Linear Weingarten spacelike hypersurfaces in
de Sitter space
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Abstract

In this paper, we give a classification on spacelike linear Weingarten hy-
persurfaces in de Sitter space S} *!(1) according to the sectional curvature or
the length of the second fundamental form.

1 Introduction

Let M" be a complete spacelike hypersurface immersed into de Sitter space S;’H.
We denote by H, R and S the mean curvature, the normalized scalar curvature
and the square of the length of the second fundamental form, respectively.
When M" has constant H, Goddard [6] conjectured that complete spacelike
hypersurfaces with constant H must be totally umbilical. Akutagawa [2] proved
that Goddard’s conjecture is true when n = 2 and H? < 1 or when n > 3 and
H? < 4(n — 1)/n? (Ramanathan [13] studied the case n = 2 independently). In
[10], Montiel proved that Goddard’s conjecture is true provided that M" is com-
pact. Furthermore, he exhibited examples of complete spacelike hypersurfaces
with constant H satisfying H? > 4(n — 1) /n? and being not totally umbilical-the
so called hyperbolic cylinders, which are isometric to the Riemannian product
H'(1 — coth?r) x §"~1(1 — tanh? r). Montiel [11] proved that complete spacelike
hypersurface M" with H> = 4(n — 1)/n? is isometric to a hyperbolic cylinder
if M" has at least two ends. In [7], Ki-Kim-Nakagawa found the upper bound
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of S and they proved that the upper bound can be realized only by hyperbolic
cylinders.

When M" has constant R, Zheng [15] proved that a compact spacelike hy-
persurface in a de Sitter space S{lH is totally umbilical if the sectional curvature
of M" is non-negative and R < 1. Later, Cheng and Ishikawa [5] showed that
Zheng's result in [15] is also true without additional assumptions on the sectional
curvatures of the hypersurface. In [9], Liu obtained a pinching theorem on space-
like hypersurface with constant R, he proved thatif n(1 — R) <sup S < D(n,R),
then either sup S = n(1 — R) and M" is totally umbilical or sup S = D(n, R) and
M" is a hyperbolic cylinder, where D(n,R) = m[n(n —~1)(1—-R)? -~
4(n—1)(1 —R) +n].

When M" is a complete spacelike hypersurface in de Sitter space S{lH with
R = kH, Cheng [4] proved that if the sectional curvature is non-negative and H
can obtain its maximum on M" then M" is totally umbilical. Shu [14] proved a
characteristic theorem concerning such hypersurfaces in terms of the mean cur-
vature H and S. In [8], Li showed that a compact spacelike hypersurface with
non-negative sectional curvature is totally umbilical.

In this paper, we will consider spacelike hypersurfaces with R = aH + b,
which are called linear Weingarten hypersurfaces. This is the generalization of R
is constant and R = kH. Precisely, we have the following theorems.

Theorem 1.1. Let M" be a compact spacelike linear Weingarten hypersurface immersed
in the de Sitter space S with R = aH + b. If 4n(1 —b) + (n — 1)a® > 0 and the
sectional curvature of M" is nonnegative, then M" is totally umbilical.

Remark 1.2. When the constant a vanishes identically, a linear Weingarten hy-
persurface M" reduces to hypersurface with constant scalar curvature and our
Theorem 1.1 reduces to Theorem B of [15]. When the constant b vanishes, we also
get the corollary 4.3 of [8].

Theorem 1.3. Let M" be a complete spacelike linear Weingarten hypersurface immersed
in the de Sitter space Sg’“ with R = aH +b. Suppose H can attain the maximum on
M". Ifa # 0,b < 1 and the sectional curvature of M" is non-negative, then M" is
totally umbilical or a hyperbolic cylinder H'(1 — coth® r) x §"~1(1 — tanh?r).

