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Abstract

In this paper we characterize sequences of orthogonal polynomials on the
unit circle whose Carathéodory function satisfies a Riccati differential equa-
tion with polynomial coefficients, in terms of matrix Sylvester differential
equations. For the particular case of semi-classical orthogonal polynomials
on the unit circle, it is derived a characterization in terms of first order linear
differential systems.

1 Introduction

Let F be a Carathéodory function in the Laguerre-Hahn class, i.e., satisfying a Ric-
cati differential equation with polynomial coefficients (see [4])

zAF′ = BF2 + CF + D , A 6≡ 0 . (1)

A first approach to the analysis of Carathéodory functions satisfying this type of
differential equations and to the analysis of its corresponding sequences of ortho-
gonal polynomials was done by Alfaro and Marcellán in [2]. We remark that the
Laguerre-Hahn class on the unit circle includes some well known classes, such as
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the Laguerre-Hahn affine class on the unit circle (which corresponds to the case B ≡ 0
in (1)), the semi-classical class on the unit circle (which corresponds to the case B ≡ 0
and D a specific polynomial in (1)), and the class of second degree functionals on the
unit circle. It also includes linear fractional transformations of Laguerre-Hahn
Carathéodory functions (see [3, 4, 7, 8]).

The motivation for the study here presented comes from several applications
related with orthogonal polynomials on the unit circle and also on the real line.
In what concerns to the orthogonality on the real line we note the works of Mag-
nus [18], Maroni [21, 22] and Hahn [15, 16]. In [18] Magnus used the theory of
Laguerre-Hahn orthogonal polynomials (the “Riccati model”) in the study of the
convergence of Jacobi continued fractions. This was done, first, by considering
a modified approximant which satisfies a Riccati differential equation and, then,
by estimating the error behavior with the help of appropriate linear differential
equations which are satisfied by a sequence of Laguerre-Hahn orthogonal poly-
nomials (see [15, 16]). See also the example in [18, section 5], showing the use of
the Riccati model in disordered systems analysis. In [21, 22], Maroni studies the
Laguerre-Hahn class on the real line from an algebraic point of view, putting em-
phasis on the distributional equations for the corresponding forms defined in the
linear space of real polynomials; some modifications that preserve the Laguerre-
Hahn character are studied (in [4] the analogue of these results are established for
Laguerre-Hahn functionals on the unit circle).

Let us now return to the orthogonality on the unit circle. Since the Laguerre-
Hahn class on the unit circle contains linear fractional transformations of Cara-
théodory functions which satisfy Riccati type differential equations, then it is
a suitable class to study some transformations concerned with the measure of
orthogonality or with the orthogonal polynomials when one starts, for example,
with Laguerre-Hahn affine orthogonal polynomials, or with orthogonal polyno-
mials associated with second degree Carathéodory functions. Here are some ex-
amples:
a) shift perturbation of the reflection coefficients of the orthogonal polynomials
(see [23]);
b) backward extension or modification of a finite number of places of the reflec-
tion coefficients of the orthogonal polynomials (see [23]);
c) rational perturbation of the measure of orthogonality (see [5, 6]).

In this paper we aim to obtain a characterization of the Laguerre-Hahn Cara-
théodory functions and a representation for the corresponding sequences of or-
thogonal polynomials on the unit circle. We will see that, also on the unit circle,
the first order differential relations satisfied by Laguerre-Hahn orthogonal poly-
nomials play an important role. In fact, a key result of our paper is the equiva-
lence between (1) and the following matrix Sylvester differential equations for

Yn =

[
φn −Ωn

φ∗
n Ω∗

n

]
and Qn =

[
−Qn Q∗

n

]T
,

{
zAY′

n = BnYn − YnC
zAQ′

n = (Bn + (BF + C/2) I)Qn , n ∈ N ,
(2)

where {φn}, {Ωn}, and {Qn} are the corresponding sequences of orthogonal
polynomials, of polynomials of the second kind, and functions of the second kind,



Matrix Sylvester equations in the theory of OPUC 357

respectively, Bn and C are matrices of order two with polynomial elements, and I
is the identity matrix of order two (see Theorem 3).

As a consequence of the referred equivalence, we obtain a characterization
of polynomials which are orthogonal with respect to a semi-classical weight, in
terms of first order linear systems of differential equations (see Theorem 4). These
systems are similar to the ones derived in [10, 17] (see also [19]). But here it is
well to emphasize that, in those papers, the authors went further and studied the
dynamics of the linear systems of differential equations subject to deformations
of the semi-classical weight, thus showing the occurrence of Schlesinger systems
as well as Painlevé equations.

The equivalence between (1) and (2) allows us to give a representation for
{Yn} in terms of the solutions of two linear differential systems, zAL′ = CL and
zAP ′

n = BnPn , as Yn = PnL−1 , ∀n ≥ 1 (see Theorem 5). Furthermore, the
characterization for semi-classical polynomials previously obtained will help us
to establish that the Carathéodory function F in (1) is a linear fractional transfor-
mation of a semi-classical Carathéodory function, say F̃ (see Theorem 6), and we
give a representation for {Yn} in terms of the semi-classical orthogonal polyno-
mials corresponding to F̃ (see Theorem 7).

This paper is organized as follows. In section 2 we give the definitions and
state the basic results which will be used in the forthcoming sections. In sec-
tion 3 we establish the equivalence between (1) and the matrix Sylvester differ-
ential equations (2). In section 4 we establish a characterization of semi-classical
orthogonal polynomials on the unit circle in terms of first order linear differen-
tial systems. In section 5 we solve the matrix Sylvester differential equations
from section 3, zAY′

n = BnYn − YnC, with the help of the the results previously
obtained for semi-classical orthogonal polynomials. Thus, we determine a repre-
sentation for the solution, Yn, in terms of sequences of semi-classical orthogonal
polynomials on the unit circle. Finally, in section 6, an example is presented.

2 Preliminary results

Let µ be a probability measure with infinite support on the unit circle T = {eiθ :
θ ∈ [0, 2π[ }. The corresponding sequence of orthogonal polynomials, called or-
thogonal polynomials on the unit circle (with respect to µ), is defined by

1

2π

∫ 2π

0
φn(e

iθ)φm(e
−iθ) dµ(θ) = hnδn,m , hn 6= 0 , n, m ∈ N .

