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Abstract

We investigate the initial value problem for a semi-linear Schrödinger
equation with exponential-growth nonlinearity. We establish global well-
posedness and scattering in the energy space.

1 Introduction

In this work, we study the initial value Schrödinger equation with exponential
growth nonlinearity

i∂tu + ∆xu = σ f (u) on Rt × R
2
x (1.1)

with data

u0 := u(0, .) ∈ H1(R2). (1.2)

Where σ ∈ {−1, 1}, u := u(t, x) is a complex-valued function of (t, x) ∈ R × R
2,

and

f (u) := λu(1 + 4π|u|2) α
2−1

(

e(1+4π|u|2)
α
2 − e

)

, λ > 0, α > 0. (1.3)
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A solution u of (1.1), satisfies formally conservation of the mass

M(u, t) := ‖u(t)‖2
L2(R2), (1.4)

and the Hamiltonian

H(u, t) := ‖∇u(t)‖2
L2(R2) + σ

λ

2πα
‖e(1+4π|u(t)|2)

α
2 − e(1 + 4π|u(t)|2) α

2 ‖L1(R2).

(1.5)
We call energy of u,

E(u, t) := M(u, t) + H(u, t). (1.6)

Before going further, we recall a few historic facts about well-posedness of the
monomial defocusing semilinear Schrödinger equation

i∂tu + ∆xu = |u|p−1u, p > 1, u : (−T∗, T∗)× R
d → C (1.7)

denoted NLSp(Rd) which was widely investigated. A solution u to (1.7) satisfies
conservation of mass and Hamiltonian

Hp(u(t)) := ‖∇u(t)‖2
L2(R2) +

2

p + 1

∫

Rd
|u|p+1(t, x)dx.

Moreover, for λ > 0,
uλ : (−T∗λ2, T∗λ2)× R

d → C

(t, x) 7−→ λ
2

1−p u(λ−2t, λ−1x)

solves (1.7). Note also that for sc := d
2 − 2

p−1 , the norm of Ḣsc(Rd) is relevant in

the well-posedness theory of (1.7) since it’s invariant under the mapping f 7−→
λ

2
1−p f (λ−1.), λ > 0.

We limit our discussion to 0 ≤ sc ≤ 1 1

1. NLSp(R
d) local well-posedness in Hs(Rd). It is now known ([11],[19],[12])

that

(a) If s > sc, (1.7) is locally well-posed in Hs, with an existence interval
depending only upon ‖u0‖Hs .

(b) For s = sc, (1.7) is locally well-posed in Hs, with an existence interval
depending upon eit∆u0.

(c) If s < sc, (1.7) is ill-posed in Hs (see [7, 13, 8, 2, 35]).

So, It’s naturel to refer to Hsc as the critical regularity for (1.7).

2. NLSp(Rd) global well-posedness .

(a) The energy subcritical case, sc < 1. Using local well-posedness and the
conservation laws of Hamiltonian and mass, we obtain global well-
posedness of (1.7) in H1. It is expected that the local Hsc solutions of
(1.7) extend to global solutions. For certain choice of p, d, there are

1If sc > 1, (1.7) is locally well-posed in Hs, for s > sc.
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results (see for instance [3, 4, 16, 17, 38]) which show that Hs ini-
tial data u0 evolve into global solutions of (1.7) for s ∈ (s̃p,d, 1) with
s < s̃p,d < 1 and s̃p,d close to 1 and away from sc. For all problems with
0 ≤ sc < 1, global well-posedness in the scale invariant space Hsc is
unknown but conjured to hold. Moreover the solutions scatter when
p > p∗ := 1 + 4

d [19, 28].

(b) The energy critical case, sc = 1. Since the local existence interval does
not depend only on ‖u0‖H1 , an iteration of the local well-posedness
theory fails to prove global well-posedness. But using new ideas of
Bourgain in [4] (see also [5]) (which treated the radial case in dimen-
sion 3) and a new interaction Morawetz inequality [17] the energy crit-
ical case of (1.7) is now completely resolved [34, 39, 32]. Finite energy
initial data u0 evolve into global solution u with finite spacetime size
‖u‖

L

2(2+d)
d−2

t,x

< ∞ and scatter.

(c) The energy supercritical case, sc > 1. Global well-posedness for the de-
focusing energy supercritical NLSp(Rd) is an outstanding open prob-
lem (see [8, 2, 35] for some partial results).

3. The two space dimensions case. The initial value problem NLSp(R2) is
energy subcritical for all p > 1. So it’s natural to consider problems with
exponential nonlinearities, which have several applications, as for exam-
ple the self trapped beams in plasma (see [25]). Cazenave considered in
[9] the Schrödinger equation with decreasing exponential nonlinearity and
showed global well-posedness and scattering. With increasing exponentials
the situation is more complicated because there’s no a priori L∞ control of
the nonlinear term. Moreover the two dimensional case is interesting be-
cause of its relation to the critical Moser-Trudinger inequalities (see [1, 33]).
The two dimensional Schrödinger problems with exponential growth non-
linearities was studied, for small cauchy data, by Nakamoura and Ozawa
in [30]. They proved global well-posedness and scattering.
Later on, Colliander-Ibrahim-Majdoub-Masmoudi considered the Schrödin-
ger equation (see [15]),

i∂tu + ∆xu = σu(e4π|u|2 − 1) on Rt × R
2
x, σ ∈ {−1, 1}. (1.8)

