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Abstract

We show that the use of Brouwer fixed point theorem in Mironescu-Panai-
topol’s approach to the existence of a triangle with prescribed interior bisec-
tor lengths can be replaced by that of Banach fixed point theorem followed
by an elementary limiting argument.

1 Introduction

Given a triangle ABC, let a = |BC|, b = |AC|, c = |AB| (where say |BC| denotes
the length of the segment joining B to C), let hA, hB, hC denote the lengths of the
altitudes of the triangle, mA, mB, mC the lengths of the medians of the triangle,
and bA, bB, bC the lengths of the bisectors of the triangle respectively traced from
A, B, C. The three altitudes problem consists in, given three positive numbers m, n
and p, finding a triangle with altitudes ha = m, hb = n, hc = p, and if possible,
constructing it with the ruler and the compass. In the three medians problem, the al-
titudes are replaced by the medians, and in the three bisectors problem the altitudes
are replaced by the bisectors.
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Elementary geometric considerations show that, in any triangle, the lengths
of the altitudes satisfy the relations aha = bhb = chc, so that, by the triangle
inequality, the requested triangle can exist only if conditions
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hold. In the case of medians, it is easy to show that the medians of a triangle are
always the sides of some triangle, so that a necessary conditions for the solvability
of the problem of the three medians is that inequalities

m < n + p, n < p + m, p < m + n

hold. Simple geometric considerations and constructions show that under the
respective necessary conditions above, the three altitudes problem and the three
medians problem have a solution, which can be constructed with the ruler and
the compass, so that the two problems usually take place in elementary Euclidian
geometry textbooks.

For the corresponding three bisectors problem, there are two cases, according to
one consider the internal or the external bisectors (see Fig. 1 and 2). In the first
case, the bisectors are concurrent, in the second one they form a triangle.

In 1842, Terquem [15] computed the length of the internal bisectors in terms of
the side of the triangle, namely

bA =
1

b + c

√

bc[(b + c)2 − a2],

bB =
1

c + a

√

ac[(c + a)2 − b2], (1)

bC =
1

a + b

√

ab[(a + b)2 − c2],

and concluded that

given the three internal bisectors, there is an analytical possibility to deter-

mine the sides of the triangle. But the elimination leads to an equation of

a very high degree, probably because it includes also the solutions of the

external bisectors.
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To obtain, say, the first formula in (1), it suffices, if M denotes the intersection
of the bisector of angle A with side a, to apply the formula giving the area of
a triangle in terms of the lengths of two sides and the sine of their angle in the
obvious equality

area ABC = area ABM + area AMC,

to obtain

m =
2bc

b + c
cos(A/2),

and then to express cos(A/2) in terms of the lengths of the sides from the relation

a2 = b2 + c2 − 2bc[2 cos2(A/2)− 1].

One year later, answering a question raised in 1830 in volume 6 of the Journal
für reine und angewandte Mathematik (Question 12, p. 213-214), von Renthe-Finke
computed the area of a triangle in terms of its internal bisectors, concluded that
the equation for the radius of the inscribed circle should be of the 16th degree, but
refrained from deriving that equation explicitly.

The problem : “To construct a triangle given the three internal bisectors” was
proposed again by Brocard in 1875 [6], and the question was repeated two years
later in volume 3 of the same journal (Question 222, p. 32). Given three posi-
tive numbers m, n, p, this problem therefore consists in finding a positive solution
(a, b, c) of the system of algebraic equations obtained by squaring both members
of equations in (1) with bA, bB, bC respectively replaced by m, n, p, namely

bc[(b + c)2 − a2]− (b + c)2m2 = 0,

ca[(c + a)2 − b2]− (c + a)2n2 = 0, (2)

ab[(a + b)2 − c2]− (a + b)2 p2 = 0.

Until very recently, all the papers devoted to this problem used elimination the-
ory to reduce the system to a single algebraic equation and/or graphical consid-
erations.

Two contributions appeared in 1889, namely Bütberger’s doctoral thesis in
Bern [7] and a paper of Van den Berg [16]. This last author discussed systemat-
ically the corresponding three quartic equations, obtained a unique equation of
degree 16 for the radius of the circumcircle by elimination and squaring, but did
not conclude about the possibility of constructing by ruler and compass. One
year later, Heymann [9] claimed that the problem lead finally to an equation of
the 10th order, without giving neither the equation, nor the method, not any ref-
erences. He also did not discuss the possibility of constructing the solution by
ruler and compass.

The same year, Van den Berg [17] showed that, given three positive num-
bers m, n, p the necessary and sufficient conditions for the existence of a triangle
with exterior bisectors of lengths m, n, p is that the largest of the three numbers
mn, np, pm be larger than the sum of the other two. If this condition is satisfied, he
proved that the problem has two solutions, leading to triangles having the same
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perimeter. Notice that since m, n, p are finite, the triangle is not isosceles. Van den
Berg’s proof reduced the problem to the solution of a cubic equation. This paper
is clearly described in [5]. A similar result was obtained independently by Hey-
mann [10] in 1897. Hence the external bisectors problem was solved positively.