If µ is absolutely continuous with respect to dθ, associated with a weight w, i.e.,
dµ(θ) = w(θ) dθ, then we say that {φn} is orthogonal with respect to w. If each
φn is monic, then {φn} will be called a monic orthogonal polynomial sequence, and it
will be denoted by MOPS.

Given a measure µ, the function F defined by

F(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ) (3)

is a Carathéodory function, i.e., it is an analytic function in D = {z ∈ C : |z| < 1}
such that F(0) = 1 and ℜe(F) > 0 for |z| < 1. The converse result also holds,
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since any Carathéodory function has a representation (3) for a unique probabil-
ity measure µ on T (see, for example, [25]). In addition, it is well known that
dµr(θ) = ℜe F(reiθ) dθ converge weakly to dµ when r ↑ 1, limr↑1 ℜe F(reiθ) =

ℜe F(eiθ) exists a.e. for θ ∈ [0, 2π], and if dµ(θ) = w(θ)dθ + dµs(θ), with dµs the
singular part, then

w(θ) = ℜe F(eiθ) .

Given a sequence of monic polynomials {φn} orthogonal with respect to µ,
the associated polynomials of the second kind are given by

Ω0(z) = 1, Ωn(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z

(
φn(e

iθ)− φn(z)
)

dµ(θ) , ∀n ∈ N ,

and the functions of the second kind are given by

Qn(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
φn(e

iθ) dµ(θ) , n = 0, 1, . . .

We define the following matrices which will be used throughout the paper,

Yn =

[
φn −Ωn

φ∗
n Ω∗

n

]
, Qn =

[
−Qn

Q∗
n

]
, ∀n ∈ N , (4)

where φ∗
n and Ω∗

n denote the reciprocal polynomial of φn and Ωn, respectively,
and Q∗

n(z) = Ω∗
n(z)− F(z)φ∗

n(z). We recall that the reciprocal polynomial p∗ of a
polynomial p of exact degree n is defined by p∗(z) = zn p(1/z).

The sequences {φn}, {Ωn} and {Qn} satisfy recurrence relations and cou-
pled relations which we use in the matrix form, as given in the following the-
orem (see [14]).

Theorem 1 (cf. [12, 13, 24]). Let F be a Carathéodory function and {φn}, {Ωn}, and
{Qn} the corresponding MOPS on the unit circle, the sequence of associated polynomials
of the second kind, and the sequence of the functions of the second kind, respectively.
Let {Yn} and {Qn} be the sequences defined in (4). Then, the following relations hold,
∀n ∈ N,

Yn = AnYn−1, An =

[
z an

anz 1

]
, (5)

Qn = Yn

[
−F
1

]
, (6)

with an = φn(0), Y0 =

[
1 −1
1 1

]
.

Moreover, ∀n ∈ N,

φ∗
n(z)Ωn(z) + φn(z)Ω

∗
n(z) = 2hnzn , (7)

φ∗
n(z)Qn(z) + φn(z)Q

∗
n(z) = 2hnzn , (8)

with hn = ∏
n
k=1(1 − |ak|2).

Let H0(z) = ∑
+∞
j=0 bjz

j, |z| < 1 , H∞ = ∑
+∞
j=0 bjz

−j , |z| > 1 . We will write

H0(z) = O(zk) or H∞(z) = O(z−k) if b0 = · · · = bk−1 = 0 , k ∈ N.
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Corollary 1. Let {φn} be a MOPS on the unit circle and {Qn} be the corresponding
sequence of functions of the second kind. Then, ∀n ∈ N ,

Qn(z) = 2hnzn +O(zn+1), |z| < 1 ,

Qn(z) = 2an+1hnz−1 +O(z−2), |z| > 1 ,

Q∗
n(z) = 2an+1hnzn+1 +O(zn+2), |z| < 1

Q∗
n(z) = 2hn +O(z−1), |z| > 1

with an+1 = φn+1(0) , hn = ∏
n
k=1(1 − |ak|2) .

Corollary 2. Let {φn} be a MOPS on the unit circle and {Ωn} be the corresponding
sequence of associated polynomials of the second kind. Then, the following holds:
a) If there exists k ∈ N such that φk(α) = Ωk(α) = 0, then α = 0 ;
b) If there exists k ∈ N such that φk(α) = Qk(α) = 0, then α = 0 .

Theorem 2 (Geronimus, [11]). Given a sequence of complex numbers (an) satisfying
|an| < 1, ∀n ∈ N , let {φn} and {Ωn} be the sequences of polynomials defined by the
recurrence relation (5), and let F be the corresponding Carathéodory function. Then, the
sequence defined for n ≥ 1 by

Ω∗
n(z)

φ∗
n(z)

= 1 +
− 2a1z
1 + a1z

−
a2

a1
z(1 − |a1|2)

1 +
a2

a1
z

− · · · −
an+1

an
z(1 − |an|2)

1 +
an+1

an
z

,

converges uniformly to F(z), on compact subsets of D.

3 Characterization in terms of matrix Sylvester differential equa-

tions

Hereafter, I denotes the identity matrix of order two.

Theorem 3. Let F be a Carathéodory function and {Yn} and {Qn} the corresponding
sequences defined by (4). The following statements are equivalent:
a) F satisfies the differential equation with polynomial coefficients

zAF′ = BF2 + CF + D ; (9)

b) {Yn} and {Qn} satisfy the Sylvester differential equations

zAY′
n = BnYn − YnC (10)

zAQ′
n = (Bn + (BF + C/2) I)Qn , n ∈ N , (11)

where Bn are matrices of bounded degree polynomials,

Bn =

[
ln,1 −Θn,1

−Θn,2 ln,2

]
, (12)

and

C =

[
C/2 −D

B −C/2

]
. (13)
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Proof. a) ⇒ b).
Let F satisfy (9). Firstly we obtain (10). This will be done by dividing the proof in
two parts: in the first part we deduce the equations

{
zAΩ′

n = (ln,1 + C/2)Ωn − Dφn + Θn,1Ω∗
n

zAφ′
n = (ln,1 − C/2)φn + BΩn − Θn,1φ∗

n

(14)

and in the second part we deduce the equations

{
zA(Ω∗

n)
′ = (ln,2 + C/2)Ω∗

n + Dφ∗
n + Θn,2Ωn

zA(φ∗
n)

′ = (ln,2 − C/2)φ∗
n − BΩ∗

n − Θn,2φn
(15)

where ln,1, ln,2, Θn,1, Θn,2 are polynomials whose degrees are bounded by a num-
ber independent of n. These two systems of equations can be written in the matrix
form (10), with Bn and C given by (12) and (13), respectively.

