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Abstract

We describe an explicit model for the blow-up construction in the smooth
(or real analytic) category. We use it to prove the following functoriality
property of the blow-up: Let M and N be smooth (real analytic) manifolds,
with submanifolds A and B respectively. Let f : M → N be a smooth (real
analytic) function such that f−1(B) = A, and such that f induces a fiberwise
injective map from the normal space of A to the normal space of B. Then f
has a unique lift to a smooth (real analytic) map between the blow-ups. In
this way, the blow-up construction defines a continuous functor. As an ap-
plication, we show how an action of a Lie group on a manifold lifts, under
minimal hypotheses, to an action on a blow-up.

1 Introduction

The blow-up of a smooth (or real analytic) manifold at a submanifold is an im-
portant construction in geometry and topology. While the construction and its
basic properties are well-known, they also seem to be somewhat folklore. Since
each one of the present authors had an occasion to be frustrated with the search
for a reference to a proof of the basic properties of the blow-up construction (es-
pecially properties having to do with functoriality in the smooth, or real analytic,
category), we decided to write such a reference ourselves.

During the introduction, we will mostly discuss the case of smooth manifolds,
but one can substitute “real analytic” for “smooth” in everything that follows.

Let M be a smooth manifold, and let A ⊂ M be a closed submanifold. Infor-
mally speaking, the (projective) blow-up of M at A is a construction that removes
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A from M, and replaces it with the projectivization of the normal bundle of A in
M in the most natural way possible. We will denote the blow-up by B(M, A).

Let us list some of the properties that one expects the construction of B(M, A)
to have. B(M, A) should be a smooth manifold, there should be a smooth map
π : B(M, A) −→ M such that π restricts to a diffeomorphism from π−1(M \ A)
to M \ A, while π−1(A) is PM A, the projectivization of the normal bundle of A
in M. Furthermore, we would like the construction to be as functorial as one
may reasonably expect. To wit, suppose N is another smooth manifold, with a
submanifold B. Let f : M −→ N be a smooth map such that f−1(B) = A, and
such that the derivative of f induces a fiberwise injection from the normal bundle
of A to the normal bundle of B. Then f restricts to a map from M \ A to N \ B,
and f also induces a map from PM A to PNB. Thus, at least on set level, f induces
a canonical function from B(M, A) to B(N, B). We would like this induced map
to be smooth (real analytic, if f is real analytic).

In this paper we present a construction with all these properties. Our ap-
proach is standard, insofar that we first deal with the local question of construct-
ing the blow-up of a Euclidean space R

m+n at a linear subspace R
m × {0}. Once

we establish the naturality properties of the local construction, it is easy to extend
it to general manifolds using charts.

Our treatment of the local construction is somewhat non-standard. Let RPn−1

be the projective space of lines in R
n. There is a canonical map q : R

n \ {0} →
RPn−1 sending a point x to the line through the origin containing x. The custom-
ary way to construct the blow-up of R

m+n at R
m is to define it to be the closure of

the embedding

R
m+n \ R

m →֒ R
m+n × RPn−1.

The embedding above is defined by the inclusion map on the first coordinate, and
by the composed map

R
m+n \ R

m ∼=
−→ R

m × (Rn \ {0}) −→ R
n \ {0}

q
−→ RPn−1

on the second coordinate. With this definition, the manifold structure of the blow-
up and especially its functoriality properties are not entirely obvious, and are
somewhat awkward to prove.

