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Abstract

In this paper, we give a classification on spacelike linear Weingarten hy-
persurfaces in de Sitter space Sn+1

1 (1) according to the sectional curvature or
the length of the second fundamental form.

1 Introduction

Let Mn be a complete spacelike hypersurface immersed into de Sitter space Sn+1
1 .

We denote by H, R and S the mean curvature, the normalized scalar curvature
and the square of the length of the second fundamental form, respectively.

When Mn has constant H, Goddard [6] conjectured that complete spacelike
hypersurfaces with constant H must be totally umbilical. Akutagawa [2] proved
that Goddard’s conjecture is true when n = 2 and H2 ≤ 1 or when n ≥ 3 and
H2

< 4(n − 1)/n2 (Ramanathan [13] studied the case n = 2 independently). In
[10], Montiel proved that Goddard’s conjecture is true provided that Mn is com-
pact. Furthermore, he exhibited examples of complete spacelike hypersurfaces
with constant H satisfying H2 ≥ 4(n − 1)/n2 and being not totally umbilical-the
so called hyperbolic cylinders, which are isometric to the Riemannian product

H1(1 − coth2 r)× Sn−1(1 − tanh2 r). Montiel [11] proved that complete spacelike
hypersurface Mn with H2 = 4(n − 1)/n2 is isometric to a hyperbolic cylinder
if Mn has at least two ends. In [7], Ki-Kim-Nakagawa found the upper bound
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of S and they proved that the upper bound can be realized only by hyperbolic
cylinders.

When Mn has constant R, Zheng [15] proved that a compact spacelike hy-

persurface in a de Sitter space Sn+1
1 is totally umbilical if the sectional curvature

of Mn is non-negative and R < 1. Later, Cheng and Ishikawa [5] showed that
Zheng’s result in [15] is also true without additional assumptions on the sectional
curvatures of the hypersurface. In [9], Liu obtained a pinching theorem on space-
like hypersurface with constant R, he proved that if n(1 − R) ≤ sup S ≤ D(n, R),
then either sup S = n(1 − R) and Mn is totally umbilical or sup S = D(n, R) and
Mn is a hyperbolic cylinder, where D(n, R) = n

(n−2)(n−nR−2)
[n(n − 1)(1 − R)2 −

4(n − 1)(1 − R) + n].
When Mn is a complete spacelike hypersurface in de Sitter space Sn+1

1 with
R = kH, Cheng [4] proved that if the sectional curvature is non-negative and H
can obtain its maximum on Mn then Mn is totally umbilical. Shu [14] proved a
characteristic theorem concerning such hypersurfaces in terms of the mean cur-
vature H and S. In [8], Li showed that a compact spacelike hypersurface with
non-negative sectional curvature is totally umbilical.

In this paper, we will consider spacelike hypersurfaces with R = aH + b,
which are called linear Weingarten hypersurfaces. This is the generalization of R
is constant and R = kH. Precisely, we have the following theorems.

Theorem 1.1. Let Mn be a compact spacelike linear Weingarten hypersurface immersed
in the de Sitter space Sn+1

1 with R = aH + b. If 4n(1 − b) + (n − 1)a2 ≥ 0 and the
sectional curvature of Mn is nonnegative, then Mn is totally umbilical.

Remark 1.2. When the constant a vanishes identically, a linear Weingarten hy-
persurface Mn reduces to hypersurface with constant scalar curvature and our
Theorem 1.1 reduces to Theorem B of [15]. When the constant b vanishes, we also
get the corollary 4.3 of [8].

Theorem 1.3. Let Mn be a complete spacelike linear Weingarten hypersurface immersed
in the de Sitter space Sn+1

1 with R = aH + b. Suppose H can attain the maximum on
Mn. If a 6= 0, b < 1 and the sectional curvature of Mn is non-negative, then Mn is

totally umbilical or a hyperbolic cylinder H1(1 − coth2 r)× Sn−1(1 − tanh2 r).

Remark 1.4. When the constant b vanishes identically and a is positive, Theorem
1.3 reduces to Theorem 1 of [4]. It should be pointed out that Cheng [4] omitted

the hyperbolic cylinder H1(1 − coth2 r)× Sn−1(1− tanh2 r), which is isometric to

Mn = {x ∈ Sn+1
1 | x2

2 + · · ·+ x2
n+1 = coth2 r},

where r is a positive constant and n > 2. Such hyperbolic cylinders have constant
H and constant R with

H =
1

n
(coth r + (n − 1) tanh r) > 0, R = 1 − 1

n

(

2 + (n − 2) tanh2 r
)

> 0.