First part. If we substitute F =
Qn

φn
− Ωn

φn
(cf. (6)) in zAF′ = BF2 + CF + D we

obtain

zA

(
Qn

φn
− Ωn

φn

)′
= B

(
Qn

φn
− Ωn

φn

)2

+ C

(
Qn

φn
− Ωn

φn

)
+ D ,

i.e.,

zA

(
Qn

φn

)′
− B

Qn

φn

(
Qn

φn
− 2

Ωn

φn

)
− C

Qn

φn

= zA

(
Ωn

φn

)′
+ B

(
Ωn

φn

)2

− C

(
Ωn

φn

)
+ D .

Therefore we have
{

zA

(
Ωn

φn

)′
+ B

(
Ωn

φn

)2

− C

(
Ωn

φn

)
+ D

}
φ2

n = Θ̃n (16)

with

Θ̃n =

{
zA

(
Qn

φn

)′
− B

Qn

φn

(
Qn

φn
− 2

Ωn

φn

)
− C

Qn

φn

}
φ2

n .

From (16) it follows that Θ̃n is a polynomial. From the asymptotic expansion of
Qn in |z| < 1 (see Corollary 1), and since the left side of (16) is a polynomial, we
get

Θ̃n(z) = znΘ̃1
n(z) ,

with Θ̃1
n a polynomial. From the asymptotic expansion of Qn in |z| > 1 (see

Corollary 1) it follows that Θ̃1
n has bounded degree,

deg(Θ̃1
n) = max{deg(zA)− 2, deg(B)− 1, deg(C)− 1}, ∀n ∈ N .
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Thus, (16) becomes
{

zA

(
Ωn

φn

)′
+ B

(
Ωn

φn

)2

− C

(
Ωn

φn

)
+ D

}
φ2

n = znΘ̃1
n .

Using (7) in the previous equation we obtain
{

zA

(
Ωn

φn

)′
+ B

(
Ωn

φn

)2

− C

(
Ωn

φn

)
+ D

}
φ2

n = Θn,1(φnΩ∗
n + Ωnφ∗

n) ,

where Θn,1 = Θ̃1
n/(2hn) .

Consequently, ∀n ∈ N,

{
zAΩ′

n −
C

2
Ωn + Dφn − Θn,1Ω∗

n

}
φn =

{
zAφ′

n +
C

2
φn − BΩn + Θn,1φ∗

n

}
Ωn .

We distinguish the following cases (see Corollary 2):
a) φn and Ωn have no common roots, ∀n ∈ N, i.e., φn(0) 6= 0, ∀n ∈ N ;
b) there exists a finite number of indexes k ∈ N such that φk and Ωk have common
roots, i.e., φk(0) = Ωk(0) = 0 for a finite number of k’s ;
c) there exists n0 > 1 such that φn(0) = 0, ∀n ≥ n0 .

Case a) If φn and Ωn have no common roots, ∀n ∈ N, then we conclude that
there exists a polynomial ln,1 such that

{
zAΩ′

n − C
2 Ωn + Dφn − Θn,1Ω∗

n = ln,1Ωn ,

zAφ′
n +

C
2 φn − BΩn + Θn,1φ∗

n = ln,1φn , ∀n ∈ N ,
(17)

and we obtain (14). Moreover, ln,1 has bounded degree,

deg(ln,1) = max{deg(zA)− 1, deg(B), deg(C), deg(D), }, ∀n ∈ N .

Case b) We first assume that φ1(0) 6= 0, . . . , φk−1(0) 6= 0, and k is the first index
such that φk(0) = 0. Thus, φn and Ωn have no common roots for n = 1, . . . , k − 1.
From case a), equations (17) hold for n = 1, . . . , k − 1. Let us write (17) to k − 1
and multiply the resulting equation by z, to obtain

{
z2 AΩ′

k−1 − C
2 zΩk−1 + Dzφk−1 − zΘk−1,1Ω∗

k−1 = lk−1,1zΩk−1 ,

z2 Aφ′
k−1 +

C
2 zφk−1 − BzΩk−1 + zΘk−1,1φ∗

k−1 = lk−1,1zφk−1 .

By substituting

Ωk(z) = zΩk−1(z), Ω∗
k(z) = Ω∗

k−1(z), zΩ′
k−1(z) = Ω′

k(z)− Ωk−1(z)

and
φk(z) = kφk−1(z), φ∗

k (z) = φ∗
k−1(z), zφ′

k−1(z) = φ′
k(z)− φk−1(z)

in previous equations, it follows that
{

zAΩ′
k − C

2 Ωk + Dφk − zΘk−1,1Ω∗
k = (lk−1,1 + A)Ωk ,

zAφ′
k +

C
2 φk − BΩk + zΘk−1,1φ∗

k = (lk−1,1 + A) φk ,
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and we obtain (14) to n = k with lk,1 = lk−1,1 + A and Θk,1 = zΘk−1,1 .
Furthermore, if φk+1(0) = · · · = φk+k0

(0) = 0, φk+k0+1(0) 6= 0 to some
k0 ∈ N, then, using the same method as before, the differential relations (14)
are obtained for n = k + 1, . . . , k + k0, with

ln,1 = lk−1,1 + (n − k + 1)A , Θn,1 = zn−k+1Θk−1,1 , n = k + 1, . . . , k + k0 .

Case c) If φn(0) = 0, ∀n ≥ n0, then φn and Ωn are polynomials of the
Bernstein-Szegő type,

φn(z) = zn−n0+1φn0−1(z) , Ωn(z) = zn−n0+1Ωn0−1(z) .

Applying the same method as before, we conclude that equations (14) hold,
∀n ∈ N , and, for n ≥ n0 , ln,1 and Θn,1 are given by

ln,1 = ln0−1 + (n − n0 + 1)A , Θn,1 = zn−n0+1Θn0−1,1 .

Second part. If we substitute F =
Ω∗

n

φ∗
n
− Q∗

n

φ∗
n

(cf. (6)) in zAF′ = BF2 + CF + D

and proceed as in the first part, we obtain (15) with

deg(ln,2) = max{deg(zA)− 1, deg(B), deg(C), deg(D)}, ∀n ∈ N ,

deg(Θn,2) = max{deg(zA)− 1, deg(B), deg(C)}, ∀n ∈ N .