Instead, we consider the space R
m × R × Sn−1, with the action of the group

Z2 defined by τ(x, r, θ̄) = (x,−r,−θ̄), where τ ∈ Z2 is the non-identity ele-
ment. This is a free, real analytic action on a real analytic manifold, and we define
B(Rm+n, R

m) to be the quotient space of this action. It is easy to see that this con-
struction produces the same space as the standard construction described above.
For the blow-up map, consider the map

µ : R
m × R × Sn−1 −→ R

m × R
n ∼= R

m+n

defined by µ(x, r, θ̄) = (x, r · θ̄). Clearly, µ satisfies µ(x, r, θ̄) = µ(τ(x, r, θ̄)), and
thus µ passes to a map π : B(Rm+n, R

m) −→ R
m+n. With this definition, it is

immediately obvious that B(Rm+n, R
m) is a smooth (in fact, real analytic) mani-

fold. Moreover, given a smooth map F : R
m+n −→ R

k+l satisfying the required
hypotheses, it is not difficult to write an explicit formula for a lift

F̃ : R
m × R × Sn−1 −→ R

k × R × Sl−1
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of F, and a little calculation shows that F̃ is smooth (real analytic, if F is). See
Lemma 2.5, which is really the key lemma of the paper. Additionally, it is easy to
see that F̃ is Z2-equivariant, and so it induces a map

F̂ : B(Rm+n, R
m) −→ B(Rk+l, R

k)

which is, again, smooth (real analytic if F is).
Having established the functoriality of B(Rm+n, R

m), it is easy to extend the
construction to manifolds in general, and prove its functoriality. See Theorem 4.1,
which is our main theorem, for a precise statement. We certainly consider these
results to be “elementary”, but we were not able to find in the literature a proof
of the functoriality of the blow-up in this generality. In particular, we are not
aware of an explicit treatment of the real analytic case (some authors use it, but
no source that we saw really constructs it). Note that our approach does not
require choosing a Riemannian metric on M. This can be useful for applications
to real analytic actions of Lie groups that are not necessarily compact. (While it
is known that, for a compact Lie group G, every real analytic G-manifold admits
a real analytic G-invariant Riemannian metric, the corresponding result is not
known for all real analytic actions of non-compact Lie groups, not even if the
actions are assumed to be proper.) We give an equivariant version of our blow-
up construction in Section 5. An application of the equivariant blow-up is given
in [3].

A variation of the construction is the spherical blow-up of M at A, where one
replaces A with the sphere bundle of the normal bundle of A in M, rather than the
projectivization. We will show that all our functoriality results hold for spherical
blow-ups as well.

Remark 1.1. Our approach has the pleasant feature that locally the blow-up is
constructed as the quotient of a smooth manifold by a free Z/2-action; whence
the manifold structure on the blow-up comes for free. Beyond that, we do not
claim any originality in this paper. Our sole purpose is to provide a convenient
reference for some well-known, but not very well-documented properties of the
blow-up construction. After we wrote the paper, it was pointed out to us it over-
laps with [1, Section 2]. Nevertheless, it seems to us that our treatment is a little
more detailed.

2 Local construction

Let R denote the set of real numbers. Let R>0 and R≥0 be the sets of positive and
non-negative real numbers respectively. Let R

m+n = R
m × R

n. Throughout this
section, we identify R

m with R
m × {0} ⊂ R

m+n. Thus, R
m+n \ R

m is canonically
identified with R

m × (Rn \ {0}). Let Sn−1 be the unit sphere in R
n. There is a real

analytic diffeomorphism

R
m × R>0 × Sn−1 ∼=

−→ R
m × (Rn \ {0}) = R

m+n \ R
m

defined by the formula (x, r, θ̄) 7→ (x, r · θ̄). This diffeomorphism extends to a
real analytic map

µ : R
m × R × Sn−1 ∼=

−→ R
m+n
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defined by µ(x, r, θ̄) = (x, r · θ̄). Let µ≥0 be the restriction of µ to R
m × R≥0 ×

Sn−1. Moreover, let Z2 act on R
m × R × Sn−1 by τ(x, r, θ̄) = (x,−r,−θ̄). Define

B(Rm+n, R
m) to be the quotient space of this action. Clearly, this is a free, real

analytic action, and therefore B(Rm+n, R
m) has a canonical structure of a real

analytic manifold. Also clearly, the map µ satisfies µ(x, r, θ̄) = µ(τ(x, r, θ̄)), and
therefore it passes to a real analytic map

π : B(Rm+n, R
m) −→ R

m+n.