They obtained local well-posedness (resp global well-posedness in the de-
focusing case) for H(u0) ≤ 1 and an instability result for H(u0) > 1 (similar
results was proved in the case of wave equation [23, 24]). Subtracting the cu-
bic term of (1.8) nonlinearity, Ibrahim-Majdoub-Masmoudi-Nakanishi pro-
ved recently in [21] scattering of

i∂tu + ∆xu = u(e4π|u|2 − 1 − 4π|u|2) on Rt × R
2
x (1.9)

in the case H(u0) < 1. They used a new interaction Morawetz estimate
proved independently by Colliander et al. and Planchon-Vega [14, 31]. The
case H(u0) = 1 is an open problem. (Similar results was proved in the
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case of wave equation [21, 29]). In the light of [15, 21], we consider the
Schrödinger equation (1.1) with exponential nonlinearity for α < 2. Note
that if we fix λ = e−1 and α = 2, we find exactly (1.8). The case α > 2 is an
open problem. We show local well-posedness (resp global well-posedness
in the defocusing case) in the space C([0, T], H1(R2))∩ L4([0, T], W1,4(R2)),
T > 0 (resp in C(R, H1(R2)) ∩ L4

loc(W
1,4(R2))). We prove uniqueness of

solution in the energy space C([0, T], H1(R2)). Similar well-posedness re-
sults were proved for the nonlinear Klein-Gordon equation with exponen-
tial nonlinearity in [26]. Then we subtract the cubic term of (1.1) nonlinear-
ity and prove scattering in the energy space.

Remark 1.1. Comparing this work with [15, 21] we note that

1. For α = 2, well-posedness in the energy space was proved in [15] under the condi-
tion H(u0) ≤ 1 and using a logarithmic inequality (see [22]). But for 0 ≤ α < 2,
we establish well-posedness in the energy space without any restrictive condition,
moreover we don’t use any logarithmic inequality.

2. For α = 2, scattering in the energy space was proved in [21] under the condition
H(u0) < 1, but for 0 ≤ α < 2, we establish scattering in the energy space without
any restrictive condition.

3. In order to prove scattering we have subtracted the cubic part from our nonlinearity
f to avoid the critical exponent p∗.

In the following subsection we give our main results.

1.1 Main results

Our first result is the following local well-posedness Theorem obtained by a clas-
sical fixed point argument.

Theorem 1.2. There exists T > 0 and a unique solution u to (1.1)-(1.2) in the class

C([0, T], H1(R2)).

Moreover u ∈ L4([0, T], W1,4(R2)), and satisfies for all 0 ≤ t < T, M(u, t) =
M(u, 0), H(u, t) = H(u, 0). We recall the Hamiltonian

H(u, t) := ‖∇u(t)‖2
L2(R2) + σ

λ

2πα
‖e(1+4π|u(t)|2)

α
2 − e(1 + 4π|u(t)|2) α

2 ‖L1(R2).

Where 0 < α < 2, λ > 0, and σ ∈ {−1, 1}.

In the defocusing case, using the local theory we derive global well-posedness
in the energy space. The crucial point here is that the local existence time depends
only on the size of the data and not on its profile.
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Theorem 1.3. In the defocusing case (σ = 1), the cauchy problem (1.1)-(1.2) has a
unique global solution u in the class

C(R, H1(R2)).

Moreover, u ∈ L4
loc(R, W1,4(R2)), and for all 0 ≤ t < T, M(u, t) = M(u, 0),

H(u, t) = H(u, 0).

In order to avoid a scattering critical exponent p∗ := 1 + 4
d (see [28]), we

subtract the cubic part from the nonlinearity f and we prove scattering in the
energy space. In fact we show that every global solution of (1.1) is asymptotic, as
t → ±∞ , to a solution of the linear Schrödinger equation

i∂tv + ∆v = 0. (1.10)

In other words, the effect of the nonlinearity is negligible for large times. Precisely
we have the following scattering result

Theorem 1.4. Assume that

f (u) := λu(1 + 4π|u|2) α
2−1

(

e(1+4π|u|2)
α
2 − e(1 + 4π|u|2) α

2

)

, α ∈ [0, 2[, λ ≥ 0.

(1.11)
For any global solution u ∈ C(R, H1) of (1.1), there exist unique free solutions u± of
(1.10) such that

‖(u − u±)(t)‖H1(R2)−→0 as t → ±∞.

Moreover, the map

H1(R2) −→ H1(R2) u(0) 7−→ u±(0) (1.12)

is an homeomorphism.

Remark 1.5. We note that

1. A similar result was proved for, α = 2, λ = e−1, under the condition H(u0) < 1
and where the homeomorphism (1.12) is not global but from {φ ∈ H1(R2); H(φ) <
1} onto {φ ∈ H1(R2); ‖∇φ‖L2(R2) < 1}. See [21] for more details.

2. A complete scattering theory is available in the case p∗ = 1 + 4
d , in the conformal

space of functions f ∈ H1(Rd) such that
∫

|x|2| f (x)|2dx < ∞ (see [18, 37, 20]).

In what follows, we collect some estimates needed in the sequel.

1.2 Tools

In order to control the solution of (1.1), we will use the following Strichartz esti-
mate (see [10]).
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Proposition 1.6. (Strichartz estimate) Let I ⊂ R be a time slab, t0 ∈ I and

G ∈ Lα
′
(I, W1,β

′
(R2)). There exists a positive real number C such that if u := u(t, x) a

solution in C(I, H1(R2)) of the linear problem

i∂tu + ∆xu = G, u(t0, .) ∈ H1(R2),

then
‖u‖Lq(I,W1,r(R2)) ≤ C

(

‖u(t0, .)‖H1(R2) + ‖G‖
Lα

′
(I,W1,β

′
(R2))

)

. (1.13)

Where 1 ≤ r, β < ∞ and

1

q
+

1

r
=

1

α
+

1

β
=

1

2
,

1

α
+

1

α′ =
1

β
+

1

β′ = 1.

In particular we have the following energy estimate.

Proposition 1.7. (Energy estimate) With the same hypothesis we have

sup
t∈I

‖u(t, .)‖H1(R2) ≤ C
(

‖u(t0, .)‖H1(R2) + ‖G‖L1(I,H1(R2))

)

. (1.14)

In order to control the nonlinear part of the energy in the L1
t (H1

x), we will use
the following Moser-Trudinder inequality [1, 27, 36].