Let us now obtain (11). Taking derivatives on Qn = Ωn + φnF and Q∗
n =

Ω∗
n − φ∗

nF (cf. (6)) we obtain

zAQ′
n = zAΩ′

n + zAφ′
nF + zAF′φn ,

zA(Q∗
n)

′ = zA(Ω∗
n)

′ − zA(φ∗
n)

′F − zAF′φ∗
n .

If we use (9), (14) and (15) in the previous equations, then (11) follows.

b) ⇒ a).

Taking into account (6), Qn = Yn

[
−F
1

]
, ∀n ∈ N, the equation (11) is equiva-

lent to

zAY′
n

[
−F
1

]
+ zAYn

[
−F′

0

]
= BnYn

[
−F
1

]
+ (BF + C/2)Yn

[
−F
1

]
.

From (10) it follows that

(BnYn − YnC)
[
−F
1

]
+ zAYn

[
−F′

0

]
= BnYn

[
−F
1

]
+ (BF + C/2)Yn

[
−F
1

]
,

i.e.,

Yn

(
zA

[
−F′

0

]
− C

[
−F
1

])
= (BF + C/2)Yn

[
−F
1

]
.

Taking into account that Yn is nonsingular, we obtain

zA

[
−F′

0

]
− C

[
−F
1

]
= (BF + C/2)

[
−F
1

]
.

Since C is given by (13), zAF′ = BF2 + CF + D follows.
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The following formula for tr(Bn) was given in [20] for a particular case of a
semi-classical sequence of orthogonal polynomials on the unit circle.

Corollary 3. Under the conditions of the previous theorem, the matrices Bn given by
(12) satisfy

zAA′
n = BnAn −AnBn−1 , n ≥ 2 , (18)

tr(Bn) = nA , n ∈ N , (19)

det(Bn) = det(B1)− A
n−1

∑
k=1

lk,2 , n ≥ 2 , (20)

where tr(Bn) and det(Bn) denote the trace and the determinant of Bn , respectively, and

det(B1) = A
(

2zAa1 − h1(D + B) + C(|a1|2 + 1)
)

/(2 h1) + BD − C2/4 , (21)

a1 = φ1(0), h1 = 1 − |a1|2 .

Proof. To obtain (18) we take derivatives on Yn = AnYn−1 and substitute Y′
n =

A′
nYn−1 +AnY′

n−1 in (10), zAY′
n = BnYn − YnC. Therefore, we get

zAA′
nYn−1 + zAAnY′

n−1 = BnYn − YnC .

Using (10) for n − 1 in the previous equation we get

zAA′
nYn−1 +An (Bn−1Yn−1 − Yn−1C) = BnYn − YnC .

Using the recurrence relation (5) we obtain

zAA′
nYn−1 +An (Bn−1Yn−1 − Yn−1C) = BnAnYn−1 −AnYn−1C ,

i.e.,
zAA′

nYn−1 = (BnAn −AnBn−1)Yn−1 .

Since Yn is nonsingular, for all n ∈ N and z 6= 0, we obtain (18).
To deduce (19) we use equations (14) and (15),





zAφ′
n + C/2φn − BΩn + Θn,1φ∗

n = ln,1φn

zAΩ′
n − C/2Ωn + Dφn − Θn,1Ω∗

n = ln,1Ωn

zA(Ω∗
n)

′ − C/2Ω∗
n − Dφ∗

n − Θn,2Ωn = ln,2Ω∗
n

zA(φ∗
n)

′ + C/2φ∗
n + BΩ∗

n + Θn,2φn = ln,2φ∗
n .

If we multiply the previous equations by Ω∗
n, φ∗

n, φn and Ωn, respectively, we
obtain, after summing,

zA
(
φ′

nΩ∗
n + φn(Ω

∗
n)

′ + (φ∗
n)

′Ωn + φ∗
nΩ′

n

)
= (ln,1 + ln,2) (φnΩ∗

n + φ∗
nΩn) ,

i.e.,
zA (φnΩ∗

n + φ∗
nΩn)

′ = (ln,1 + ln,2) (φnΩ∗
n + φ∗

nΩn) .
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Thus,

zA (φnΩ∗
n + φ∗

nΩn)
′ = tr(Bn) (φnΩ∗

n + φ∗
nΩn) .

If we use (7) in the previous equation then we get (19).
We now establish (20). From (18) we obtain, for n ≥ 2 ,

det(BnAn) = det(zAA′
n +AnBn−1) .

Taking into account that Bn is given by (12) and An =

[
z an

anz 1

]
, we obtain

det(Bn)det(An) = z(1 − |an|2) (det(Bn−1) + A ln−1,2) , ∀n ≥ 2 .

Since det(An) = z(1 − |an|2) , then the last equation is equivalent, if z 6= 0 , to

det(Bn) = det(Bn−1) + A ln−1,2 , ∀n ≥ 2 .

Consequently, we obtain (20). Moreover, if we compute det(B1) by taking n = 1
in (10), we obtain (21).

Remark . (18) is equivalent to the following equations, for all n ∈ N,





anln,1 − Θn,1 = −zΘn−1,1 + anln−1,2

zln,1 − anzΘn,1 = zln−1,1 − anΘn−1,2 + zA

−zΘn,2 + anzln,2 = anzln−1,1 − Θn−1,2 + anzA

−anΘn,2 + ln,2 = −anzΘn−1,1 + ln−1,2 .

(22)

4 A characterization of semi-classical orthogonal polynomials

on the unit circle

In this section we derive a characterization for sequences of semi-classical ortho-
gonal polynomials on the unit circle.

Definition 1 (cf. [26]). Let µ be a measure supported on the unit circle given by

dµ(θ) = w(θ) dθ + ∑
N
k=1 λkδzk

, where λk ≥ 0 , |zk| = 1 , k = 1, ..., N, N ∈ N . The
weight w (or the measure µ) is semi-classical if there exist polynomials A, C such
that

dw(θ)/dθ

w(θ)
=

C(z)

A(z)
, z = eiθ. (23)

The corresponding sequence of orthogonal polynomials is called semi-classical.