Definition 2.1. We define the spherical blow-up of R
m+n at R

m to be the pair
(Rm × R≥0 × Sn−1, µ≥0). The projective blow-up of R

m+n at R
m is the pair

(B(Rm+n, R
m), π).

In this paper, we will generally use “blow-up” to mean “projective blow-up”.
To summarize the relationship between the various constructions that we in-

troduced: there are canonical real analytic maps

R
m × R≥0 × Sn−1 →֒ R

m × R × Sn−1 −→ B(Rm+n, R
m)

π
−→ R

m+n.

Here the first map is the inclusion, the second map is the quotient map, and
the composed map is µ≥0. The following lemma follows immediately from the
definitions.

Lemma 2.2. Both π and µ≥0 are proper, real analytic maps. Each of these maps restricts
to a real analytic diffeomorphism between R

m+n \R
m and its inverse image. In addition,

π−1(Rm) ∼= R
m × RPn−1 and µ−1

≥0(R
m) ∼= R

m × Sn−1.

For a smooth map G : R
n −→ R

l we use D0G to denote the linear map from
R

n to R
l obtained by differentiating G at 0. We call it the derivative of G at 0.

Now let F be a smooth (real analytic) map R
m × R

n → R
k × R

l. We will
write that F = (F1, F2), where (F1, F2)(x, y) = (F1(x, y), F2(x, y)). Assume that F
satisfies the following hypothesis.

Hypothesis 2.3. Let F : R
m × R

n → R
k × R

l be a smooth map. Assume that
F−1(Rk × {0}) = R

m × {0}. Moreover, for every x ∈ R
m, let F2,x : R

n → R
l

be the map y 7→ F2(x, y). We assume that the derivative D0F2,x is injective for all
x ∈ R

m. In other words, F induces a fiber-wise injective map from the normal
bundle of R

m × {0} to the normal bundle of R
k × {0}.

Remark 2.4. It is easy to see that if F is a diffeomorphism such that F(Rm ×{0}) =
R

k × {0}, then F satisfies the hypothesis.

Let F be a map satisfying the hypothesis. Define the map

F̃ : R
m × R × Sn−1 −→ R

k × R × Sl−1,

by the following formula:

F̃(x, r, θ̄) =






(
F1(x, rθ̄), r

|r|
‖F2(x, rθ̄)‖, r

|r|
F2(x,rθ̄)

‖F2(x,rθ̄)‖

)
, if r 6= 0

(
F1(x, rθ̄), 0,

D0F2,x(θ̄)
‖D0F2,x(θ̄)‖

)
, if r = 0.

.
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We will prove shortly that F̃ is smooth (real analytic, if F is real analytic) on its en-

tire domain. First, let us make a couple of obvious observations about F̃. Clearly,

F̃ restricts to a map from R
m × R≥0 × Sn−1 to R

k × R≥0 × Sl−1. We denote this

restriction of F̃ by F̃≥0. Furthermore, it is easy to see that F̃ is equivariant with

respect to the Z2-action that we defined on the source and the target. Thus F̃
induces a map

F̄ : B(Rm+n, R
m) −→ B(Rk+l, R

k),

such that the following diagram commutes (here the vertical maps are the canon-
ical maps defined above).

R
m × R≥0 × Sn−1 F̃≥0

−−−→ R
k × R≥0 × Sl−1

y
y

R
m × R × Sn−1 F̃

−−−→ R
k × R × Sl−1

y
y

B(Rm+n, R
m)

F̄
−−−→ B(Rk+l, R

k)yπ

yπ

R
m+n F

−−−→ R
k+l

.

Now, to the main lemma of this paper.

Lemma 2.5. Suppose that F satisfies Hypothesis 2.3. Then the map F̃ that we defined

above is is smooth. If F is real analytic, then also F̃ is real analytic.