Proposition 1.8. (Moser-Trudinger inequality) Let α ∈ (0, 4π), a constant Cα exists
such that for all u ∈ H1(R2) satisfying ‖∇u‖L2(R2) ≤ 1, we have

∫

R2

(

eα|u(x)|2 − 1
)

dx ≤ Cα‖u‖2
L2(R2). (1.15)

Moreover, (1.15) is false if α ≥ 4π.

Remark 1.9. α = 4π becomes admissible if we take ‖u‖H1(R2) ≤ 1 rather than

‖∇u‖L2(R2) ≤ 1. In this case

K := sup
‖u‖

H1(R2)
≤1

∫

R2

(

e4π|u(x)|2 − 1
)

dx < ∞ (1.16)

and this is false for α > 4π. See [33] for more details.

These estimates will be coupled with the following absorption result

Lemma 1.10. (Bootstrap Lemma) Let T > 0 and X ∈ C([0, T], R+) such that

X ≤ a + bXθ , on [0, T]

where, a, b > 0, θ > 1, a < (1 − 1
θ )

1

(θb)
1
θ

and X(0) ≤ 1

(θb)
1

θ−1

. Then

X ≤ θ

θ − 1
a, on [0, T].
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Finally we recall the following Sobolev embedding

Proposition 1.11. (Sobolev embedding) We have

Ws,p(Rd) ⊂ Lq(Rd)

whenever

1 < p < q < ∞, s > 0 and
1

p
≤ 1

q
+

s

d
.

The rest of the paper is organized as follows. First, we show local well-
posedness of (1.1) using a standard fixed point argument. Second, we show
global well-posedness in the defocusing case. In the last section we prove the
scattering Theorem 1.4.
We mention that C is an absolute positive constant which may vary from line to
line.If A and B are nonnegative real numbers, A . B (respA ≃ B) means that
A ≤ CB (resp B . A . B).

2 Local well-posedness

This section is devoted to the proof of Theorem 1.2. First, we prove the local
existence by a fixed point argument.

2.1 Local Existence

We start with the following technical lemma which is crucial in the proof of The-
orem 1.2.

Lemma 2.1. For any positive real number ε there exists a positive constant Cε such that

| f (z1)− f (z2)| ≤ Cε|z1 − z2| ∑
i=1,2

(

eε|zi|2 − 1
)

. (2.17)

Proof of Lemma 2.1. Let us identify f with the C∞ function defined on R2 and de-
note by D f the R2 derivative of the identified function. Then using the mean
value theorem and the convexity of the exponential function, we derive the fol-
lowing property

| f (z1)− f (z2)| ≤ |z1 − z2| sup
[z1,z2]

|D f (z)|

. |z1 − z2| ∑
i=1,2

(

(1 + |zi|2)(e(1+4π|zi|2)
α
2 − e) + |zi|2 e(1+4π|zi|2)

α
2
)

,

and the conclusion follows.

Remark 2.2. Of course we have (using an easy computation)

Cε → +∞ as ε → 0,
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but this fact not matter in the rest of the proof. The reason is that in the proof we shall
choose a small (but fixed) ε in order to use Trudinger-Moser type inequality. Actually,
the choice of

ε =
π

3
(

1 + ‖u0‖H1(R2)

)2
,

is enough to carry out the proof.

Remark 2.3. In what follows, the symbol Cε stands for a constant depending on ε but
may vary from line to line.

Let T be a positive real time and w the solution of the following free Schrödin-
ger problem

i∂tw + ∆w = 0, w(0, .) = u0. (2.18)

We recall that the space ET := C([0, T], H1(R2))∩ L4([0, T], W1,4(R2)) is complete
under the norm

‖h‖T := sup
t∈[0,T]

‖h(t, .)‖H1(R2) + ‖h‖L4
T(W

1,4(R2)).

Let ET(1) be the ball in ET with center zero and radius 1. We consider the map φ
on ET(1) given by φ(v) = ṽ, where ṽ solves

i∂tṽ + ∆ṽ = σ f (v + w), ṽ(0, .) = 0. (2.19)

We prove that the map φ leaves ET(1) stable and is a contraction for T sufficiently
small. Applying the energy and Strichartz estimate (1.13)-(1.14) to v1, v2 ∈ ET(1),
we get

‖ṽ1 − ṽ2‖T . ‖ f (v1 + w)− f (v2 + w)‖L1([0,T],H1(R2)) :=

‖ f (u1)− f (u2)‖L1([0,T],H1(R2)).

Using Sobolev embedding and (2.17), we deduce for any ε > 0,

‖ f (u1)− f (u2)‖2
L2(R2) . Cε

∥

∥

∥
|u1 − u2|2 ∑

i=1,2

(

eε|ui|2 − 1
)
∥

∥

∥

L1(R2)

. Cε ∑
i=1,2

∥

∥

∥
|u1 − u2|2

(

eε|ui|2 − 1
)
∥

∥

∥

L1(R2)

. Cε‖u1 − u2‖2
L4(R2) ∑

i=1,2

‖e2ε|ui|2 − 1‖
1
2

L1(R2)
. (2.20)

On other hand, using the energy conservation, we get

‖vi + w‖2
H1(R2) ≤

(

1 + ‖u0‖H1(R2)

)2
.

Now, let ε be a real number satisfying

0 < ε ≤ π

3
(

1 + ‖u0‖H1(R2)

)2
. (2.21)
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Using Moser-Trudinger inequality (1.16) we have

‖e2ε|ui|2 − 1‖L1(R2) =
∫

R2

(

e4π(
√

ε
2π |ui|)2 − 1

)

dx

≤ K.