It is easy to see that H1(1 − coth2 r)× Sn−1(1 − tanh2 r) satisfies the condition of
Theorem 1 in [4] for every positive constant r and it is not totally umbilical.
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Theorem 1.5. Let Mn be a complete spacelike linear Weingarten hypersurface immersed
in the de Sitter space Sn+1

1 with R = aH + b. Suppose H can attain the maximum

on Mn. If a 6= 0, b < 1 and S ≤ 2
√

n − 1, then either Mn is totally umbilical or

S = 2
√

n − 1 (n ≥ 3) and Mn is isometric to a hyperbolic cylinder H1(1 − coth2 r)×
Sn−1(1 − tanh2 r).

2 Preliminaries

Let Mn be an n-dimensional spacelike hypersurface immersed in the de Sitter

space Sn+1
1 . We choose a local field of pseudo-Riemannian orthonormal frames

{e1, · · · , en+1} in Sn+1
1 such that, restricted to Mn, e1, · · · , en are tangent to Mn,

and the vector en+1 is normal to Mn. Let {ω1, · · · , ωn+1} be the dual frame field.
In this paper, we make the following convention on the range of indices:

1 ≤ A, B, C ≤ n + 1; 1 ≤ i, j, k ≤ n.

Then the structure equations of Sn+1
1 are given by

dωA = ∑
B

εBωAB ∧ ωB, ωAB + ωBA = 0,

dωAB = ∑
C

εCωAC ∧ ωCB − 1

2 ∑
C,D

KABCDωC ∧ ωD,

KABCD = εAεB (δACδBD − δADδBC) ,

where εi = 1 and εn+1 = −1. We restrict these forms to M, then we have ωn+1 =
0, and the induced metric ds2 of M is written as ds2 = ∑i ω2

i . We may put

ωin+1 = ∑
j

hijωj, hij = hji. (2.1)

The quadratic form B = ∑i,j hijωi ⊗ ωj ⊗ en+1 is the second fundamental form of

Mn. We denote L = (hij)n×n and S = ∑ h2
ij. The mean curvature vector ξ of Mn is

defined by

ξ =
1

n ∑
i

hiien+1.

The length of the mean curvature vector is called the mean curvature of Mn, de-
note by H. When ξ 6= 0, we choose en+1 to assure

H =
1

n ∑
i

hn+1
ii > 0.

We can obtain the structure equations of Mn

dωi = ∑
j

ωij ∧ ωj, ωij + ωji = 0,

dωij = ∑
k

ωik ∧ ωkj −
1

2 ∑
k,l

Rijklωk ∧ ωl,
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and the Gauss equation

Rijkl =
(

δikδjl − δilδjk

)

−
(

hikhjl − hilhjk

)

, (2.2)

where
{

Rijkl

}

is the component of the curvature tensor of Mn. Let Rij and R de-
note the components of the Ricci curvature and the normalized scalar curvature
of Mn respectively. From (2.2) we have

Rik = (n − 1)δik −∑
j

(hikhjj − hijhjk), (2.3)

n(n − 1)R = n(n − 1)− n2H2 + S. (2.4)

Let hijk denote the covariant derivative of hij so that

∑
k

hijkωk = dhij +∑
k

hkjωki +∑
k

hikωkj.

Then by exterior differentiation of (2.1), we obtain the Codazzi equation

hijk = hikj. (2.5)

Next, we define the second covariant derivative of hij by

∑
l

hijklωl = dhijk +∑
m

hmjkωmi + ∑
m

himkωmj + ∑
m

hijmωmk.

By exterior differentiation of (2.5), we can get the following Ricci identity

hijkl − hijlk = ∑
m

hmjRmikl + ∑
m

himRmjkl. (2.6)

The laplacian of hij is defined by △hij = ∑k hijkk. From (2.5) and (2.6) we obtain

△hij = ∑
k

hkkij + ∑
k,m

hmkRmijk + ∑
m,k

himRmkjk. (2.7)

Since 1
2 ∆S = ∑i,j,k

(

hijk

)2
+ ∑i,j hij∆hij, then it follows from (2.7) that

1

2
△S = ∑

i,j,k

h2
ijk + ∑

i,j,k

hijhkkij + ∑
i,j,k,m

hijhmkRmijk + ∑
i,j,k,m

hijhimRmkjk. (2.8)

We choose e1, · · · , en such that hij = λiδij, then (2.8) becomes

1

2
△S = ∑

i,j,k

h2
ijk +∑

i

λi(nH)ii +
1

2 ∑
i,j

Rijij(λi − λj)
2. (2.9)

Let T = ∑i,j Tijωiωj be a symmetric tensor on Mn defined by

Tij = nHδij − hij.
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We introduce an operator � associated to T acting on f ∈ C2(Mn) by

� f = ∑
i,j

Tij fij = ∑
i,j

(nHδij − hij) fij. (2.10)

Setting f = nH in (2.10) and from (2.4) we obtain

�(nH) = ∑
i,j

(nHδij − hij)(nH)ij

= ∑
i

(nH)(nH)ii − ∑
i

λi(nH)ii (2.11)

=
1

2
∆(nH)2 −∑

i

(nHi)
2 − ∑

i

λi(nH)ii

=
1

2
∆S − n(n − 1)

2
∆R − n2|∇H|2 −∑

i

λi(nH)ii.