Remark 1.4. When the constant b vanishes identically and a is positive, Theorem
1.3 reduces to Theorem 1 of [4]. It should be pointed out that Cheng [4] omitted
the hyperbolic cylinder H'(1 — coth?r) x §"~1(1 — tanh? r), which is isometric to

M"={xe S|+ - +x2 4 =coth’r},

where 1 is a positive constant and n > 2. Such hyperbolic cylinders have constant
H and constant R with

1 1
H= E(cothr—i—(n—l)tanhr) > 0, Rzl—; (2+(n—2)tanh2r> > 0.

It is easy to see that H'(1 — coth? r) x §"~1(1 — tanh®r) satisfies the condition of
Theorem 1 in [4] for every positive constant r and it is not totally umbilical.
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Theorem 1.5. Let M" be a complete spacelike linear Weingarten hypersurface immersed
in the de Sitter space S;’“ with R = aH +b. Suppose H can attain the maximum

on M". Ifa # 0,b < 1and S < 2v/n — 1, then either M" is totally umbilical or
S =2vn—1 (n>3)and M" is isometric to a hyperbolic cylinder H' (1 — coth? r) x
$"-1(1 — tanh®r).

2 Preliminaries

Let M" be an n-dimensional spacelike hypersurface immersed in the de Sitter
space Sng. We choose a local field of pseudo-Riemannian orthonormal frames

{e1,- - ,ep11} in S{ZH such that, restricted to M", ey, - - - , e, are tangent to M",
and the vector e, ;1 is normal to M". Let {w1, - - - , wy+1} be the dual frame field.
In this paper, we make the following convention on the range of indices:

1<A B, C<n+1; 1<i, 7, k<n.

n+1
Sl

Then the structure equations of are given by

dwy =) epwap A wp, wap +wpa =0,
B

1
dwap =) ecwac N wep — 5 Y Kapcpwe A wp,
C CD

Kapcp = €a€p (0acoBD — 04D0BC) ,

where ¢; = 1 and ¢,,,1 = —1. We restrict these forms to M, then we have w,, ;1 =
0, and the induced metric ds? of M is written as ds* = }; w?. We may put
Wins1 = Y_hijwj,  hij = hj;. (2.1)
j

The quadratic form B = Yij hijw; ® wj ® ey41 is the second fundamental form of
M'"™. We denote L = (h,-j)nxn and S = th'] The mean curvature vector ¢ of M" is
defined by

1
6= Y hiteni1.
i

The length of the mean curvature vector is called the mean curvature of M", de-
note by H. When ¢ # 0, we choose e, 1 to assure

1 n+1
1
We can obtain the structure equations of M"
dw; = Zwi]- AN wj, wij + wijj = 0,
]

1
dwij =Y wik N wij — > Y Rijawi A wy,
k Kl
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and the Gauss equation
Riji = (601 — 64djx) — (hixhji — hihiy) , (2.2)

where {Ri]-kl} is the component of the curvature tensor of M". Let R;; and R de-
note the components of the Ricci curvature and the normalized scalar curvature
of M" respectively. From (2.2) we have

Ri = (n — 1)y — Y _(hichjj — hijhir), (2.3)

]

n(n —1)R = n(n —1) — n>H* 4+ S. (2.4)
Let h;j; denote the covariant derivative of ;; so that
Zhijkwk = d]’ll']' + th]'wki + Zhikwkj-
k k k
Then by exterior differentiation of (2.1), we obtain the Codazzi equation
hi]'k = hik]" (25)

Next, we define the second covariant derivative of h;; by
Y hijaw; = dhije+ Y Rjemi + Y Rimk@mi + Y Bijm@aie-
1 m m m
By exterior differentiation of (2.5), we can get the following Ricci identity
hijer — hijie = Y_ miRoikt + Y Pim Ry (2.6)
m m
The laplacian of #;; is defined by Ahij = Y hijkk- From (2.5) and (2.6) we obtain
Ahij =Y i + Y hgeRoijie + Y him Rk (2.7)
k k,m m,k
Since %AS = Yijk (hi]-k)z + X hijAh;j, then it follows from (2.7) that
1
S5 = Yo B+ Y b+ Y MitwaRuie + Y Hijhim Rk (2.8)
i,jk i,j,k ij,km ij,km
We choose eq, - - - , e, such that h;; = A;6;;, then (2.8) becomes
1 1
EAS = Zhlzjk + ZAi(nH)ii + 5 ZRijij()\i — /\]')2. (2.9)
i,k i i
Let T =} ; ; Tjjwiwj be a symmetric tensor on M" defined by