Thus by (2.20)

‖ f (u1)− f (u2)‖L1
T L2(R2) . T

3
4‖u1 − u2‖T. (2.22)

It remains to estimate ‖∇( f (u1)− f (u2))‖L1
T L2(R2). Write

‖∇( f (u1)− f (u2))‖L2(R2)

≤ ‖∇u1(D f (u1)− D f (u2))‖L2(R2) + ‖D f (u2)(∇u1 −∇u2)‖L2(R2)

= (I1) + (I2).

With a convexity argument, we get, for z1, z2 ∈ C,

|D f (z1)− D f (z2)| . |z1 − z2| ∑
i=1,2

|zi|(1 + |zi|2)e(1+|zi|2)
α
2 . (2.23)

Now, taking for 0 ≤ α < 2 and ε > 0,

Cα,ε := sup
R

|x|(1 + x2)e(1+x2)
α
2

|x|+ eεx2 − 1
(2.24)

and using Moser-Trudinger inequality (1.16), we have

I1 . ∑
i=1,2

‖∇u1(u1 − u2)(|ui |+ eε|ui|2 − 1)‖L2(R2)

. ∑
i=1,2

‖∇u1(u1 − u2)ui‖L2(R2) + ‖∇u1(u1 − u2)(e
ε|ui|2 − 1)‖L2(R2)

. ∑
i=1,2

‖∇u1‖L4(R2)‖u1 − u2‖L8(R2)‖ui‖L8 +

‖∇u1‖L4(R2)‖u1 − u2‖L8‖eε|ui|2 − 1‖L8(R2)

. ‖u1 − u2‖T‖∇u1‖L4(R2) ∑
i=1,2

(

‖ui‖L8(R2) + ‖eε|ui|2 − 1‖L8(R2)

)

. ‖u1 − u2‖T‖∇u1‖L4(R2)(1 + ‖u0‖H1).

Moreover

I2 ≤ Cε‖∇(u1 − u2)(e
ε|u2|2 − 1)‖L2(R2)

≤ Cε‖∇(u1 − u2)‖L4(R2)‖eε|u2|2 − 1‖L4(R2)

. ‖∇(u1 − u2)‖L4(R2).
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Integrating with respect to time, we obtain

‖∇( f (u1)− f (u2))‖L1
T L2(R2) . ‖u1 − u2‖T‖∇u1‖L1

T L4(R2)(1 + ‖u0‖H1(R2))

+‖∇(u1 − u2)‖L1
T L4(R2)

. T
3
4

(

‖u1 − u2‖T‖∇u1‖L4
T L4(R2)(1 + ‖u0‖H1(R2))

+‖∇(u1 − u2)‖L4
T L4(R2)

)

. T
3
4‖u1 − u2‖T

(

‖∇u1‖L4
T L4(R2)(1 + ‖u0‖H1(R2)) + 1

)

. T
3
4‖u1 − u2‖T(‖u0‖2

H1(R2) + 1).

Thus
‖ṽ1 − ṽ2‖T . T

3
4

(

‖u0‖2
H1(R2) + 1

)

‖v1 − v2‖T. (2.25)

For v2 = −w, ṽ2 = 0, so

‖ṽ1‖T . T
3
4

(

‖u0‖2
H1(R2) + 1

)

‖v1 + w‖T

. T
3
4

(

‖u0‖2
H1(R2) + 1

)(

1 + 2‖u0‖H1(R2)

)

. (2.26)

We conclude by (2.25)-(2.26) that for small T, φ is a contraction which maps
ET(1) into itself, which prove existence of local solution to (1.1)-(1.2).

2.2 Uniqueness in the energy space

In what follows, we prove the uniqueness of solution to the Cauchy problem
(1.1)-(1.2) in the energy space.2 Let T be a positive time, u1 and u2 two solutions
to (1.1)-(1.2) in CT(H1(R2)). Then, setting w := u1 − u2

i∂tw + ∆w = f (u1)− f (u2) w(0, .) = 0. (2.27)

By energy estimate (1.14),

‖w‖L∞
T H1(R2) . ‖ f (u1)− f (u2)‖L1([0,T],H1(R2)).

Using the precedent computation and the fact that there exists T > 0 such that
‖ui‖L∞

T H1(R2) ≤ 1 + ‖u0‖H1(R2), i ∈ {1, 2}, we have

‖ f (u1)− f (u2)‖L1
T L2(R2) . T‖w‖L∞

T H1(R2),

and ‖∇( f (u1)− f (u2))‖L1
T L2(R2)

. ‖w‖L∞
T H1(R2)‖∇u1‖L1

T L4(R2)(1 + ‖u0‖H1(R2)) + ‖∇w‖L1
T L4(R2)

. T
4
3 (‖w‖L∞

T H1(R2)‖∇u1‖L4
T L4(R2)(1 + ‖u0‖H1(R2)) + ‖∇w‖L4

T L4(R2)).(2.28)

The following Lemma concludes the uniqueness proof.

2Note that the uniqueness is in the energy space.
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Lemma 2.4. We have

1. ‖∇w‖L4
T L4(R2) . ‖w‖L∞

T H1(R2)(1 + ‖u0‖H1(R2))
2T

5
6

2. ‖∇u1‖L4
T L4(R2) . 1 + (1 + ‖u0‖H1(R2))T

5
6 .

Proof. By Strichartz estimate (1.13)

‖∇w‖L4
T L4(R2) . ‖∇( f (u1)− f (u2))‖

L
6
5 ([0,T],L

3
2 (R2))

.

Moreover ‖∇( f (u1)− f (u2))‖
L

3
2 (R2)

≤ ‖∇u1(D f (u1)− D f (u2))‖
L

3
2 (R2)

+ ‖∇wD f (u2)‖
L

3
2 (R2)

= J1 + J2.