From (2.9) and (2.11), we have

�(nH) = ∑
i,j,k

h2
ijk − n2|∇H|2 − n(n − 1)

2
∆R +

1

2 ∑
i,j

Rijij(λi − λj)
2. (2.12)

We introduce an operator

L = �+
n − 1

2
a∆.

Then it follows from R = aH + b that

L(nH) = �(nH) +
n − 1

2
a∆(nH) = �(nH) +

1

2
n(n − 1)△R. (2.13)

Substituting (2.12) into (2.13), we have

L(nH) = ∑
i,j,k

h2
ijk − n2|∇H|2 + 1

2 ∑
i,j

Rijij(λi − λj)
2. (2.14)

Proposition 2.1. Let Mn be an n-dimensional spacelike linear Weingarten hyper-

surface immersed in the de Sitter space Sn+1
1 with R = aH + b. If a 6= 0, b < 1,

then L is elliptic.

Proof. If H = 0, we have R = b < 1. It follows from (2.4) that S = n(n − 1)
(R − 1) < 0. This is impossible. Therefore we have H > 0. It follows from (2.4)
and R = aH + b that

S = n2H2 + n(n − 1)(aH + b − 1). (2.15)

It follows that

a =
1

n(n − 1)H

(

S − n2H2 + n(n − 1)(1 − b)
)

. (2.16)
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For any i, from (2.16) we have

nH − λi +
n − 1

2
a

= nH − λi +
1

2nH

(

S − n2H2 + n(n − 1)(1 − b)
)

=

{

1

2
(∑

j

λj)
2 − λi ∑

j

λj +
1

2 ∑
j

λ2
j +

1

2
n(n − 1)(1 − b)

}

(nH)−1

=

{

∑
j

λ2
j +

1

2 ∑
l 6=j

λlλj − λi ∑
j

λj +
1

2
n(n − 1)(1 − b)

}

(nH)−1

=















∑
i 6=j

λ2
j +

1

2 ∑
l 6=j

l,j 6=i

λlλj +
1

2
n(n − 1)(1 − b)















(nH)−1

=
1

2

{

∑
i 6=j

λ2
j + (∑

j 6=i

λj)
2 + n(n − 1)(1 − b)

}

(nH)−1.

It follows from b < 1 that

nH − λi +
n − 1

2
a > 0. (2.17)

Thus L is an elliptic operator.

Lemma 2.2. Let Mn be an n-dimensional spacelike linear Weingarten hypersurface im-
mersed in the de Sitter space Sn+1

1 with R = aH + b. If (n − 1)a2 + 4n(1 − b) ≥ 0,
then we have

∑
i,j,k

h2
ijk ≥ n2|∇H|2. (2.18)

Moreover, suppose that the equality holds on Mn in (2.18). Then either H is constant on
Mn or r(L) = 1, where r(L) denotes the rank of L.

Proof. From (2.4) and R = aH + b, we have

S = n2H2 + n(n − 1)(aH + b − 1). (2.19)

Taking the covariant derivative of (2.19), we have

2 ∑
i,j

hijhijk = Sk =
(

2n2H + n(n − 1)a
)

Hk (2.20)

for every k. Hence, by Cauchy-Schwartz’s inequality, we have

∑
i,j

h2
ij ∑

i,j,k

h2
ijk ≥ (n2H +

1

2
n(n − 1)a)2|∇H|2, (2.21)
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that is

S ∑
i,j,k

h2
ijk ≥ (n2H +

1

2
n(n − 1)a)2|∇H|2. (2.22)

On the other hand, it follows from (2.19) that

(

n2H +
1

2
n(n − 1)a

)2

− n2S

= n2
(

n2H2 + n(n − 1)Ha − S
)

+
1

4
n2(n − 1)2a2 (2.23)

= n3(n − 1)(1 − b) +
1

4
n2(n − 1)2a2

=
1

4
n2(n − 1)

(

(n − 1)a2 + 4n(1 − b)
)

.