For our purposes, we will consider the analytic continuation of the weight w
to an annulus {z : ǫ1 < |z| < ǫ2} and, in order to simplify the notation, we still
denote this analytic continuation by w = w(z). Thus, the equation (23) is now
equivalent to

w′(z)
w(z)

=
−i C(z)

zA(z)
(′:= d/dz). (24)
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It is well known that the corresponding Carathéodory function satisfies a first
order linear differential equation

zA(z)F′(z) = −i C(z)F(z) + D(z) ,

where D is a polynomial (see [26]). Moreover, the converse holds for a specific
polynomial D depending on A, C (see [3, 7]).

We will need the lemma that follows (see [9]).

Lemma 1. Let X and M be matrix functions of order two such that X′ = M X . Then,

(det(X))′ = tr(M) det(X) . (25)

The theorem that follows is a generalization of a result for semi-classical ortho-
gonal polynomials on the real line established in [19]. Moreover, it shows that the
necessary condition given in [3, Theorem 5] for a MOPS on the unit circle to be
semi-classical is also sufficient.

Theorem 4. Let {φn} be a MOPS with respect to a weight w, {Qn} be the sequence of

functions of the second kind, and Ŷn =

[
φn −Qn/w
φ∗

n Q∗
n/w

]
, ∀n ≥ 1 . Then,

w(z) = Ke
∫ z

z1

C(t)
tA(t)

dt
, K ∈ C , (26)

if, and only if, Ŷn satisfies

zAŶ′
n = (Bn − C/2 I)Ŷn , ∀n ∈ N , (27)

where Bn is the matrix associated with the equation zAF′ = CF + D satisfied by the
corresponding Carathéodory function.

Proof. Let w satisfy w′/w = C/(zA) and let the corresponding F satisfy zAF′ =
CF + D.

From Theorem 3 the following two equations hold,

zA

[
−Q′

n/w
(Q∗

n)
′/w

]
= (Bn + C/2 I)

[
−Qn/w
Q∗

n/w

]
, (28)

zA

[
φn

φ∗
n

]′
= (Bn − C/2 I)

[
φn

φ∗
n

]
, (29)

where Bn are the matrices associated with zAF′ = CF + D. Moreover, as w′/w =
C/(zA), then

zA

[
−Qn/w
Q∗

n/w

]′
= zA

[
−Q′

n/w
(Q∗

n)
′/w

]
− C I

[
−Qn/w
Q∗

n/w

]
. (30)

If we substitute (28) in (30) we get

zA

[
−Qn/w
Q∗

n/w

]′
= (Bn − C/2 I)

[
−Qn/w
Q∗

n/w

]
. (31)
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Finally, from (29) and (31), the differential system (27) follows.
We now prove the converse.

If Ŷn =

[
φn −Qn/w
φ∗

n Q∗
n/w

]
satisfies (27) then, from Lemma 1, we obtain

(det(Ŷn))
′ =

tr(Bn − C/2 I)

zA
det(Ŷn) .

From (8) we get det(Ŷn) = 2hnzn/w , thus the last equation is equivalent to

w′

w
=

nA − tr(Bn − C/2 I)

zA
.

If we use tr(Bn) = nA (cf. (19)) in the previous equation then we get
w′

w
=

C

zA
,

and we conclude that w is given by (26).

5 Solutions of the Sylvester differential equations

In this section we solve the Sylvester differential equations (10), zAY′
n = BnYn −

YnC, ∀n ∈ N. The result that comes next is a particular case of a result on matrix
Riccati equations known as Radon’s Lemma (see [1]).

Theorem 5. Let F be a Carathéodory function satisfying zAF′ = BF2 + CF + D and
Bn, C be the corresponding matrices given by (12) and (13), respectively. Let G ⊂ C be a
domain not containing the zeros of zA, and z0 ∈ G. If L (L nonsingular) and Pn satisfy,
∀n ∈ N, {

zA(z)L′(z) = C(z)L(z)
L(z0) = I

(32)

and {
zA(z)P ′

n(z) = Bn(z)Pn(z)

Pn(z0) = Yn(z0)
(33)

then the corresponding sequence {Yn} associated with F, defined in (4), has the following
representation in G,

Yn(z) = Pn(z)L−1(z) , ∀n ∈ N. (34)

Proof. To zAF′ = BF2 + CF + D we associate (10), zAY′
n = BnYn − YnC, with

Bn and C given by (12) and (13), respectively (see Theorem 3). Let L and Pn

satisfy (32) and (33), respectively. Let us see that that Yn = PnL−1 is the solution
of zAY′

n = BnYn − YnC . Taking into account that

zA(PnL−1)′ = zAP ′
nL−1 + zAPn(L−1)′

and (L−1)′ = −L−1L′L−1, from (33) we get

zA(PnL−1)′ = BnPnL−1 − zAPnL−1L′L−1 .

Using (32) in the previous equation we get

zA(PnL−1)′ = BnPnL−1 −PnL−1CLL−1 ,

i.e., Yn = PnL−1 satisfies zAY′
n = BnYn − YnC , and the assertion follows.
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Remark . The solution of (32) is given by L(z) = L(z)L0 , with L a fundamental
matrix of the differential system (32) satisfying zAL′ = CL, and L0 = L(z0)

−1.
The solution of (33) is given by Pn(z) = Pn(z)P0

n , with Pn a fundamental matrix
of (33) satisfying zAP′

n = BnPn, and P0
n satisfying Pn(z0)P

0
n = Yn(z0), i.e., P0

n =
(Pn(z0))

−1Yn(z0). Thus, if we substitute L and Pn, given as above, in (34), the
solution of the Sylvester differential equations (10) becomes

Yn(z) = Pn(z)En L−1(z) (35)

with
En = (Pn(z0))

−1Yn(z0)L(z0) . (36)

5.1 Solution of (32)

We search for a matrix L of order 2 satisfying zA(z)L′(z) = C(z)L(z) , with C
given in (13).

Lemma 2. Let L be a fundamental matrix of solutions of (32). Then, det(L(z)) =
det(L(z0)).

Proof. From Lemma 1 (cf. (25)) we have

(det(L))′ =
tr(C)
zA

det(L) .

Since tr(C) = 0, it follows that (det(L))′ = 0, i.e.,

det(L) = c, c ∈ C .

Thus, det(L(z)) = det(L(z0)), for some z0 ∈ C.