Proof. During the proof, we will assume that F is smooth, and prove that F̃ is

smooth. However, if F is real analytic, the same proof will show that F̃ is real
analytic. All one needs to do is to replace the word “smooth” with “real analytic”
throughout the proof.

The map F̃ is defined by means of three coordinate functions, and we need to
prove that each one of these functions is smooth. The first coordinate function is
F1(x, rθ̄), and it is obviously smooth, because F1 is smooth.

The second and third coordinate functions involve the norm function
‖ − ‖ : R

l −→ R, as well as the absolute value function. These functions are
not smooth, but the restriction of ‖ − ‖ to R

l \ {0} is smooth, and the absolute
value function is also smooth away from zero. Thus if G : M −→ R

l is a smooth
function, then ‖G‖ is a smooth function at all points x ∈ M for which G(x) 6= 0.

With this in mind, we claim that F̃ is clearly smooth on R
m × (R \ {0})× Sn−1 .

Indeed, by Hypothesis 2.3, F−1(Rk × {0}) = R
m × {0}. It follows that when

r 6= 0, F2(x, rθ̄) 6= 0 and from here it follows that r
|r|
‖F2(x, rθ̄)‖ is smooth as long

as r 6= 0.
It remains to show that F̃ is smooth at points of type (x, 0, θ̄), where x ∈ R

m

and θ̄ ∈ Sn−1. Let us study the second coordinate function, which is r
|r|
‖F2(x, rθ̄)‖.

This function is well-defined for r 6= 0, and our goal is to show that if one extends
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it to have value 0 for r = 0 one obtains a smooth function. Consider first the
function F2(x, rθ̄). This is a smooth function of the three variables x, r, and θ̄,
where x ∈ R

m, r ∈ R, and θ̄ ∈ Sn−1 (if one wishes, one may enlarge the domain
of θ̄ to be R

n \ {0}). For a brief moment, we would like to consider x and θ̄ as
parameters, and only r as a variable. Therefore, for fixed x, θ̄, define the function
Gx,θ̄ : R −→ R

l by Gx,θ̄(r) = F2(x, rθ̄). Let us consider the Taylor expansion of
this function in the variable r at zero. It follows from Taylor’s theorem that

F2(x, rθ̄) = Gx,θ̄(r) = Gx,θ̄(0) +
dGx,θ̄

dr
(0) · r + r2 · k(x, r, θ̄)

where k(x, r, θ̄) is a smooth function. The assumption that F−1(Rk × {0}) =
R

m × {0} implies that Gx,θ̄(0) = F2(x, 0) = 0. On the other hand, an elemen-

tary calculation shows that
dGx,θ̄

dr (0) = D0F2,x(θ̄). We obtain that

F2(x, rθ̄) = r · D0F2,x(θ̄) + r2 · k(x, r, θ̄).

It follows that
‖F2(x, rθ̄)‖ = |r| · ‖D0F2,x(θ̄) + r · k(x, r, θ̄)‖

and thus
r

|r|
· ‖F2(x, rθ̄)‖ = r · ‖D0F2,x(θ̄) + r · k(x, r, θ̄)‖.

Clearly, the right hand side is well-defined for r = 0, and its value at r = 0 is zero.
We need to show that it is smooth. Since D0F2,x(θ̄) + r · k(x, r, θ̄) is obviously a
smooth function of x, r, θ̄, it is enough to show that D0F2,x(θ̄) + r · k(x, r, θ̄) 6= 0
for all (x, r, θ̄) ∈ R

m × R × Sn−1. We already saw that D0F2,x(θ̄) + r · k(x, r, θ̄) 6= 0
whenever r 6= 0. For the case r = 0, note that the value of this function is
D0F2,x(θ̄), and since by Hypothesis 2.3 D0F2,x is an injective linear homomor-
phism, and θ̄ is a unit vector, it follows that D0F2,x(θ̄) 6= 0. Therefore, r

|r|
·

‖F2(x, rθ̄)‖ extends to a smooth function at r = 0, as claimed.

