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Abstract

In this paper we construct a formula ϕ(x, a) on the language of set theory
L : (∈,=) such that {x | ϕ(x, a)} is a proper class for each element a and such
that if a 6= a′, the classes {x | ϕ(x, a)} and {x | ϕ(x, a′)} are different. This
formula works for any structure with the exception of 2 structures with two
elements each. This formula “maps” elements to proper classes injectively.

Introduction

In any structure for the language L : (∈,=) of set theory, the Russell class R =
{x | x /∈ x} is always proper. In [1] Roland Hinnion studies the question if there
are other ones and how many. He studied the cases where the classes are de-
finable with and without parameters. One of his results states that there always
as many proper classes (definable with parameters) as elements in the structure.
In his paper, Roland Hinnion considers structures for the language of set theory
and work with these in the meta theory ZF. In an oral question he asks if we
could do this uniformly by finding a formula ϕ(x, a) for the language L such that
{x | ϕ(x, a)} is a proper class for each element a and such that if a 6= a′, the classes
{x | ϕ(x, a)} and {x | ϕ(x, a′)} are different.

In this paper, we construct such a formula that works for any structure with
the exception of exactly 2 structures, each having exactly 2 elements (for which
we show that no such formula exists).
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1 Some notations and definitions

In this paper, we will work in the language L : (∈,=) of set theory. By “structure”,
we always mean a non-empty structure. We will consider an arbitrary structure
for this language; so ∈ is just any binary relation on the universe. Before going
further, we will need some definitions and notations.

For elements a1, . . . , an and for a formula ϕ(x, a1, . . . , an), we will say that
{x | ϕ(x, a1, . . . , an)} is a set if there is an element e such that ∀x

(
x ∈ e ⇔

ϕ(x, a1, . . . , an)
)
. Notice that due to the lack of the axiom of extensionality, this

element e is not necessarily unique.
For elements a1, . . . , an, and for a formula ϕ(x, a1, . . . , an), we will say that

{x | ϕ(x, a1, . . . , an)} is a proper class if it is not a set. If there are no ai in the for-
mula ϕ, we will say that {x | ϕ(x)} is a proper class definable without parameters
otherwise we will say that it is a proper class definable with parameters.

We will use some usual abuse of language using classes. For example, con-
sider the parameters a1, . . . , an and a formula ϕ(x, a1, . . . , an) we may “consider”
A = {x | ϕ(x, a1, . . . , an)} and write x ∈ A as meaning ϕ(x, a1, . . . , an).
If B is another class, defined with the formula ψ and the parameters b1, . . . , bn:
B = {x | ψ(x, b1, . . . , bn)}, we write A = B as meaning ∀x

(
ϕ(x, a1, . . . , an) ⇔

ψ(x, a1, . . . , an)
)

and similarly for A 6= B. Notice that no axiom of extensionality
is used here, we just use syntactical replacements. We will avoid to write A = e
for a class A and an element e because, due to the lack of the axiom of exten-
sionality, we could have several elements e having the same elements as the class
A.

If e and f are elements, we say that e is a singleton of f if ∀x (x ∈ e ⇔ x = f ).
For an element e, we say that e is a singleton if there is an element f such that e
is a singleton of f . We say that e is an antisingleton of f if ∀x (x /∈ e ⇔ x = f )
and we say that e is an antisingleton if there is an element f such that e is the
antisingleton of f . The previous notions will also be used for classes.

2 The formula

As mentioned in the introduction, we propose to give a formula ϕ(x, a) such
that ∀a {x | ϕ(x, a)} is a proper class and such that if a 6= a′, {x | ϕ(x, a)} 6=
{x | ϕ(x, a′)} (the last “ 6=” should be understood as not equal as classes, i.e. not
having the same elements). We shall say that a formula satisfying the previous
requirement maps elements to proper classes injectively.

This formula will work for any structure with the exception of exactly 2 struc-
tures each of which having exactly 2 elements (for which no such formula exists).

For the presentation, we will define a “mapping” F sending each element e
of the structure to a proper class F(e) such that e 6= e′ ⇒ F(e) 6= F(e′) (we say
that F sends elements to proper classes injectively). As we will use only first or-
der formulas to define this mapping, this could easily be translated as a formula
ϕ(x, a) mapping elements to proper classes injectively as above. Three cases will
be needed and we will define the mapping F separately for the three cases. As the
three cases are distinguishable by first order formulas, all of these could be com-
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bined in a single first order formula ϕ(x, a) mapping elements to proper classes
injectively.

In what follows V denotes the universal class: V = {x | x = x}. R denotes the
Russell class: R = {x | x /∈ x}. Obviously R is always a proper class.

Case I. The class R is not empty and does not consist of exactly two singletons.

We consider the following definition for an element e ∈ V:

Re =





{e} if it is a proper class (a)

{x | x /∈ x} ∪ e if ∀t (t ∈ e ⇔ t = e) (b)

{x | x /∈ x} \ {x | ∀t (t ∈ x ⇔ t = e)} otherwise (c)

Lemma 1. If for an element e, we are in the case (b) of the previous definition, then Re

is not a singleton. There is at most one element such that we are in the case (c) of the
definition of Re and such that Re is a singleton.

Proof. The fact that the case (b) never gives a singleton is due to the fact that we
have supposed R not empty (case I). As the case (b) is simply R with an additional
element, it could not give a singleton.