T1] = nHéi]- — h1]
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We introduce an operator [J associated to T acting on f € C2(M") by

Of = )_Tifij = Y (nHéij — hij) fi.
L]

ij
Setting f = nH in (2.10) and from (2.4) we obtain

O(nH) = Z(HH(5ij—hij)(”H)ij

1,]

= Z(nH) (nH);; — ZAi(nH)ii
— %A(an = Y _(nH;)* =} Ai(nH);i
1 n(n—1)

— ZAS-—

5 5 AR—n2|VH|2—Zi:/\i(nH)ii.

From (2.9) and (2.11), we have

nn—1
O(nH) = ) hy —n?|VH|* — %

i,jk i,j

We introduce an operator

n—1

L=0+ al.

Then it follows from R = aH + b that

L(nH) =0(nH) + n-1

aA(nH) = O(nH) + %n(n “1)AR.
Substituting (2.12) into (2.13), we have

1
L(nH) = } iy — n*[VH + 2 ) Rjij(Ai = A)*.
ijk i,j

1
AR + E ZRijij(Ai — /\]')2.
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(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

Proposition 2.1. Let M" be an n-dimensional spacelike linear Weingarten hyper-
surface immersed in the de Sitter space S;’H withR =aH +b. Ifa # 0,b < 1,

then L is elliptic.

Proof. If H = 0, we have R = b < 1. It follows from (2.4) that S = n(n — 1)
(R—1) < 0. This is impossible. Therefore we have H > 0. It follows from (2.4)

and R = aH + b that
S=n’H*+n(n—1)(aH+b-1).

It follows that

a:m(S—nsz—l—n(n—l)(l—b)).

(2.15)

(2.16)
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For any i, from (2.16) we have
n—1
2

_ 1 2172 . o
— nH-— /\+ﬁ<8 n2H2 4 n(n —1)(1- b))

—AiZAj—i—%Z/\]Z—I— %n(n -1 —b)} (nH)™!

Pt Z/\Z/\ — A ZA —I—;n(n—l)(l —b)} (nH)™!
l#]

2 i7]
Lj#i

— { + Z/\l/\ +;n(n—1)(1—b) (nH)™!
1
2

{Z)@ 3-A) +nrz—l)(l—b)}(nH)—1

i#] j#i

It follows from b < 1 that

1
nH— A+ 2a>0. 2.17)

Thus L is an elliptic operator. n

Lemma 2.2. Let M" be an n-dimensional spacelike linear Weingarten hypersurface im-
mersed in the de Sitter space S{*! with R = aH + b. If (n — 1)a® +4n(1 —b) > 0,
then we have

Zhl]k > n?|VH|?. (2.18)
i,jk

Moreover, suppose that the equality holds on M" in (2.18). Then either H is constant on
M" or r(L) = 1, where r(L) denotes the rank of L.

Proof. From (2.4) and R = aH + b, we have
S=n’H?>+n(n—1)(aH+b—1). (2.19)
Taking the covariant derivative of (2.19), we have

2Y hijhij = Si = (2n2H tn(n— 1)a> H, (2.20)
i,j
for every k. Hence, by Cauchy-Schwartz’s inequality, we have

Zh Y iy > (n*H + %n(n —1)a)?|VH?, (2.21)
i,j i,jk
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that is