Lemma 3. Let C be the matrix defined by (13). Then,

(a) C2 = β I, β = (C/2)2 − BD ;

(b) The eigenvalues of C are ±
√

β ;

(c) V√
β
= span{

[
D C/2 −

√
β
]T} is the eigenspace corresponding to

√
β and

V−
√

β
= span{

[
D C/2 +

√
β
]T} is the eigenspace corresponding to −

√
β.

In what follows, L1, L2 are column vectors of size 2 .

Lemma 4. Let L = [L1 L2] be a fundamental matrix of (32). Then,

zAL′
1 =

√
βL1 + zAc1V−

√
β

, (37)

zAL′
2 = −

√
βL2 + zAc2V√

β
, (38)

with c1, c2 functions.
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Proof. From (32) it follows that

(C +
√

β I)

(
L′

1 −
√

β

zA
L1

)
= 02×1 , (39)

(C −
√

β I)

(
L′

2 +

√
β

zA
L2

)
= 02×1 . (40)

Since the eigenvalues of C are ±
√

β, and the corresponding eigenvectors are V√
β

and V√−β
, from (39) and (40) we obtain, respectively,

L′
1 −

√
β

zA
L1 = c1(z)V−

√
β

L′
2 +

√
β

zA
L2 = c2(z)V√

β

where c1, c2 are functions. Thus, (37) and (38) follow.

5.2 Solution of (33)

We search for matrices Pn of order two satisfying, for each n ∈ N ,

zAP′
n = BnPn . (41)

Hereafter we will consider z1 ∈ C and C̃ a polynomial such that
∫ z

z1

C̃/2
tA dt is

defined (in suitable domains).

Lemma 5. Let Bn be the matrices given in (12), let A, C̃ be polynomials. P̃n is a solution
of

zAP̃′
n = (Bn − C̃/2 I)P̃n (42)

if, and only if, Pn = e
∫ z

z1

C̃/2
tA dt

P̃n is a solution of (41).

Proof. Let P̃n be a solution of (42). Since

zA(e
∫ z

z1

C̃/2
tA dt

P̃n)
′ =

C̃

2
e
∫ z

t1

C̃/2
tA dt

P̃n + zAP̃′
n e
∫ z

t1

C̃/2
tA dt

,

and P̃n satisfies (42), then we obtain

zA(e
∫ z

t1

C̃/2
tA dt

P̃n)
′ = Bn P̃ne

∫ z
z1

C̃/2
tA dt

,

thus Pn = e
∫ z

t1

C̃/2
tA dt

P̃n satisfies (41). Analogously one proves the converse.

Taking into account the previous lemma, we will solve (41) searching for a

solution {Pn} given by Pn = e
∫ z

z1

C̃/2
tA dt

P̃n , n ∈ N , where P̃n satisfies (42). Further-

more, we will search for P̃n given by P̃n =

[
φ̃n −Q̃n/w̃

(φ̃n)∗ Q̃∗
n/w̃

]
, ∀n ∈ N , where
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{φ̃n} is a MOPS on the unit circle with respect to a weight function w̃, and {Q̃n}
is the corresponding sequence of functions of the second kind.

Let us remark that, using the same arguments as the ones used in the proof of
Theorem 4, from zAP̃′

n = (Bn − C̃/2 I)P̃n we get

w̃′

w̃
=

nA − tr(Bn − C̃/2 I)

zA
,

and since tr(Bn) = nA, there follows
w̃′

w̃
=

C̃

zA
, thus

w̃ = K e
∫ z

z1

C̃
tA dt

, K ∈ C . (43)

Henceforth,

Pn = e
∫ z

z1

C̃/2
tA dt

[
φ̃n −Q̃n/w̃

(φ̃n)
∗ Q̃∗

n/w̃

]
, n ∈ N , (44)

with w̃ given by (43).

Remark . According to Theorem 4, P̃n =

[
φ̃n −Q̃n/w̃

(φ̃n)∗ Q̃∗
n/w̃

]
satisfies zAP̃′

n = (B̃n −
C̃/2 I)P̃n , where B̃n is associated with the equation for the corresponding Cara-
théodory function, say zAF̃′ = C̃F̃ + D̃, thus depending on A, C̃, D̃. On the other
hand, Bn of (42) depend on A, B, C, D. As it will be seen in Lemma 7, this is
possible because the polynomials B, C, D depend on C̃, D̃.

Lemma 6. Let F be a Carathéodory function satisfying zAF′ = BF2 + CF + D and
{φn} the corresponding MOPS. For all n ∈ N, let Pn be a fundamental matrix of the
corresponding differential system (33). If Pn is given by (44), where {φ̃n} is the MOPS
with respect to the weight w̃, then the following equations hold:

Pn = ÃnPn−1, Ãn =

[
z ãn

ãnz 1

]
, n ∈ N , (45)

zAÃ′
n = BnÃn − ÃnBn−1 , n ≥ 2 . (46)

Proof. (45) is a consequence of the recurrence relations for {P̃n} (see Theorem 1),

P̃n = ÃnP̃n−1, Ãn =

[
z φ̃n(0)

φ̃n(0)z 1

]
, n ∈ N ,

We now establish (46). Since Pn satisfies zAP′
n = BnPn, then by substituting Pn =

ÃnPn−1 in the previous equation, there follows

zAÃ′
nPn−1 + ÃnzAP′

n−1 = BnÃnPn−1 , n ≥ 2 .

Using zAP′
n−1 = Bn−1Pn−1 in the last equation we get

zAÃ′
nPn−1 + ÃnBn−1Pn−1 = BnÃnPn−1 .

Thus,
(zAÃ′

n + ÃnBn−1)Pn−1 = BnÃnPn−1 .
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Since Pn is nonsingular (det(Pn) 6= 0, ∀n ∈ N, ∀z 6= 0) then

zAÃ′
n + ÃnBn−1 = BnÃn

follows, and we obtain (46).

Remark . From (18) and (46) we get the equations

zA(An − Ãn)
′ = Bn(An − Ãn)− (An − Ãn)Bn−1 , n ≥ 2 .

Hence, 



λnΘn,1 = λnΘn−1,2

λnln,1 = λnln−1,2

λnΘn−1,1 = λnΘn,2

λnln,2 − λnln−1,1 = λnzA

(47)

where λn = an − ãn, an = φn(0), ãn = φ̃n(0) , ∀n ∈ N .