Suppose that e and e′ are two distinct elements such that for e and e′, we are
in the case (c) for the definition of Re and Re′ and that Re and Re′ are both single-
tons. For an element e, the class defined in the case (c) is the class R = {x | x /∈ x}
minus all elements that are singletons of e. So if Re is a singleton, we deduce that
there is only one element that is not a singleton of e that belongs to R; similarly
for Re′ . As no element can be a singleton of e and e′ at the same time, we conclude
that R has at most two elements. Moreover there is an element that is a single-
ton of e (otherwise, we would be in the case (a) of the definition of Re) and this
element belongs to R (otherwise we would be in the case (b) of the definition of
Re), similarly for e′. So we conclude that R consists of exactly two singletons; this
contradicts the hypothesis of case I.

We are now ready to define the mapping F sending elements to proper classes
injectively.

Definition. We define the mapping F as follows for an element e:

F(e) =





{x | x /∈ x} if in the definition of Re, we are in the
case (c) and if Re is a singleton.

(1)

Re otherwise (2)

Lemma 2. The mapping F defined previously sends elements to proper classes injectively.

Proof. We first show that the mapping F is injective. In order to show this, we
will show that e can be univoquely found from F(e).

Let us first notice that if there is an element f for which we are in the case (1) of
the definition of F( f ), then we conclude that the Russell class R is not a singleton
(because in this case R f is a singleton and R f ( R). So in this case we are sure
that for all elements e, Re 6= R (since clearly the case (b) and (c) of the definition
of Re does not give R).
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Let us describe e from F(e). If F(e) is the Russell class R and if there is an
element e such that we are in the case (1) of the definition of F(e), then it is the
element we are looking for (the element e is necessarily unique by lemma 1).
Otherwise we have F(e) = Re and we are sure that the case (b) and (c) of the
definition of Re does not give a singleton. So if F(e) is a singleton, we are in the
case (a) of the definition of Re and e is the unique element for which F(e) is the
singleton of e. Otherwise we are in the case (b) or (c) of the definition of Re. We
easily check that all elements belonging to the symmetrical difference R △ Re are
singletons of a single element e and this is the element we are looking for.

Let us now check that for all elements e, F(e) is a proper class. It is obvious
if we are in the case (1) of the definition of F(e) as well as if we are in the case
(a) of the definition of Re. If we are in the case (2) of the definition of F(e) and in
one of the cases (b) or (c) of the definition of Re; then Re is not a singleton. The
only elements that are in the symmetric difference R △ Re are singletons; so we
could reproduce the Russell paradox with Re: if Re would be a set, denoting r a
set having the same elements as Re, we would have r ∈ r ⇔ r /∈ r.

Case II. Case I does not hold and the complement R∁ = {x | x ∈ x} of the
Russell class is not empty and does not consists of exactly two antisingletons.

We will use the following lemma.

Lemma 3. Consider a formula ϕ(x, a) for the language (/∈,=) that maps elements to
proper classes injectively for the structure (V, /∈), then ¬ϕ(x, a) maps elements to classes
injectively for the structure (V,∈).

Proof. Easy

It is straightforward to check that the hypotheses of case II just say that the
structure (V, /∈) satisfies the hypotheses of case I. So let ψ(x, a) be the formula
for the language (/∈,=) that maps elements to proper classes injectively for the

structure (V, /∈) given by the case I. The formula ϕ(x, a)
def
≡ ¬ψ(x, a) is thus the

formula we are looking for.

Case III. Cases I and II do not hold and there are not exactly 2 elements.

In this case, we can see that the universe consists of 4 elements in which there
are exactly 2 singletons and 2 antisingletons. Any class having exactly two ele-
ments is proper. For an element e, let us denote Se = {x | x is a singleton of e}

and Ŝe = {x | x is an antisingleton of e}. For an element e, consider the classes:

A1 = {e}, A2 = {x | x 6= e}, A3 = Se, A4 = Ŝe, A5 = Se ∪ Ŝe. We easily see that
if A1 and A2 are not proper classes then one of the classes A3, A4, A5 consists of 2
elements and is thus proper. For F(e), we take A1 if it is proper; we take A2 if A2

is proper and A1 is not; otherwise we take the first of the classes A3, A4, A5 that
consists of two elements. F can straightforwardly be shown injective.

We easily show that the cases I, II and III cover every structure with the only
exception of the following 2 structures, each of which having 2 elements: (V1,∈1)
with V1 = {a, b} and ∈1 = {(a, a), (b, b)} and (V2,∈2) with V2 = {a, b} and
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∈2 = {(a, b), (b, a)}; so we can summarize the previous results in the following
theorem:

Main theorem. There exists a formula ϕ(x, a) on the language of set theory L : (∈,=)
that maps elements to proper classes injectively in any L-structure with the exception of
the two structures (V1,∈1) and (V2,∈2) described above.

We can show that no formula ϕ(x, a) mapping elements to proper classes in-
jectively exists for the two structures (V1,∈1) and (V2,∈2). In both of these struc-
tures there is an automorphism exchanging a and b so that a and b satisfy the
same formulas. The only proper classes of these structures are ∅ and {a, b}. So if
we could define a mapping F sending elements to proper classes injectively, one
of the elements would be sent to the empty class; the other one to the class {a, b}.
But we could then use this mapping to find a formula distinguishing a and b;
a contradiction.
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