1
S Z Iy > (W*H + Snln = 1)a)?|VH?. (2.22)
/]/

On the other hand, it follows from (2.19) that

(nZH + %n(n — 1)a)2 —n*S
= n? (nzH2 +n(n—1)Ha — S) -+ }lnz(n —1)%? (2.23)
— B(n—1)1—b) + inz(n 1)
_ in2(n ~1) ((n—1)a +4n(1 - b))
Since (n — 1)a® +4n(1 — b) > 0, we have
<n2H + %n(n - 1)61)2 > n?S. (2.24)
It follows from (2.22) and (2.24) that
S Zkh”k (n’H + %n(n —1)a)?|VH* > n®S|VH|*. (2.25)
i,j,

Hence either S = 0 and lekh . = n*|VH[? or Zl]khz]k > n?|VH|%.
We suppose }; i « hz]k = n2|VH > on M"™. Then inequalities in (2.21), (2.22),

(2.24) and (2.25) become equalities.

If (n —1)a® +4n(1 — b) > 0, then (n*H + n(n — 1)a)?> > n®S from (2.23).
Since the second equality in (2.25) holds, we have |VH| = 0 and hence H is
constant on M".

If (n — 1)a® +4n(1 — b) = 0, then from (2.23) we have (n*H + 3n(n — 1)a)? =
n?S. This together with (2.20) forces that

S =4n’SH?, k=1,---,n (2.26)
Since the equality holds in (2.21), there exists a real function ¢, on M" such that
hij = ckhij, i, j=1,---,n, (2.27)

for every k. Taking the sum on both sides of equation (2.27) with respect to i = j,
we get

Hk:CkH, k = 1, , 1. (228)
From (2.27), we have

Sk = 22]’[1]7’11]]{ = 2ckS, k= 1,' -, N (229)
ij
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Multiplying both sides of equations in (2.29) by H and by using (2.28), we have
HSy = 2H,S, k=1,---,n. (2.30)
It follows from (2.26) and (2.30) that
H?S = Hin*H?, k=1,---,n (2.31)

We assume that H is not constant. Then there exists a ko such that H is not zero.
Hence from (2.31) we have

S = n*H>. (2.32)

On the other hand, multiplying both sides of equations in (2.27) by H and by
using (2.28), we have

Hhijk = Hkhij/ Z./ j/ k= 1/ s (233)

Taking the sum on both sides of (2.33) with respect to j = k and from (2.5), we
have

i=1-,n (2.34)

(nH)H; =) _ Hjhjj,
j

We choose eq, - - - , e, such that h;; = A;6;;, then (2.34) becomes
(nH — Aj)H; =0, i=1,---,n (2.35)
Since Hy, is not zero, we have
Ay, = nH. (2.36)

It follows from (2.32) and (2.36) that A = 0 for all k # kg on M". Hence r(L) =1
on M".

Remark 2.3. When b < 1, then (n — 1)a® + 4n(1 —b) > 0. It follows from the proof

of Lemma 2.2 that Y; ; k2, > n*|VH|?. Moreover, if the equality holds, then H is
ok i

constant.

Lemma 2.4. [12] Let y; (1 < i < n) be real numbers such that Y ; y; = 0 and ¥; y? =
B?, where B = constant > 0. Then

n—2

————p <) <

3
nn—1) - n(n — 1)'6 237)

and the equality holds if and only if at least (n — 1) of the y; are equal.
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3 Proof of Theorems

Proof of Theorem 1.1. Since M" is compact, we take integration over M" on both
sides of (2.12) and have

1 2
M M5

Since the sectional curvature of M" is non-negative and from Lemma 2.2, we
conclude that

Y iy = n*|VH], (3.2)
i,jk
and
Rijij(Ai = Aj)? = (1= AiAj) (A = Aj)* = 0. (3.3)

It follows from (3.3) that A; = A; or R;j;; = 1 —A;A; = 0 when A; # A;. We con-
clude that M" has at most two distinct principal curvature. In fact, without loss of
generality, we assume that M" has three distinct principle curvature A;, A, A,
Then A A;, = Aj,A;, = 1and hence A;; = A;,. This is a contradiction. Hence we
have that M" has at most two distinct principal curvature.