Using (2.23)− (2.24) and Moser-Trudinger inequality (1.16) for ε satisfying (2.21),
we get

J1 . ∑
i=1,2

‖∇u1(u1 − u2)(|ui |+ eε|ui|2 − 1)‖
L

3
2 (R2)

. ∑
i=1,2

(

‖∇u1wui‖
L

3
2 (R2)

+ ‖∇u1w(eε|ui|2 − 1)‖
L

3
2 (R2)

)

. ∑
i=1,2

(

‖∇u1‖L2(R2)‖w‖L12(R2)‖ui‖L12(R2)

+‖∇u1‖L2(R2)‖w‖L12(R2)‖eε|ui|2 − 1‖L12(R2)

)

. ‖w‖L∞
T H1(R2)(1 + ‖u0‖H1(R2))

2,

and for ε > 0,

J2 . ‖∇w(eε|u2|2 − 1)‖
L

3
2 (R2)

. ‖∇w‖L2(R2)‖eε|u2|2 − 1‖L6(R2)

. ‖∇w‖L2(R2)

. ‖w‖L∞
T H1(R2).

So

‖∇( f (u1)− f (u2))‖
L

3
2 (R2)

. ‖w‖L∞
T H1(R2)(1 + ‖u0‖H1(R2))

2.

Thus for the Strichartz couple (α
′
, β

′
) = (6

5 , 3
2)

‖∇w‖L4
T L4(R2) . ‖∇( f (u1)− f (u2))‖

Lα
′
([0,T],Lβ

′
)(R2)

. T
5
6‖w‖L∞

T H1(R2)(1 + ‖u0‖H1(R2))
2.
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Similarly we have

‖∇u1‖L4
T L4(R2) . ‖u1(0)‖H1(R2) + ‖∇ f (u1)‖

L
6
5 ([0,T],L

3
2 (R2))

. 1 + ‖∇u1(e
ε|u1|2 − 1)‖

L
6
5 ([0,T],L

3
2 (R2))

. 1 + ‖u1‖L∞
T H1(R2)T

5
6

. 1 + (1 + ‖u0‖H1(R2))T
5
6 .

Thus, by Lemma 2.4 and (2.28), for small time T
‖w‖L∞

T H1(R2)

. ‖ f (u1)− f (u2)‖L1([0,T],H1(R2))

. T‖w‖L∞
T H1(R2) + T

4
3

(

‖w‖L∞
T H1(R2)‖∇u1‖L4

T L4(R2)(1 + ‖u0‖H1(R2))

+‖∇w‖L4
T L4(R2)

)

. ‖w‖L∞
T H1(R2)

(

T + T
4
3 (1 + ‖u0‖H1(R2))

)

.

So for small time T

‖w‖L∞
T H1(R2) = 0.

Which prove the uniqueness for small time and so for all time.

3 Global well-posedness in the defocusing case

This section is devoted to prove Theorem1.3 in the case σ = 1. We recall an
important fact that is the time of local existence depends only on the quantity
‖u0‖H1(R2). Let u be the unique maximal solution of (1.1) in the space ET∗ with
initial data u0, where 0 < T∗ ≤ +∞ is the lifespan of u. We shall prove that u is
global. By contradiction, suppose that T∗

< +∞, we consider for 0 < s < T∗, the
following problem

(Ps)

{

i∂tv + ∆v = f (v)
v(s, .) = u(s, .).

Using the same arguments used in the local existence, and taking

ε ≤ π

1 + 2E(u(0))
,

we can find a real τ > 0 and a solution v to (Ps) on [s, s + τ]. According to
the section of local existence, and using the conservation of energy, τ does not
depend on s. Thus, if we let s be close to T∗ such that s + τ > T∗, we can extend
v for times higher than T∗. This fact contradicts the maximality of T∗. We obtain
the result claimed in Theorem 1.3.
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4 Scattering

In this section we prove, as claimed in Theorem1.4, the scattering of the following
nonlinear Schrödinger problem

(P)

{

i∂tu + ∆u = f (u)
u(0, .) = u0 ∈ H1(R2).

Where

f (u) := λu(1 + 4π|u|2) α
2−1

(

e(1+4π|u|2)
α
2 − e(1 + 4π|u|2) α

2

)

, α ∈ [0, 2[, λ ≥ 0.

(4.29)
For any global solution u ∈ C(R, H1) of (1.1) and any time slab I ⊂ R, we denote

‖u‖S1(I) = ‖u‖L∞(I,H1(R2)) + ‖u‖L4(I,W1,4(R2)).

In order to prove of Theorem 1.4 we will use the following Lemma

Lemma 4.1. For any global solution u ∈ C(R, H1) of (1.1), any time slab I

‖u‖S1(I) . ‖u(T)‖H1(R2) + ‖u‖L4(I,L8(R2))‖u‖2
S1(I) , T ∈ I.

Proof. By Strichartz-estimate (1.13) we have

∀η ∈]0,
1

2
], ‖u‖S1(I) . ‖u(T)‖H1(R2) + ‖ f (u)‖

L
2

1+2η (I,W
1, 1

1−η (R2))
. (4.30)

Take η = 1
4 , by Moser-Trudinger (1.16),

‖ f (u)‖
L

1
1−η (R2)

= λ‖u(1 + 4π|u|2) α
2−1

(

e(1+4π|u|2)
α
2 − e(1 + 4π|u|2) α

2

)

‖
L

4
3 (R2)

. ‖|u|3(eε|u|2 − 1)‖
L

4
3 (R2)

, for ε > 0

. ‖u‖3

L
24
5 (R2)

.