The proof that r
|r|

F2(x,rθ̄)
‖F2(x,rθ̄)‖

is smooth at r = 0 is similar. We have the following

identity, valid for r 6= 0.

r

|r|

F2(x, rθ̄)

‖F2(x, rθ̄)‖
=

r2
(
D0F2,x(θ̄) + r · k(x, r, θ̄)

)

|r|2 · ‖D0F2,x(θ̄) + r · k(x, r, θ̄)‖
=

D0F2,x(θ̄) + r · k(x, r, θ̄)

‖D0F2,x(θ̄) + r · k(x, r, θ̄)‖
.

By the same argument as before, the right hand side is a well-defined, smooth
function at all points (x, r, θ̄) ∈ R

m × R × Sn−1. Thus

r

|r|

F2(x, rθ̄)

‖F2(x, rθ̄)‖

extends to a smooth function, whose value at (x, 0, θ̄) is

D0F2,x(θ̄)

‖D0F2,x(θ̄)‖
,

as claimed.
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Corollary 2.6. Let F : R
m+n −→ R

k+l be a smooth (real analytic) map satisfying Hy-
pothesis 2.3. Then the map F̄ : B(Rm+n, R

m) −→ B(Rk+l, R
k) defined above is a smooth

(real analytic) map. Similarly, the map F̃≥0 induces a smooth (real analytic) map between
spherical blow-ups.

Equip C∞(Rm × R
n, R

k × R
l) (and other mapping spaces) with the Whitney

C∞-topology (i.e., the strong topology, see Chapter 2 in [2]). Let A ⊂ C∞(Rm ×
R

n, R
k × R

l) be the set of C∞-maps f satisfying Hypothesis 2.3. Then A inherits
the topology from C∞(Rm × R

k, R
n × R

l). The proof of the following lemma is

straightforward, using the formula for F̃.

Lemma 2.7. The map

A → C∞( B(Rm+n, R
m), B(Rk+l, R

k) ), f 7→ f̄ ,

is continuous.

Let G be a smooth map R
k ×R

l → R
p ×R

q. Assume that G satisfies Hypothe-
sis 2.3 (with superscripts adjusted accordingly), so G induces a map
G : B(Rk+l, R

k) −→ (Rp+q, R
p). The proof of the following lemma is easy:

Lemma 2.8. Let F and G be as above. Then G ◦ F = Ḡ ◦ F̄.

Lemmas 2.7 and 2.8 say that the blow-up construction defines a continuous
functor from the category of pairs of the form (Rm+n, R

m), and smooth (real an-
alytic) maps satisfying Hypothesis 2.3 to the category of smooth (real analytic)
manifolds.

3 Construction of the blow-up in the general case

In this section we will construct the blow-up of a smooth (real analytic) manifold
M at a closed smooth (real analytic) submanifold A. The manifold M may have a
boundary, and in this case we assume that A is neatly embedded in M, in the sense
of [2]. Recall that this means that ∂A = A∩ ∂M and A is not tangent to ∂M at any
point of A ∩ ∂M.

In what follows, we fix a Euclidean space R
m+n, and we identify R

m with the
subspace R

m × {0} of R
m+n. Recall that π : B(Rm+n, R

m) −→ R
m+n is the blow-

up map. We may now define the blow-up at R
m for arbitrary codimension zero

submanifolds of R
m+n in the following way. Let O ⊂ R

m+n be a codimension
zero submanifold. The submanifold O may have a boundary, in which case we
require that O ∩ R

m is a neatly embedded submanifold of O. Define the blow-up
of O at O ∩ R

m to be the space

B(O, O ∩ R
m) := π−1(O)

together with the evident map B(O, O ∩ R
m) −→ O, which we will continue de-

noting by π. Clearly, it is still true that π restricts to a diffeomorphism

π−1(O \ O ∩ R
m)

∼=
−→ O \O ∩ R

m and that π−1(O ∩ R
m) ∼= (O ∩ R

m)× RPn−1.
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Remark 3.1. It is easy to see from the definition that if U, V are subsets of R
m+n

then

B(U, U ∩ R
m) ∩ B(V, V ∩ R

m) = B(U ∩ V, U ∩ V ∩ R
m)

and

B(U, U ∩ R
m) ∪ B(V, V ∩ R

m) = B(U ∪ V, (U ∪ V) ∩ R
m),

where the union and the intersection on the left hand sides is taken by considering
all these spaces as subspaces of B(Rm+n, R

m).

