.

Moreover u admits the decomposition

u = uR +
J

∑
j=1

ηj ∑
k∈N:0<λ′

j=kλj<2− 2
p−µj

uλ′
j
,

with
uR ∈ Lp(I; V

2,p
~µ (Ω)) ∩ W1,p(I; L

p
~µ(Ω)) and uλ′

j
= (Eλ′

j
∗t qλ′

j
)r

λ′
j sin(λ′

jθ),

where qλ′
j

∈ W
σj,λ′

j
,p
(I) and Eλ′

j
(x, t) =

1

2π

∫

R

eiξtPj,λ′
j
(r
√

iξ) e−r
√

iξ dξ, with

σj,λ′
j
= −

µj + λ′
j

2
+ 1 − 1

p
.
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Proof. As in [6], we prove that uR defined by (2.4) satisfies, for all θ ∈ ]0, 1[,

uR ∈ Lp(I; (L
p
~µ
(Ω), V

2,p
~µ

(Ω))θ).

We now observe that uR is a strong solution of (3.1) with a right-hand side in
Lp(I; L

p
~µ
(Ω)) according to the previous results.

Then we apply Dore-Venni’s approach [7] (see also Theorem 2.2 of [6]) with
E = Lp(I; L

p
~µ(Ω)), and

A : D(A) ⊂ E → E : u 7→ −∆u, with D(A) = Lp(I; D(∆p,~µ)),

B : D(B) ⊂ E → E : u 7→ ∂tu, with D(B) = W
1,p
left(I; L

p
~µ
(Ω)).

The assumptions (H3), (H4), (H5) of [6] can be verified as in [6]. To verify (H6) we
apply the following result of Coifman - Weiss (see [3] or for example [1]).

If −C is the infinitesimal generator of a strongly continuous contraction semi-group in
E which preserves the positivity then there exists K > 0 such that, for all s ∈ R,

‖Cis‖ ≤ K(1 + |s|) e
π
2 |s|.

For what concerns the operator A, the argument is the same as in [6]. For
what concerns B, we already know that −B is the generator of a C0 semigroup
of contractions S. It remains to verify that S preserves the positivity. As usual it
suffices to check that its resolvent preserves positivity: Namely for λ > 0 consider
the solution u ∈ D(B) of

∂tu + λu = f ≥ 0, u(0) = 0.

Then u(x, t) = (B + λ I)−1 f =
∫ t

0
e−λ(t−s) f (x, s) ds which is clearly non negative.

We conclude as in [6] that uR ∈ Lp(I; V
2,p
~µ

(Ω)) ∩ W1,p(I; L
p
~µ
(Ω)).
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