With the interpolation inequality ‖ · ‖3

L
24
5
≤ ‖ · ‖2

L4‖ · ‖L8 , we have

‖ f (u)‖
L

4
3 (I,L

4
3 (R2))

. ‖‖u(t)‖2
L4(R2)‖u(t)‖L8(R2)‖

L
4
3 (I)

. ‖u‖2
L4(I,L4(R2))‖u‖L4(I,L8(R2)) (4.31)

. ‖u‖2
S1(I)‖u‖L4(I,L8(R2)). (4.32)

It remains to control ‖∇ f (u)‖
L

4
3 (I,L

4
3 (R2))

. We recall that

∀ε > 0, |∇ f (u)| . |∇u||u|2(eε|u|2 − 1).



454 T. Saanouni

Using Hölder and Moser-Trudinger inequalities, coupled with the interpolation
inequality ‖ · ‖2

L
16
3
≤ ‖ · ‖L8‖ · ‖L4 we get

‖∇ f (u)‖
L

4
3 (R2)

. ‖∇uu2(eε|u|2 − 1)‖
L

4
3 (R2)

. ‖∇u‖L4(R2)‖u‖2

L
16
3 (R2)

‖eε|u|2 − 1‖L8(R2)

. ‖∇u‖L4(R2)‖u‖2

L
16
3 (R2)

. ‖∇u‖L4(R2)‖u‖L8(R2)‖u‖L4(R2).

With Hölder inequality, we get

‖∇ f (u)‖
L

4
3 (I,L

4
3 (R2))

. ‖‖∇u(t)‖L4(R2)‖u(t)‖L8(R2)‖u(t)‖L4(R2)‖
L

4
3 (I)

. ‖∇u‖L4(I,L4(R2))‖u‖L4(I,L8(R2))‖u‖L4(I,L4(R2)) (4.33)

. ‖u‖L4(I,L8(R2))‖u‖2
S1(I). (4.34)

Thus, by (4.30)-(4.32)-(4.34),

‖u‖S1(I) . ‖u(T)‖H1(R2) + ‖u‖L4(I,L8(R2))‖u‖2
S1(I).

Which close the proof of the Lemma 4.1.

We will also use a global a priori bound, proved by Colliander et al. [14] and
Planchon-Vega [31],

Lemma 4.2. Let u be a global solution of (1.1) in H1(R2). Then

‖u‖L4(R,L8(R2)) . ‖u‖
3
4

L∞(R,L2(R2))
‖∇u‖

1
4

L∞(R,L2(R2))
. M(u)

3
4 H(u)

1
4 .

Using the preceding Lemma we can decompose R to a finite number of in-
tervals I where ‖u‖L4(I,L8(R2)) is small enough. Then with the absorbing Lemma
1.10 we obtain

‖u‖S1(R) < ∞.

So u ∈ L∞(R, H1(R2))∩ L4(R, W1,4(R2)) and by (4.31)-(4.33), f (u) ∈ L
4
3 (R, W1, 4

3 (R2)).
Let the operator

T : R → L(H1(R2)), T(t)φ := Kt ∗ φ.

Where

Kt(x) :=
1

4iπt
ei

|x|2
4t .

Remark 4.3. We recall that

1. T(t) is an isometry of H1(R2) which satisfies T(t + s) = T(t)T(s).

2. T(t)φ is the solution in C(R, H1(R2)) to the free Schrödinger equation (1.10) with
data φ ∈ H1(R2).
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3. u(t) = T(t)u0 − i
∫ t

0 T(t − s) f (u(s))ds.

Let v(t) := T(−t)u(t) = u0 − i
∫ t

0 T(−s) f (u(s))ds. By Strichartz estimate
(1.13)

‖v(t) − v(τ)‖H1(R2) = ‖T(t)(v(t) − v(τ))‖H1(R2)

= ‖
∫ t

τ
T(t − s) f (u(s))ds‖H1 (R2)

. ‖ f (u)‖
L

4
3 ((t,τ),W1, 4

3 (R2))

t,τ→∞−→ 0.

Denoting v± the limit of v(t) as t → ±∞ in H1(R2), we have

‖v(t) − v±‖H1(R2)
t→∞−→ 0, v± = u0 − i

∫ ±∞

0
T(−s) f (u(s))ds.

Moreover, u±(t) := T(t)v± is solution to the free Schrödinger equation (1.10)
with data v± and satisfies

‖(u − u±)(t)‖H1(R2)
t→±∞−→ 0.

Which close the proof of the first part of Theorem 1.4.

Remark 4.4. We recall that

1. u±(t) = T(t)u0 − i
∫ ±∞

0 T(t − s) f (u(s))ds.

2. u(t) = u±(t) + i
∫ ±∞

t T(t − s) f (u(s))ds.

It remains to show that the map ψ : u0 7−→ v± = lim
t→±∞

T(−t)u(t) in H1(R2)

is an homeomorphism of H1(R2). As a first step we show in what follows that ψ
is bijective.

Lemma 4.5. ψ : H1(R2) → H1(R2) u0 7−→ v± = lim
t→±∞

T(−t)u(t) in H1(R2) is

bijective, u being the global solution to (P) in C(R, H1(R2)) with data u0.

Proof. We treat the case t > 0, the case t < 0 is similar.
Let v+ ∈ H1(R2), u+(t) := T(t)v+ we will show that there exists a unique u ∈
C(R, H1(R2)) solution to (P) and satisfying

‖(u − u+)(t)‖H1(R2)
t→+∞−→ 0.

We proceed with fixed point argument. Let S > 0 and the map

g : S1(S, ∞) → S1(S, ∞)

u 7−→ u+(t) + i
∫ +∞

t
T(t − s) f (u(s))ds.
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Using Strichartz estimate for α
′
= β

′
= 4

3 and (4.31)-(4.33), we see that g is well
defined and satisfies

‖g(u) − g(v)‖S1(t,∞) . ‖ f (u) − f (v)‖
L

4
3 ((t,∞),W1, 4

3 (R2))
.