It follows from (3.2) and Lemma 2.2 that either H is constant or #(L) = 1. If
r(L) = 1, then there exists a kg such that A, = nH and Ay = 0 for k # ko, which
together with (3.3) shows that H = 0. This is a contradiction. Hence we have
that H is constant, which together with (3.2) shows that A; is constant for every
i. From the congruence theorem in [1] and the compactness of M", we conclude
that M is totally umbilical. This completes the proof of Theorem 1.1. m

Proof of Theorem 1.3. It follows from (2.14) and Remark 2.3 that
1
L(nH) = Z;(hfjk — n?|VH|* + 5 ZRiji]-(/\i — 1) >0, (3.4)
i,j, 1]

here we used the assumption that the sectional curvature of M" is non-negative.
Since L is elliptic and H can obtain its maximum on M, we deduce that H is
constant. Thus

13, — THR 0, 65
i,jk
and
> Rijij(Ai = A% = (1= M) (A — A))* = 0. (36)

i,j i,j

It follows from (3.5) that A; is constant for every i. From (3.6) we have A; = A;
or R;jij = 1—A;A; = 0 when A, # Aj. Similar to the proof of Theorem 1.1, we
get M" has at most two distinct constant principal curvature. If all the principle
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curvatures are equal, we have that M" is totally umbilical. Otherwise, without
loss of generality, we may suppose that

forsomek=1,---,n—1,and Ay = 1.

We can provek =1lorn —1.Infact,if 1 <k <n — 1, we have A2 < 1,pt2 <1
from R;j;j = 1 —A;A; > 0. This together with Ay = 1 shows that A =y = 1or
A = u = —1, which contradicts A # u. Hence we havek = 1orn — 1.

We assume A = tanhr, y = cothr. Since the sectional curvature of M" is
non-negative and by means of the congruence Theorem of Abe-Koike-Yamaguchi
[1], we have that M" is isometric to a hyperbolic cylinder S"~1(1 — tanh®r) x
H'(1 — coth?r). This completes the proof of Theorem 1.3. n

Proof of Theorem 1.5. Let y; = A; — H and |®|? = ¥; u?, we get

Y ui=0, |®F=S—nH> Y A}=)Y u}+3H|®*+nH. (3.7)
i i i
It follows from (2.2) and (3.7) that (2.14) becomes

1
L(nH) = Zhl]k—n2|VH|2+§Z(1—/\i)\j)()\i—/\j)z
ijk ij
= ) iy —n*|VHP + @ (n+S—2nH?) —nHY . (3.8)
i,jk i

From (3.8), Remark 2.3 and Lemma 2.4, we have

L(nH) 3.9)
> |®f? (n—l—S 2nH? — (n —2)H yq>|)
= |®)? (n T 2\/_ ((\/m+1)]q>|—(\/m—1)\/£H>2)

n
> (0f (15 i ‘15)'

which together with the assumption of the theorem S < 2v/n — 1 shows that

L(nH) > |®? (n - %s) > 0.

Since L is elliptic and H can obtain its maximum on M, we deduce that H is

constant. Hence
n
®?(n— 75) = 0.
@] < 2v/n—1

If S < 2¢/n— 1, then |®|?> = 0 and M" is totally umbilical.
If S = 2y/n —1, all the inequalities in (3.9) become equalities. We have

(Vn—1+1)|®| - (Vn—1-1)y/nH = 0.
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Hence
n?H?> = nyn —1+2(n—2).

When n = 2, we have |®| = 0 and M" is totally umbilical. When n > 3, since the
equality holds in (2.37) of Lemma 2.4, after renumberation if necessary, we can
assume

AM=---=A,_1=tanhr, A, = cothr.

Therefore, M" is isometric to a hyperbolic cylinder H'(1 — coth?r) x

§"~1(1 — tanh?r) from the congruence theorem in [1]. This completes the proof
of Theorem 1.5. n
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