Since (n − 1)a2 + 4n(1 − b) ≥ 0, we have

(

n2H +
1

2
n(n − 1)a

)2

≥ n2S. (2.24)

It follows from (2.22) and (2.24) that

S ∑
i,j,k

h2
ijk ≥ (n2H +

1

2
n(n − 1)a)2|∇H|2 ≥ n2S|∇H|2. (2.25)

Hence either S = 0 and ∑i,j,k h2
ijk = n2|∇H|2 or ∑i,j,k h2

ijk ≥ n2|∇H|2.

We suppose ∑i,j,k h2
ijk = n2|∇H|2 on Mn. Then inequalities in (2.21), (2.22),

(2.24) and (2.25) become equalities.
If (n − 1)a2 + 4n(1 − b) > 0, then (n2H + 1

2n(n − 1)a)2
> n2S from (2.23).

Since the second equality in (2.25) holds, we have |∇H| = 0 and hence H is
constant on Mn.

If (n − 1)a2 + 4n(1 − b) = 0, then from (2.23) we have (n2H + 1
2n(n − 1)a)2 =

n2S. This together with (2.20) forces that

S2
k = 4n2SH2

k , k = 1, · · · , n. (2.26)

Since the equality holds in (2.21), there exists a real function ck on Mn such that

hijk = ckhij, i, j = 1, · · · , n, (2.27)

for every k. Taking the sum on both sides of equation (2.27) with respect to i = j,
we get

Hk = ckH, k = 1, · · · , n. (2.28)

From (2.27), we have

Sk = 2 ∑
ij

hijhijk = 2ckS, k = 1, · · · , n. (2.29)



776 Z. H. Hou – D. Yang

Multiplying both sides of equations in (2.29) by H and by using (2.28), we have

HSk = 2HkS, k = 1, · · · , n. (2.30)

It follows from (2.26) and (2.30) that

H2
k S = H2

k n2H2, k = 1, · · · , n. (2.31)

We assume that H is not constant. Then there exists a k0 such that Hk0
is not zero.

Hence from (2.31) we have

S = n2H2. (2.32)

On the other hand, multiplying both sides of equations in (2.27) by H and by
using (2.28), we have

Hhijk = Hkhij, i, j, k = 1, · · · , n. (2.33)

Taking the sum on both sides of (2.33) with respect to j = k and from (2.5), we
have

(nH)Hi = ∑
j

Hjhij, i = 1, · · · , n. (2.34)

We choose e1, · · · , en such that hij = λiδij, then (2.34) becomes

(nH − λi)Hi = 0, i = 1, · · · , n. (2.35)

Since Hk0
is not zero, we have

λk0
= nH. (2.36)

It follows from (2.32) and (2.36) that λk = 0 for all k 6= k0 on Mn. Hence r(L) = 1
on Mn.

Remark 2.3. When b < 1, then (n− 1)a2 + 4n(1− b) > 0. It follows from the proof
of Lemma 2.2 that ∑i,j,k h2

ijk ≥ n2|∇H|2. Moreover, if the equality holds, then H is
constant.

Lemma 2.4. [12] Let µi (1 ≤ i ≤ n) be real numbers such that ∑i µi = 0 and ∑i µ2
i =

β2, where β = constant ≥ 0. Then

− n − 2
√

n(n − 1)
β3 ≤ ∑

i

µ3
i ≤ n − 2

√

n(n − 1)
β3 (2.37)

and the equality holds if and only if at least (n − 1) of the µi are equal.
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3 Proof of Theorems

Proof of Theorem 1.1. Since Mn is compact, we take integration over Mn on both
sides of (2.12) and have

0 =
∫

M
(∑

i,j,k

h2
ijk − n2|∇H|2) + 1

2

∫

M
∑
i,j

Rijij

(

λi − λj

)2
. (3.1)

Since the sectional curvature of Mn is non-negative and from Lemma 2.2, we
conclude that

∑
i,j,k

h2
ijk = n2|∇H|2, (3.2)

and

Rijij(λi − λj)
2 = (1 − λiλj)(λi − λj)

2 = 0. (3.3)

It follows from (3.3) that λi = λj or Rijij = 1− λiλj = 0 when λi 6= λj. We con-
clude that Mn has at most two distinct principal curvature. In fact, without loss of
generality, we assume that Mn has three distinct principle curvature λi1 , λi2 , λi3 .
Then λi1 λi2 = λi2 λi3 = 1 and hence λi1 = λi3 . This is a contradiction. Hence we
have that Mn has at most two distinct principal curvature.