Using Moser-Trudinger and Hölder inequalities, we obtain (for some ε > 0 small
enough)

‖ f (u) − f (v)‖
L

4
3 ((t,∞),L

4
3 (R2))

. ‖w|u|2(eε|u|2 − 1)‖
L

4
3 ((t,∞),L

4
3 (R2))

+ ‖w|v|2(eε|v|2 − 1)‖
L

4
3 ((t,∞),L

4
3 (R2))

. ‖‖w(t)‖L4(R2)‖u(t)‖2
L6(R2)‖L

4
3 (t,∞)

+ ‖‖w(t)‖L4(R2)‖v(t)‖2
L6(R2)‖L

4
3 (t,∞)

,

where w := u − v.

By the classical interpolation inequality ‖ · ‖2
L6 ≤ ‖ · ‖

2
3

L4‖ · ‖
4
3

L8 and Proposition
1.11, we get
‖‖w(t)‖L4(R2)‖u(t)‖2

L6(R2)
‖

L
4
3 (t,∞)

. ‖‖w(t)‖L4(R2)‖u(t)‖
2
3

L4(R2)
‖u(t)‖

4
3

L8(R2)
‖

L
4
3 (t,∞)

. ‖w‖L4((t,∞),L4(R2))‖u‖
2
3

L4((t,∞),L4(R2))
‖u‖

4
3

L4((t,∞),L8(R2))

. ‖w‖S1(t,∞)‖u‖
2
3

L4((t,∞),L4(R2))
‖u‖

4
3

L4((t,∞),L8(R2))

. ‖w‖S1(t,∞)‖u‖2
L4((t,∞),W1,4(R2)).

Now, write

‖∇( f (u) − f (v))‖
L

4
3 ((t,∞),L

4
3 (R2))

≤ ‖∇u(D f (u) − D f (v))‖
L

4
3 ((t,∞),L

4
3 (R2))

+ ‖∇wD f (v)‖
L

4
3 ((t,∞),L

4
3 (R2))

≤ (J1) + (J2).

Arguing as previously, we have

(J2) . ‖∇w|v|2(eε|v|2 − 1)‖
L

4
3 ((t,∞),L

4
3 (R2))

. ‖w‖S1(t,∞)‖v‖2
L4((t,∞),W1,4(R2)),

and

(J1) . ‖∇uuw(eε|u|2 − 1)‖
L

4
3 ((t,∞),L

4
3 (R2))

+ ‖∇uvw(eε|v|2 − 1)‖
L

4
3 ((t,∞),L

4
3 (R2))

.

Moreover
‖∇uuw(eε|u|2 − 1)‖

L
4
3 ((t,∞),L

4
3 (R2))

. ‖‖w(s)‖L4(R2)‖∇u(s)‖L4(R2)‖u(s)‖L8(R2)‖
L

4
3 (t,∞)

. ‖w‖L4((t,∞),L4(R2))‖∇u‖L4((t,∞),L4(R2))‖u‖L4((t,∞),L8(R2))

. ‖w‖S1(t,∞)‖u‖2
L4((t,∞),W1,4(R2)).
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Since ‖u‖L4((t,∞),W1,4(R2))+ ‖v‖L4((t,∞),W1,4(R2))
t→+∞−→ 0, we obtain (for t large enough)

‖g(u)− g(v)‖S1(t,∞) . (‖u‖2
L4((t,∞),W1,4(R2)) + ‖v‖2

L4((t,∞),W1,4(R2)))‖u − v‖S1(t,∞)

≤ k‖u − v‖S1(t,∞), k ∈]0, 1[. (4.35)

Thus, for S large enough, g has a unique fixed point u ∈ S1(S, ∞)∩C((S, ∞), H1(R2)),
satisfying

u(t) = u+(t) + i
∫ +∞

t
T(t − s) f (u(s))ds, t > S. (4.36)

Now take ψ := T(−S)u(S) ∈ H1(R2), note that u is solution to the problem

(PS)

{

i∂tu + ∆u = f (u), t > S
u(S, .) = ψ.

By Theorem 1.3 u is global, so u(0) is well defined in H1(R2). Moreover, by
Strichartz estimate and (4.31)-(4.33),

‖(u − u+)(t)‖H1(R2) . ‖u‖L4((t,∞),L8(R2))‖u‖L4((t,∞),W1,4(R2))‖u‖S1(t,∞)

. ‖u‖2
L4((t,∞),W1,4(R2))‖u‖S1(t,∞)

t→+∞−→ 0.

It remains to prove uniqueness of such u.
Let u1, u2 ∈ C(R, H1(R2)) solution to (1.1) such that

‖(ui − u+)(t)‖H1(R2)
t→+∞−→ 0, i ∈ {1, 2}.

By Remark 4.4 we know that ui = g(ui), so using (4.35), for large t

‖u1 − u2‖S1(t,+∞) = ‖g(u1)− g(u2)‖S1(t,+∞)

≤ 1

2
‖u1 − u2‖S1(t,+∞).

Thus u1 = u2 and u is unique. This end the proof of the Lemma 4.5.

The second step is to prove the continuity of ψ.

Lemma 4.6. The map ψ : H1(R2) → H1(R2) u0 7−→ v± = lim
t→±∞

T(−t)u(t) in H1(R2)

is continuous, u ∈ C(R, H1(R2)) being the solution to (P).

Proof. Let u0 ∈ H1(R2) (resp (un
0 )n ∈ H1(R2)N), u (resp un) denotes the global

solution to (P) in C(R, H1(R2)) with data u0(resp un
0 ), v(t) = T(−t)u(t)(resp

vn(t) = T(−t)un(t)) and v+ = lim
t→+∞

v(t)(resp vn
+ = lim

t→+∞
vn(t)) in H1(R2).

Assume that lim
n→∞

‖un
0 − u0‖H1(R2) = 0.