Hereafter we will denote linear fractional transformations T(F) =
a + bF

c + dF
by

T(a,b;c,d)(F) .

Theorem 6. Let F be a Carathéodory function satisfying zAF′ = BF2 + CF + D, and
{φn} be the corresponding MOPS. Let Pn, n ∈ N, be a fundamental matrix of the
differential system (33) given by (44), and F̃ be the corresponding Carathéodory function.
Then, there exists a unique linear fractional transformation, T(a,b;c,d), with a, b, c, d ∈ P

and ad − bc 6≡ 0, such that F = T(a,b;c,d)(F̃).

Proof. To prove that F is a linear fractional transformation of F̃, we begin by es-
tablishing that the reflection coefficients of {φn} and {φ̃n}, i.e., an = φn(0) and
ãn = φ̃n(0), differ only in a finite number of indexes.

Let us write λn = an − ãn, ∀n ∈ N . First we establish that Z = {n ∈ N :
λn 6= 0} is a finite set. In fact, if Z was not finite, for example, Z ≡ N, then
λn 6= 0, ∀n ∈ N. But from (47) we would obtain

ln,1 = ln−1,2, ∀n ∈ N .

Substituting in (22), we would obtain

Θn,1 = zΘn−1,1, ∀n ∈ N ,

hence
Θn,1 = znΘ1,1, ∀n ∈ N .

But this is a contradiction to the fact that deg(Θn) is bounded. Therefore, Z 6≡ N .
On the other hand, if we consider, without loss of generality, the case

{
an = ãn , n = 1, 2, . . . , n0 ,

an 6= ãn , n ≥ n0 ,

then we will obtain the same conclusion.
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To conclude that F is a rational transformation of F̃ of the referred type, we
take into account its representation in continued fraction given in Theorem 2.
To establish the uniqueness of T(a,b;c,d) we remind that the inverse of T(a,b;c,d) ,
ad − bc 6= 0 , is given by T(a,−c;−b,d) . Therefore, if T1 and T2 are two linear frac-

tional transformations such that T1(F̃) = T2(F̃), then the composition T−1
2 ◦ T1

satisfies (T−1
2 ◦ T1)(F̃) = F̃, and thus we obtain T−1

2 ◦ T1 = id, i.e., T1 = T2.
Hence, the uniqueness of T is established.

5.3 Determination of the polynomial C̃

In what follows we determine the polynomial C̃ which defines {Pn} given in (44).

Lemma 7. Under the conditions of the previous theorem, let F be a Carathéodory function
satisfying zAF′ = BF2 + CF + D, let C̃ be a polynomial which defines a weight w̃ given
by (43), and let F̃ be the Carathéodory function associated with w̃. Let T(α1,−β1;−α2,β2) ,

αi, βi ∈ P, i = 1, 2, α1β2 − α2β1 6≡ 0 , such that F = T(F̃) . Let us consider the first
order linear differential equation for F̃ ,

zAF̃′ = C̃F̃ + D̃ , D̃ ∈ P . (48)

Then, the following relations hold:

B = (α2β′
2 − α′

2β2)zA + α2β2C̃ + β2
2D̃ , (49)

C = (α2β′
1 + α1β′

2 − α′
2β1 − α′

1β2)zA + (α1β2 + α2β1)C̃ + 2β1β2D̃ , (50)

D = (α1β′
1 − α′

1β1)zA + α1β1C̃ + β2
1D̃ , (51)

where we have considered, without lost of generality, α2β1 − α1β2 = 1.

Proof. Since w̃′/w̃ = C̃/(zA) (cf. (43)), then w̃ is semi-classical. Therefore, the
corresponding F̃ satisfies (48), with D̃ a polynomial (see [3, 7]).

Let us write F =
α1 − β1F̃

−α2 + β2F̃
, i.e., F̃ =

α1 + α2F

β1 + β2F
. Using F̃ =

α1 + α2F

β1 + β2F
in (48),

it follows that
zA(α2β1 − α1β2)F

′ = B2F2 + C2F + D2 , (52)

with

B2 = (α2β′
2 − α′

2β2)zA + α2β2C̃ + β2
2D̃ ,

C2 = (α2β′
1 + α1β′

2 − α′
2β1 − α′

1β2)zA + (α1β2 + α2β1)C̃ + 2β1β2D̃ ,

D2 = (α1β′
1 − α′

1β1)zA + α1β1C̃ + β2
1D̃ .

Hence, F satisfies zAF′ = BF2 + CF + D and (52), thus it follows that

zA(α2β1 − α1β2)

zA
=

B2

B
=

C2

C
=

D2

D
.

Therefore, if α2β1 − α1β2 = 1, then

B = B2, C = C2, D = D2,

and (49)-(51) follow.
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According to Theorem 6, for each polynomial C̃ defining a weight w̃ by (43)
and {Pn} as in (44), there exists a unique linear fractional transformation T such
that F = T(F̃), with F̃ the Carathéodory function associated with w̃. In this issue,
we pose the question: being C̃1 and C̃2 polynomials (defining weights of the same
type as in (43)) and F̃1, F̃2 the corresponding Carathéodory functions such that F
is a linear fractional transformation of F̃i , i = 1, 2, to obtain relations between C̃1

and C̃2. The next lemma gives us an answer.

Lemma 8. Under the same conditions of the previous lemma, let F be a Carathéodory
function satisfying zAF′ = BF2 + CF + D. Let C̃1, C̃2 be polynomials defining semi-
classical weights of the type (43), and let F1 and F2 be the corresponding Carathéodory
functions, non rational, satisfying

zAF′
1 = C̃1F1 + D̃1 , (53)

zAF′
2 = C̃2F2 + D̃2 . (54)

Let T1 = T(α1,−β1;−α2,β2) , T2 = T(γ1,−η1;−γ2,η2) be the transformations such that

T1(F1) = F, T2(F2) = F. If we assume, without loss of generality, that α2β1 − α1β2 =
1, γ2η1 − γ1η2 = 1 , then the following relations take place:

(α2β′
2 − α′

2β2)zA + α2β2C̃1 + β2
2D̃1 = (γ2η′

2 − γ′
2η2)zA + γ2η2C̃2 + η2

2 D̃2 , (55)

(α2β′
1 + α1β′

2 − α′
2β1 − α′

1β2)zA + (α1β2 + α2β1)C̃1 + 2β1β2D̃1

= (γ2η′
1 + γ1η′

2 − γ′
2η1 − γ′

1η2)zA + (γ1η2 + γ2η1)C̃2 + 2η1η2D̃2 , (56)

(α1β′
1 − α′

1β1)zA + α1β1C̃1 + β2
1D̃1 = (γ1η′

1 − γ′
1η1)zA + γ1η1C̃2 + η2

1 D̃2 . (57)

Proof. Since F = T1(F1) with F1 satisfying (53), from previous lemma we obtain

B = (α2β′
2 − α′

2β2)zA + α2β2C̃1 + β2
2D̃1 ,

C = (α2β′
1 + α1β′

2 − α′
2β1 − α′

1β2)zA + (α1β2 + α2β1)C̃1 + 2β1β2D̃1 ,

D = (α1β′
1 − α′

1β1)zA + α1β1C̃1 + β2
1D̃1 .