Once again, let M be a smooth (real analytic) (m + n)-dimensional manifold,
possibly with boundary, and let A be a closed neatly embedded m-dimensional
submanifold. Let {(U, α)} be a collection of charts of M such that α(U ∩ A) =
α(U) ∩ R

m, and α(U ∩ A) is neatly embedded in α(U). Let (U, α) and (V, β)
be charts in the collection, such that U ∩ V 6= ∅. It is easy to see, using Re-
mark 2.4 and Corollary 2.6, that the map β ◦ α−1 induces a smooth (real analytic)

map β ◦ α−1 between the blow-ups such that the following diagram commutes.

B(α(U ∩ V), α(U ∩ V ∩ A))
β◦α−1

−−−→ B(β(U ∩ V), β(U ∩ V ∩ A))yπ

yπ

α(U ∩ V)
β◦α−1

−−−→ β(U ∩ V)

(∗).

Let T be the disjoint union of all the spaces B(α(U), α(U ∩ A)). We define a rela-
tion ∼ on T by setting x ∼ y, if x ∈ B(α(U ∩ V), α(U ∩ V ∩ A)),

y ∈ B(β(U ∩ V), β(U ∩ V ∩ A)) and y = β ◦ α−1(x). Then ∼ is an equivalence
relation.

Let B(M, A) denote the quotient space T/ ∼, and let p : T → B(M, A) be
the quotient map. We endow B(M, A) with the quotient topology: a set O is
open in B(M, A) if and only if p−1(O) is open in T. Note that ∼ is an open
relation, and thus p is an open map. In particular, p restricts to an open em-
bedding of each B(α(U), α(U ∩ A)) into B(M, A). We define a smooth (real an-
alytic) differential structure on B(M, A) by requiring that the restriction of p to
each B(α(U), α(U ∩ A)) is a smooth (real analytic) diffeomorphism onto its image
p(B(α(U), α(U ∩ A))). The functoriality properties of local blow-ups guarantee
that B(M, A) has the local structure of a smooth (real analytic, if M and A are real
analytic) manifold.

We still need to show that B(M, A) is Hausdorff (of course, we assume that M
is Hausdorff). For this, it is enough to show that any two points x, y ∈ B(M, A)
are contained in an open Hausdorff subspace of B(M, A). If x and y are both
contained in p(B(α(U), α(U ∩ A))) for some chart (U, α) then obviously they are
contained in a Hausdorff subspace of B(M, A), because p(B(α(U), α(U ∩ A))) ∼=
B(α(U), α(U ∩ A)) is Hausdorff. Assume therefore that x ∈ p(B(α(U), α(U ∩
A))) and y ∈ p(B(β(V), β(V ∩ A))), but x and y do not belong to a single set of
this form. Consider the image of x in M under the composed map

p(B(α(U), α(U ∩ A)))
p−1

−→ B(α(U), α(U ∩ A))
π

−→ α(U)
α−1

−→ U →֒ M
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and consider the image of y in M under the analogous map for y. These two
images can not be the same, because if they were the same, then both x and y
would be in p(B(γ(O), γ(O ∩ A))) where (O, γ) is any chart containing the com-
mon image of x and y. Since x and y are mapped to different points of M, one
can choose charts (U, α) and (V, β) containing the images of x and y respectively
in M, such that U ∩ V = ∅ = α(U) ∩ β(V). In this case, we may form the union
chart (U ∪ V, γ), and x, y are both contained in p(B(γ(U ∪ V), γ((U ∪ V)∩ A))),
again contradicting our assumption.