Returning to the internal bisectors problem, Korselt [11] used in 1895 the re-
sultant of two cubic equations to derive “nach einer allerdings mühsamen Rech-
nung” an explicit equation of tenth degree for the ratio of two sides and discussed
its solvability. Two years later, the same author [12] considered the special case
where two bisectors are equal, which implies, according to a conjecture of Lhe-
mus proved by Steiner, that the triangle is isosceles. He reduced the problem to
a cubic equation, showed that a ruler and compass construction is impossible in
this special case and concluded, a fortiori, to the impossibility for the general one.

In 1896, in a work [4] announced in [3], Barbarin, apparently unaware of [17]
and [10], gave an elaborate and detailed discussion of both the interior and the
exterior problems, with graphs of some of the curves involved. He reduced the
problem to an equation of the 14th degree for the interior problem, and of the
16th degree for the exterior one. He observed that these equations are in general
irreducible and that a ruler and compass construction is out of question. A PhD
thesis of Baker [2] in 1911, devoted to the interior and exterior problems, referred
only to Barbarin [3, 4], discussed the interior and exterior bisectors problems in
a more direct fashion (without solving first, like Barbarin, the problem with two
bisectors and an angle given), and studied the irreducibility and the group of the
reduced equation. He also considered various special cases.

The internal bisector problem seems to have been forgotten until 1937, when
Neiss [14], in a way somewhat similar to Korselt’s one, showed that it is in gen-
eral impossible to construct the triangle with ruler and compass. The same year,
Wolff [19] derived in an elegant and explicit way an equation of degree ten for the
reciprocal value of the radius of the inscribed circle in terms of the given bisec-
tors, and showed that the domain of rationality of this equation was irreducible.
His result was used one year later by van der Waerden [18] to show that the Ga-
lois group of Wolff equation with respect to the domain of rationality was the
symmetric group S10.

This did not prevent to see the question of the possibility of the geometric
construction to be raised again one year later in Mathematics Student, vol. 7, p. 40,
Question 1768 ! This long history, partly traced in [1] and [5], shows how a simple
looking classical geometric problem can lead to deep researches in classical and
modern algebra.

The impossibility of the elementary geometric construction and the difficulty
of deducing rigorously existence from the high order algebraic equations has led
Mironescu and Panaitopol [13] in 1995 to formulate the three interior bisectors
problem as a fixed point problem in three new variables linearly related to the side
of the triangle. They gave in this way a topological proof (via Brouwer fixed point
theorem) of the existence of a solution of the interior bisectors problem for any
data m, n, p, and furthermore showed its uniqueness (up to an isometry). No-
tice that the uniqueness conclusion contrasts with Van der Berg’s result [17] for
the external bisectors problem, and that the absence of restrictions upon m, p, n
contrasts with the existence results for the altitudes, medians and exterior bisec-
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tors problems. We recall this fixed point formulation in Section 2 before giving,
in Section 3, an elementary and analytical existence proof for the fixed point of
Mironescu-Panaitopol’s operator, as well as a method of approximation.

2 Reduction to a fixed point problem

The main idea of Mironescu-Panaitopol’s proof consists in an elegant reduction of
the three bisectors problem to a fixed point problem in three new variables, linear
combinations of a, b, c. We repeat this clever reduction for reader’s convenience.
The first relation in (2) can be written equivalently

4m2 =
(b + c)2 − (b − c)2

(b + c)2
[(b + c)2 − a2]

or

4m2 = (b + c)2 +
(b − c)2a2

(b + c)2
− [a2 + (b − c)2]

=

[

b + c ± (b − c)a

b + c

]2

− [a ± (b − c)]2.

Eliminating (b−c)a
b+c between those two equations one gets

2(b + c) =
√

4m2 + (c + a − b)2 +
√

4m2 + (a + b − c)2. (3)

Now, letting

a = y + z, b = z + x, c = x + y, (4)

so that

x =
b + c − a

2
, y =

c + a − b

2
, z =
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2
,

are positive, one can write (3) as
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√

m2 + y2 − y

]
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2

[

√

m2 + z2 − z
]

. (5)

One deduces in a similar way, from the second and third equations in (2)
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1

2

[

√

n2 + z2 − z
]

+
1

2

[

√

n2 + x2 − x
]

(6)

z =
1

2

[

√

p2 + x2 − x

]

+
1

2

[

√

p2 + y2 − y

]

. (7)

For any α > 0, define the continuous function fα : R+ → (0, α/2] by

fα(t) =
1

2

[
√

α2 + t2 − t
]

.
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It is immediate to check that f ′α(t) = 1
2

[

t√
α2+t2

− 1
]

< 0 for t ≥ 0, so that fα is

decreasing on R+, | f ′α(t)| < 1
2 for t > 0,

| fα(t)− fα(t
′)| < 1

2
|t − t′| f or all t 6= t′ in R+. (8)