Also, since F = T2(F2) with F2 satisfying (54), from previous lemma we obtain

B = (γ2η′
2 − γ′

2η2)zA + γ2η2C̃2 + η2
2 D̃2 ,

C = (γ2η′
1 + γ1η′

2 − γ′
2η1 − γ′

1η2)zA + (γ1η2 + γ2η1)C̃2 + 2η1η2D̃2 ,

D = (γ1η′
1 − γ′

1η1)zA + γ1η1C̃2 + η2
1 D̃2 .

Therefore, (55)-(57) follow.

We now state the main result of this section, a representation formulae for
{Yn}, defined in (4), associated with a Carathéodory function F that satisfies
zAF′ = BF2 + CF + D.
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Theorem 7. Let F be a Carathéodory function satisfying zAF′ = BF2 + CF + D ,
A, B, C, D ∈ P, and let {Yn} be the corresponding sequence given by (4). Then, there

exists a polynomial C̃ (defined by Lemmas 7 and 8), and a weight w̃ = K e
∫ z

z1

C̃
tA dt

,
K ∈ C , such that

Yn =

[√
w̃φ̃n −Q̃n/

√
w̃√

w̃φ̃∗
n Q̃∗

n/
√

w̃

]
En L−1 , n ∈ N ,

where {φ̃n} is the MOPS with respect to w̃, {Q̃n} is the sequence of functions of the
second kind associated with {φ̃n}, En are the matrices defined in (36), and L is a funda-
mental matrix of (32).

Proof. These equations are a direct application of Theorem 5, namely (35).

6 Example

Let us consider the sequence of Jacobi orthogonal polynomials on the unit circle,
{φn}, with parameters α = β, F̃ the corresponding Carathéodory function. Let
{Ωn} be the sequence of associated polynomials of the second kind and F be the
corresponding Carathéodory function. F satisfies (see [4])

z(z2 − 1)F′ = −2αc0(z
2 − 1)F2 − 2α(z2 + 1)F ,

where c0 is the moment of order zero of the Jacobi measure on the unit circle.
Taking into account Theorem 5, firstly we will solve the following differential

systems:

z(z2 − 1)L′(z) =
[

−α(z2 + 1) 0
−2αc0(z

2 − 1) α(z2 + 1)

]
L(z) , (58)

z(z2 − 1)P′
n = BnPn . (59)

In what follows we consider a complex domain G such that {0, 1,−1}  G, and
a z0 in G.

Lemma 9. The fundamental matrix of solutions of (58) is given by

L(z) = z−α(z2 − 1)α

×
[

z2α(z2 − 1)−2α z2α(z2 − 1)−2α

1 − 2αc0

∫ z
z1

t2α−1(t2 − 1)−2αdt 1 − 2αc0

∫ z
z2

t2α−1(t2 − 1)−2αdt

]

with z1 6= z2.

Now we obtain a solution of (59). Takin into account Theorem 4, henceforth
we will consider C̃ as polynomial and we will solve (59) searching for a solution

P̃n given by (44), Pn = e
∫ z

z1

C̃/2
tA dt

[
φ̃n −Q̃n/w̃
φ̃∗

n Q̃∗
n/w̃

]
, ∀n ∈ N , with A = z2 − 1, {φ̃n}

the MOPS with respect to w̃, {Q̃n} the corresponding sequence of functions of the

second kind, and w̃ = Ke
∫ z

z1

C̃
tA dt

.
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On the other hand, F is a linear fractional transformation of F̃ given by F =
1/F̃ (see, for example, [23, 25]), with F̃ satisfying (see [26])

z(z2 − 1)F̃′ = 2α(z2 + 1)F̃ + 2αc0(z
2 − 1) .

Therefore, by Lemma 7, C̃ = 2α(z2 + 1) follows, and consequently we obtain

w̃ =
(
(z2 − 1)/z

)2α
.

From Theorem 7, the following representation for Yn =

[
φn −Ωn

φ∗
n Ω∗

n

]
holds:

Yn K =

[
φ̃n −

(
(z2 − 1)/z

)−2α
Q̃n

(φ̃n)∗
(
(z2 − 1)/z

)−2α
(Q̃n)∗

]
En

×
[

1 − 2αc0

∫ z
z2

t2α−1(t2 − 1)−2αdt −z2α(z2 − 1)−2α

−1 + 2αc0

∫ z
z1

t2α−1(t2 − 1)−2αdt z2α(z2 − 1)−2α

]
, n ∈ N

where K = 2αc0

∫ z2

z1

t2α−1(t2 − 1)−2α dt , En = (Pn(z0))
−1Yn(z0)L(z0).
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[2] M. Alfaro and F. Marcellán, Recent trends in orthogonal polynomials on the unit
circle, in “Orthogonal Polynomials and their applications”, (C. Brezinski, L.
Gori and A. Ronveaux Eds.) J.C. Baltzer A.G. Basel IMACS Ann. Comput.
Appl. Math., 9 (1-4), (1991), 3-14.

[3] A. Branquinho and M.N. Rebocho, Characterizations of Laguerre-Hahn affine or-
thogonal polynomials on the unit circle, J. Comput. Anal. Appl. 10 (2) (2008),
229-242.

[4] A. Branquinho and M.N. Rebocho, Distributional equation for Laguerre-Hahn
functionals on the unit circle, J. Comput. Appl. Math. 233 (2009), 634-642.

[5] A. Cachafeiro, F. Marcellán, and C. Pérez, Lebesgue perturbation of a quasi-
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