In conclusion, we have the following proposition. We have proved all but the
last claim of this proposition. The last claim is left as an exercise.

Proposition 3.2. Let B(M, A) be defined as above. Then B(M, A) is a smooth (real
analytic, if M and A are) manifold. The boundary of B(M, A) equals to B(∂M, ∂M∩ A).

The blow-up maps π : B(α(U), α(U ∩ A)) −→ α(U) assemble into a smooth
(real analytic) map (which we continue to denote by π).

π : B(M, A) → M.

We call the pair (B(M, A), π) the blow-up of M at A. It is now easy to check that π
has the following properties.

1. π is a proper map.

2. π−1(A) is isomorphic, as a space over A, to the projectivization of the nor-
mal bundle of A.

3. π restricts to a smooth (real analytic) diffeomorphism π−1(M \ A) →
M \ A.

Remark 3.3. The spherical blow-up of M at A can be defined in an analogous
way, using our construction of local spherical blow-up. It has all the analogous
properties, that are proved in a similar way. We will omit the details.

4 Functoriality of the blow-up

Let M be a smooth manifold and A a closed submanifold of M. Let x ∈ A. We
denote the tangent spaces of M and A at x, by Tx(M) and Tx(A), respectively.
The normal space of A at x is Nx(A) = Tx(M)/Tx(A).

Our construction of a blow-up satisfies the following property:

Theorem 4.1. Let M and N be smooth (real analytic) manifolds with neat closed smooth
(real analytic) submanifolds A and B, respectively. Let f : M → N be a smooth (real ana-
lytic) map such that f−1(B) = A. Moreover, assume that the map Nx(A) → N f (x)(B),

induced by f , is injective for all x ∈ A. Then f induces a smooth (real analytic) map f̄
between the blow-ups such that the diagram

B(M, A)
f̄

−−−→ B(N, B)yπ

yπ

M
f

−−−→ N

commutes.
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Proof. The proof follows immediately from the local properties of the blow-up
construction; Corollary 2.6 and Diagram (∗).

Clearly, if we choose N = M, B = A and f = id : M → M in Theorem 4.1,
then the induced map ¯id equals the identity map of B(M, A). As in Lemma 2.8,

the composition g ◦ f of maps f and g induces the map g ◦ f = ḡ ◦ f̄ . Thus the
blow-up construction defines a functor from the category whose morphisms are
smooth (or real analytic) maps satisfying the hypothesis of Theorem 4.1 to the
category of smooth (or real analytic) manifolds.

Let C∞((M, A), (N, B)) denote the set of maps satisfying the properties re-
quired for f in Theorem 4.1. Then C∞((M, A), (N, B)) inherits the Whitney C∞-
topology from C∞(M, N). Lemma 2.7 implies:

Proposition 4.2. The map

C∞((M, A), (N, B)) → C∞(B(M, A), B(N, B)), f 7→ f̄ ,

is continuous.

Thus, the blow-up construction is in fact a continuous functor.

Proposition 4.3. Let M be a smooth (real analytic) manifold and let A be a neat closed
smooth (real analytic) submanifold of M. Let N be a smooth (real analytic) manifold
without boundary. Then there is a natural smooth (real analytic) diffeomorphism

B(N × M, N × A) → N × B(M, A).

Proof. Let prM : N × M → M and prN : N × M → N be the projections. For every
y ∈ N, let iy : M → N × M, x 7→ (y, x). By Theorem 4.1, the diagram

B(M, A)
īy

−−−→ B(N × M, N × A)
p̄rM−−−→ B(M, A)yπ

yπ

yπ

M
iy

−−−→ N × M
prM−−−→ M

commutes and the induced maps īy and p̄rM are smooth (real analytic). Since

prM ◦ iy equals the identity map of M, for every y, the induced map prM ◦ iy =
p̄rM ◦ īy equals the identity map of B(M, A), for every y. Let

h : B(N × M, N × A) → N × B(M, A), z 7→ (prN ◦ π(z), p̄rM(z)).