It follows from (3.2) and Lemma 2.2 that either H is constant or r(L) = 1. If
r(L) = 1, then there exists a k0 such that λk0

= nH and λk = 0 for k 6= k0, which
together with (3.3) shows that H = 0. This is a contradiction. Hence we have
that H is constant, which together with (3.2) shows that λi is constant for every
i. From the congruence theorem in [1] and the compactness of Mn, we conclude
that M is totally umbilical. This completes the proof of Theorem 1.1.

Proof of Theorem 1.3. It follows from (2.14) and Remark 2.3 that

L(nH) = ∑
i,j,k

h2
ijk − n2|∇H|2 + 1

2 ∑
i,j

Rijij(λi − λj)
2 ≥ 0, (3.4)

here we used the assumption that the sectional curvature of Mn is non-negative.
Since L is elliptic and H can obtain its maximum on M, we deduce that H is
constant. Thus

∑
i,j,k

h2
ijk = n2|∇H|2 = 0, (3.5)

and

∑
i,j

Rijij(λi − λj)
2 = ∑

i,j

(1 − λiλj)(λi − λj)
2 = 0. (3.6)

It follows from (3.5) that λi is constant for every i. From (3.6) we have λi = λj

or Rijij = 1 − λiλj = 0 when λi 6= λj. Similar to the proof of Theorem 1.1 , we
get Mn has at most two distinct constant principal curvature. If all the principle
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curvatures are equal, we have that Mn is totally umbilical. Otherwise, without
loss of generality, we may suppose that

λ1 = · · · = λk = λ, λk+1 = · · · = λn = µ,

for some k = 1, · · · , n − 1, and λµ = 1.
We can prove k = 1 or n − 1. In fact, if 1 < k < n − 1, we have λ2 ≤ 1, µ2 ≤ 1

from Rijij = 1 − λiλj ≥ 0. This together with λµ = 1 shows that λ = µ = 1 or
λ = µ = −1, which contradicts λ 6= µ. Hence we have k = 1 or n − 1.

We assume λ = tanh r, µ = coth r. Since the sectional curvature of Mn is
non-negative and by means of the congruence Theorem of Abe-Koike-Yamaguchi

[1], we have that Mn is isometric to a hyperbolic cylinder Sn−1(1 − tanh2 r) ×
H1(1 − coth2 r). This completes the proof of Theorem 1.3.

Proof of Theorem 1.5. Let µi = λi − H and |Φ|2 = ∑i µ2
i , we get

∑
i

µi = 0, |Φ|2 = S − nH2, ∑
i

λ3
i = ∑

i

µ3
i + 3H|Φ|2 + nH3. (3.7)

It follows from (2.2) and (3.7) that (2.14) becomes

L(nH) = ∑
i,j,k

h2
ijk − n2|∇H|2 + 1

2 ∑
i,j

(1 − λiλj)(λi − λj)
2

= ∑
i,j,k

h2
ijk − n2|∇H|2 + |Φ|2(n + S − 2nH2)− nH ∑

i

µ3
i . (3.8)

From (3.8), Remark 2.3 and Lemma 2.4, we have

L(nH) (3.9)

≥ |Φ|2
(

n + S − 2nH2 − (n − 2)H

√

n

n − 1
|Φ|

)

= |Φ|2
(

n − n

2
√

n − 1
S +

1

2
√

n − 1

(

(
√

n − 1 + 1)|Φ| − (
√

n − 1 − 1)
√

nH
)2

)

≥ |Φ|2
(

n − n

2
√

n − 1
S

)

,

which together with the assumption of the theorem S ≤ 2
√

n − 1 shows that

L(nH) ≥ |Φ|2
(

n − n

2
√

n − 1
S

)

≥ 0.

Since L is elliptic and H can obtain its maximum on M, we deduce that H is
constant. Hence

|Φ|2
(

n − n

2
√

n − 1
S

)

= 0.

If S < 2
√

n − 1, then |Φ|2 = 0 and Mn is totally umbilical.
If S = 2

√
n − 1, all the inequalities in (3.9) become equalities. We have

(
√

n − 1 + 1)|Φ| − (
√

n − 1 − 1)
√

nH = 0.
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Hence
n2H2 = n

√
n − 1 + 2(n − 2).

When n = 2, we have |Φ| = 0 and Mn is totally umbilical. When n ≥ 3, since the
equality holds in (2.37) of Lemma 2.4, after renumberation if necessary, we can
assume

λ1 = · · · = λn−1 = tanh r, λn = coth r.

Therefore, Mn is isometric to a hyperbolic cylinder H1(1 − coth2 r) ×
Sn−1(1 − tanh2 r) from the congruence theorem in [1]. This completes the proof
of Theorem 1.5.
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