By Lemma 4.2, we have sup
n

‖un‖L4((0,∞),L8(R2)) < ∞, so

lim
t→∞

[

sup
n

‖un‖L4((t,∞),L8(R2))

]

= 0.
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Thus, with Lemma 4.1, we have sup
n

‖un‖S1(0,∞) < ∞.

Let ε > 0, there exists Tε > 0 such that for wn := un − u,

sup
n

[

‖wn‖S1(Tε,∞)

(

‖u‖2
L4((Tε,∞),L8(R2)) + ‖un‖2

L4((Tε,∞),L8(R2))

)]

≤ ε

3
. (4.37)

Arguing as previously and using computations shown in the course of the proof
of Lemma 4.5, we have

‖vn
+ − v+‖H1(R2)

= ‖un
0 − u0 − i

∫ ∞

0
T(−s)( f (un)− f (u))ds‖H1(R2)

. ‖un
0 − u0‖H1(R2) + ‖ f (un)− f (u)‖

Lα
′
((0,∞),W1,β

′
(R2))

. ‖un
0 − u0‖H1(R2) + ‖wn‖S1(Tε,∞)

(

‖u‖2
L4((Tε,∞),L8(R2)) + ‖un‖2

L4((Tε,∞),L8(R2))

)

+‖wn‖S1(0,Tε)

(

‖u‖2
L4((0,Tε),L8(R2)) + ‖un‖2

L4((0,Tε),L8(R2))

)

. ‖un
0 − u0‖H1(R2) + ‖wn‖S1(0,Tε)

+
ε

3
. (4.38)

Using global well-posedness of (P), we have

lim
n→∞

‖wn‖S1(0,Tε) = 0. (4.39)

Since lim
n→∞

‖un
0 − u0‖H1(R2) = 0, using (4.38)-(4.39), there exists nε ∈ N such that

‖vn
+ − v+‖H1(R2) ≤ ε, ∀n ≥ nε.

The proof of the Lemma 4.6 is achieved.

In the last step we prove the continuity of ψ−1.

Lemma 4.7. The map ψ−1 : H1(R2) → H1(R2) v± 7−→ u0 is continuous.

Proof. Let v+ ∈ H1(R2), (vn
+)n ∈ (H1(R2))N , u0 := ψ−1(v+), un

0 := ψ−1(vn
+).

Let u (resp un) the global solution to (P) in C(R, H1(R2)) with data u0 (resp un
0),

v(t) = T(−t)u(t)(resp vn(t) = T(−t)un(t)) we recall that v+ = lim
t→+∞

v(t)(resp

vn
+ = lim

t→+∞
vn(t)) in H1(R2).

Assume that lim
n→∞

‖vn
+ − v+‖H1(R2) = 0.

With conservation of the mass

‖u0‖L2(R2) = lim
t→∞

‖u(t)‖L2(R2) = ‖v+‖L2(R2),

and
‖un

0‖L2(R2) = lim
t→∞

‖un(t)‖L2(R2) = ‖vn
+‖L2(R2).

So
lim

n→∞
‖un

0‖L2(R2) = ‖u0‖L2(R2). (4.40)
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We recall the hamiltonian

H(u, t) = ‖∇u(t)‖2
L2(R2) +

∫

R2
F(u(t))dx,

where F(u) := λ
2πα

(

e(1+4π|u|2)
α
2 − e

2 [(1 + 4π|u|2)α + 1]
)

.

Since lim
t→+∞

‖T(t)v+‖Lr(R2) = 0 for all r > 2, we have lim
t→+∞

‖u(t)‖Lr (R2) = 0 for

r > 2. Using Moser-Trudinger inequality (for ε > 0 small enough), we get

‖F(u(t))‖L1 (R2) ≤ Cε‖u(t)(eε|u(t)|2 − 1)‖L1(R2)

≤ Cε‖u(t)‖L5(R2)‖eε|u(t)|2 − 1‖
L

5
4 (R2)

. ‖u(t)‖L5(R2).

So, we have lim
t→+∞

∫

R2
F(u(t))dx = 0. Thus, since lim

t→+∞
‖∇u(t)‖L2(R2) = ‖∇v+‖L2(R2),

H(u, 0) = lim
t→+∞

H(u, t) = ‖∇v+‖2
L2(R2).

With the same way H(un, 0) = ‖∇vn
+‖2

L2(R2)
. So lim

n→+∞
H(un, 0) = H(u, 0). Thus

sup
n

‖un
0‖H1(R2) < ∞.

By Lemma 4.2, we have sup
n

‖un‖L4((0,∞),L8(R2)) < ∞, so

lim
t→∞

[

sup
n

‖un‖L4((t,∞),L8(R2))

]

= 0.

Thus, with Lemma 4.1, we have sup
n

‖un‖S1(0,∞) < ∞.

Let ε > 0, there existe Tε > 0 such that for wn := un − u,

sup
n

[

‖wn‖S1(Tε,∞)

(

‖u‖2
L4((Tε,∞),L8(R2)) + ‖un‖2

L4((Tε,∞),L8(R2))

)]

≤ ε

2
. (4.41)

Arguing as previously, we have

‖wn(Tε)‖H1(R2)

. ‖vn
+ − v+‖H1(R2) + ‖ f (un)− f (u)‖

Lα
′
((Tε,∞),W1,β

′
(R2))

. ‖vn
+ − v+‖H1(R2) + ‖wn‖S1(Tε,∞)

(

‖u‖2
L4((Tε,∞),L8(R2)) + ‖un‖2

L4((Tε,∞),L8(R2))

)

. ‖vn
+ − v+‖H1(R2) +

ε

2
.

Thus, there exists nε ∈ N such that

‖wn(Tε)‖H1(R2) ≤ ε, ∀n > nε.

We conclude the proof of the Lemma 4.7 via a time translation and well-posedness
of (P) in the energy space.
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The proof of Theorem 1.4 is achieved via Lemmas 4.6-4.5-4.7.
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