Then h is a smooth (real analytic) map. The map h is also a bijection, with the
inverse map given by

i : N × B(M, A) → B(N × M, N × A), (y, x) 7→ īy(x).

Notice that both h and i are induced by the identity map id : N × M → N × M,
and that the diagram

B(N × M, N × A)
h

−−−→ N × B(M, A)
i

−−−→ B(N × M, N × A)yπ

yidN×π

yπ

N × M
id

−−−→ N × M
id

−−−→ N × M
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commutes. It follows immediately from the definition of the local blow-up that
h is a diffeomorphism when M, N and A are Euclidean spaces. It follows that
in general h is a local diffeomorphism as well as a bijection. Consequently, h is a
smooth (real analytic) diffeomorphism.

5 Equivariant properties

Let G be a Lie group and let M be a smooth (real analytic) manifold on which G
acts smoothly (real analytically). The action of G on M is called proper if the map

G × M → M × M, (g, x) 7→ (gx, x),

is proper. In this case we call M a proper smooth (real analytic) G-manifold.
It is well-known that the action of G on M is proper if and only if for every two

points x and y in M there are neighbourhoods U and V of x and y, respectively,
such that the closure of the set

G(U, V) = {g ∈ G | gU ∩ V 6= ∅}

is compact.
The action of G is called Cartan, if every x ∈ M has a neighbourhood U such

that the set G(U, U) has a compact closure. Clearly, every proper action is Cartan.

Theorem 5.1. Let G be a Lie group and let M be a smooth (or real analytic) G-manifold.
Let A be a neat closed smooth (real analytic) G-invariant submanifold of M. Then the
blow-up B(M, A) is a smooth (real analytic) G-manifold and the canonical projection
π : B(M, A) → M is a smooth (real analytic) G-equivariant map. If the action of G on
M is proper (Cartan), then also the action of G on B(M, A) is proper (Cartan).

Proof. We already know that B(M, A) is a smooth (real analytic) manifold and
that π is a smooth (real analytic) map. Therefore, to prove the first claim, it suf-
fices to show that G acts smoothly (real analytically) on B(M, A) and that π is
G-equivariant.

By Theorem 4.1, each map ḡ induced by g ∈ G, is a smooth (real analytic)
diffeomorphism of B(M, A) and the diagram

B(M, A)
ḡ

−−−→ B(M, A)yπ

yπ

M
g

−−−→ M

commutes. Thus π is G-equivariant.
We want to show that the action

G × B(M, A) → B(M, A), (g, x) 7→ ḡ(x), (∗∗)

is smooth (real analytic). Let φ : G× M → M denote the action map on M, and let
i : G × B(M, A) → B(G × M, G × A) be as in Proposition 4.3. Then the diagram

G × B(M, A)
i

−−−→ B(G × M, G × A)
φ̄

−−−→ B(M, A)yid×π

yπ

yπ

G × M
id

−−−→ G × M
φ

−−−→ M
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commutes. The map φ̄ ◦ i is smooth (real analytic) and it defines the action in (∗∗).
Assume G acts properly on M. Let x, y ∈ B(M, A). Then π(x), π(y) ∈ M.

Since G acts properly on M, π(x) and π(y) have neighbourhoods U and V, re-
spectively, such that the set G(U, V) is relatively compact. Now, π−1(U) and
π−1(V) are neighbourhoods of x and y. For g ∈ G,

gπ−1(U) ∩ π−1(V) = π−1(gU ∩ V) 6= ∅

if and only if gU ∩ V 6= ∅. Thus G(π−1(U), π−1(V)) has compact closure and
the action of G on B(M, A) is proper. Similarly, we see that if the action of G on
M is Cartan, then the action of G on B(M, A) is also Cartan. This completes the
proof.
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