If C := [0, m]× [0, n]× [0, p], define the continuous mapping F : C → C by

F(x, y, z) =
(

fm(y) + fm(z), fn(z) + fn(x), fp(x) + fp(y)
)

. (9)

The discussion above and equations (5)-(6)-(7) show that the three internal bisectors
problem has a solution if and only F has a fixed point in C. This is the first remarkable
result of Mironescu-Panaitopol [13], who further deduced the existence of a fixed
point of F from Brouwer’s fixed point theorem (see e.g. [20]), and its uniqueness
from the relation

‖F(P) − F(P′)‖ < ‖P − P′‖ f or all P 6= P′ in C, (10)

which easily follows from (8) (‖ · ‖ denotes the Euclidian norm in R
3 and we have

written P = (x, y, z)). Thus, the existence and uniqueness (up to an isometry) of the
triangle solving the internal three bisectors problem follows, and its sides lengths a, b, c
are given by (4) with (x, y, z) the fixed point of F.

3 An elementary constructive approach

Our remark originates from (10), which indeed allows to replace the use of the
nonconstructive topological Brouwer fixed point theorem by an elementary, ana-
lytical and constructive fixed point argument. In doing so, a method of approxi-
mation is obtained to compute the unique fixed point of F, and hence to compute
the sides lengths a, b, c of the triangle, according to (4).

Theorem 1. The mapping F defined in (9) has a unique fixed point P∗ in C, and given
any sequence (λk) in (0, 1) converging to 1, P∗ = limk→∞

Pk, where Pk is the unique
fixed point in C of λkF.

Proof. Uniqueness is a direct consequence of inequality (10). For the existence, let
(λk) be a sequence contained in (0, 1) and converging to 1. For each k ∈ N, define
the operator Tk := λkF, so that Tk : C → C, and

‖Tk(P)− Tk(P
′)‖ < λk‖P − P′‖ f or all P 6= P′ in C,

i.e. Tk is a contraction with constant λk ∈ (0, 1). Using Banach fixed point theo-
rem (more precisely its version in R

n already proved by Goursat [8] in 1906), we
obtain, for each k ∈ N, a unique fixed point Pk ∈ C of Tk. Now the sequence
(Pk) contained in C has, using Bolzano-Weierstrass theorem, a subsequence (Pkn

)
converging to some P∗ ∈ C. The relations Pkn

= λkn
F(Pkn

) (n ∈ N) and the con-
tinuity of F imply that P∗ = F(P∗), so that all convergent subsequences of (Pk)
converge to the unique fixed point P∗ of F. This implies that the sequence (Pk)
itself converges to P∗.
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After having obtained the unique fixed point P∗ of F from elementary consid-
erations, we show how it can be approximated. For any mapping T : C → C, we
denote as usual by Tq the qth iterate T ◦ . . . ◦ T (q times) of T.

Theorem 2. Given ε > 0 and k ∈ N, there exists K(ε) ∈ N and Q(ε, k) ∈ N such
that, for any k ≥ K(ε) and q ≥ Q(ε, k), one has

∥

∥

∥

∥

[

k

k + 1
F

]q

(0)− P∗
∥

∥

∥

∥

< ε. (11)

Proof. Let ε > 0. Take λk := k
k+1 , so that Tk := k

k+1 F (k ∈ N) and let Pk be the
unique fixed point of Tk given by Theorem 1. Since P∗ = limk→∞

Pk, there exists
K(ε) ∈ N such that

‖Pk − P∗‖ <
ε

2
f or all k ≥ K(ε). (12)

On the other hand, each Pk is the unique fixed point of k
k+1 F, so that (see e.g. [20])

Banach fixed point theorem for contraction mappings implies that

Pk = lim
q→∞

[

k

k + 1
F

]q

(0).

and provides the error estimate

∥

∥

∥

∥

[

k

k + 1
F

]q

(0)− Pk

∥

∥

∥

∥

≤
(

k

k + 1

)q

k‖F(0‖

=

(

k

k + 1

)q

k(m2 + n2 + p2)1/2. (13)

Since k
k+1 ∈ (0, 1), it is clear that there exists Q(ε, k) ∈ N such that

(

k

k + 1

)q

k(m2 + n2 + p2)1/2
<

ǫ

2
whenever q ≥ Q(ε, k). (14)

Consequently, taking k ≥ K(ε) and q ≥ Q(ε, k), we deduce from (12), (13) and
(14) that (11) holds.
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[8] É. Goursat, Sur la théorie des fonctions implicites, Bull. Soc. Math. France 31
(1903), 184-192.

[9] W. Heymann, Das Problem der Winkelhalbierenden, Z. Math. Phys. 35
(1890), 81-83

[10] W. Heymann, Zum Problem der Winkelhalbierenden, Z. Math. Naturwiss.
Unterricht 28 (1897), 165-179

[11] A. Korselt, Ueber das Problem der Winkelhalbierenden, Z. Math. Phys. 42
(1895), 304-312.
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