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Abstract

In this paper, we prove that there are infinitely many positive integers
N such that the Diophantine equation (x2 + y)(x + y2) = N(x − y)3 has no
nontrivial integer solution (x, y).

1 Introduction

Let N be a nonzero integer. In [6], Stroeker investigated the Diophantine equation

(x2 + y)(x + y2) = N(x − y)3, (x, y) ∈ Z2. (1)

It clearly suffices to consider the case when N > 0 since if (x, y) is a solution of
equation (1) above, then (y, x) is a solution of (1) with N replaced by −N. We
shall only consider solutions (x, y) such that xy 6= 0. Following Stroeker, we
refer to such solutions as proper. Note that equation (1) always admits the solu-
tion x = y = −1. This will be referred to as the trivial solution. Stroeker proved
that if (x, y) is any proper solution to equation (1), then max{|x|, |y|} < N3 if
N > 4. He also showed that if N > 1 is odd, then equation (1) has at least one
non-trivial proper solution and if additionally 27N2 − 2 is a square, then equa-
tion (1) has at least 5 non-trivial proper solutions. In [4], Ma̧kowski pointed out
a connection between (1) and Fibonacci numbers. In fact, he showed that if N =
Fk−2Fk−1, then (x, y) = (FkFk+1,−F2

k+1) (for k even) and (x, y) = (F2
k+1,−FkFk+1)

(for k odd) are solutions of (1). Moreover, he asked the following question: ”Do
there exist infinitely many positive (even) integers N such that equation (1) has only
the trivial solution”? Computations in the range 1 ≤ N ≤ 51 showed that if
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N ∈ {8, 10, 12, 14, 16, 20, 24, 26, 28, 30, 36, 44, 48}, then equation (1) has no proper
non-trivial solution.

Our main result is an affirmative answer to this question.

Theorem 1. There are infinitely many positive integers N such that equation (1) has no
non-trivial proper solution (x, y).

Throughout this paper, we use the Vinogradov symbols ≫ and ≪ as well as
the Landau symbol O with their usual meanings. The constants implied by them
are absolute.

2 Proof of Theorem 1

We let X be a large positive real number. We put N = 2p, where p ∈ (X/2, X) is
a prime. Stroeker showed that for any non-trivial solution (x, y) of equation (1)
there are integers u ≥ 2, v ≥ 1 and ℓ 6= 0 such that

2x = v − u + ℓ+ 1, 2y = v − u − ℓ+ 1, uv = Nℓ,

and
(u + v − ℓ)2 = 4(u − 1)(v + 1) + 1.

Stroeker showed that max{u, v} ≤ 2N3/3 < 6X3 if p ≥ 5, and showed also that
both formulae

u2(v − N)2 − 2uN(v2 + vN + 2N) + N2(v + 1)(v + 3) = 0 (2)

and
v2(u − N)2 − 2vN(u2 + uN − 2N) + N2(u − 1)(u − 3) = 0 (3)

hold. Furthermore, both u(v − N)2/N and v(u − N)2/N are integers. If v = N,
then 4u = N + 3, which is impossible since N + 3 is odd. Thus, v 6= N. The same
argument shows that u 6= N. Since N = 2p, it follows easily from the fact that
u(v − N)2/N is an integer that p | uv.

Let us assume that p | v (Case 1). Write v = pλ, where λ 6= 2. Note that
λ ≤ 2N3/(3p) < 6X2. Replacing v by λp in equation (2) and simplifying a factor
of p2, we get

u2(λ − 2)2 − 4u(λ2 p + 2λp + 4) + 4(λp + 1)(λp + 3) = 0. (4)

(If instead p | u, then u = pλ, and equation (3) simplified by a factor of p2 be-
comes v2(λ − 2)2 − 4v(λ2 p + 2λp − 4) + 4(λp − 1)(λp − 3) = 0. We shall refer to
this as Case 2.)

The relation (4) of Case 1 can be rewritten as

U2 − 2λV2 = 4 − 2λ, (5)

where
U = 2λp + 4 − uλ − 2u, V = 2u − 1.
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(If u = pλ, then the corresponding Pell equation is also U2 − 2λV2 = 4− 2λ, with
U = 2λp − 4 − vλ − 2v and V = 2v + 1.)

Let T := T(X) < 6X2 be some parameter depending on X and tending to in-
finity with X, to be made more precise later. Assume that λ ≤ T is given. If 2λ is

a square, then U −
√

2λV and U +
√

2λV are two divisors of 4− 2λ whose prod-
uct is 4 − 2λ. Hence, the pair (U, V) can be determined in at most 2τ(|2λ − 4|)
ways, where for a positive integer m we write τ(m) for the number of its positive
divisors. Note that the triple (λ, U, V) determines p uniquely. Thus, the number
of possibilities for the prime p when 2λ is a square is ≪ τ(|2λ − 4|). Assume
now that 2λ is not a square. It is then well-known from the theory of quadratic
fields that there exist t fundamental positive integer solutions (U1, V1), . . . , (Ut, Vt)
of equation (5) in the following sense: if (U, V) is any positive integer solution

of equation (5), then U +
√

2λV = (Ui +
√

2λVi)ζ
m holds for some i = 1, . . . , t

and some nonnegative integer m, where we put ζ for the fundamental unit of the

real quadratic field Q[
√

2λ]. Since ζ ≥ (1 +
√

5)/2 and max{|U|, |V|} ≪ X5, it
follows that m ≪ log X. It is known that the number t of fundamental solutions
to equation (5) is ≪ τ(|2λ − 4|). Observe, as before, that the triple (λ, U, V) de-
termines p uniquely. Hence, the total number of primes p that can arise in this
way when 1 ≤ λ ≤ T and λ 6= 2 is

≪ ∑
1≤λ≤T

λ 6=2

τ(|2λ − 4|) log X ≪ T(log T)(log X) ≪ T(log X)2. (6)

We now assume that λ ∈ (T, 6X2). Stroeker showed, under the condition v 6= N,
which is the case for the positive integers N we are considering, that there exists
a positive integer z such that

(v2 + vN + 2N)2 − (v − N)2(v2 + 4v + 3) = z2, (7)

and

u =
N(v2 + vN + 2N ± z)

(v − N)2
.

If one looks at (3) instead, one gets, under the assumption u 6= N which is the
case for us, that there exists an integer w such that

(u2 + uN − 2N)2 − (u − N)2(u2 − 4u + 3) = w2,

with

v =
N(u2 + uN − 2N ± w)

(u − N)2
.

Returning to formula (7), let us observe that

(v2 + vN + 2N)2 = v4

(

1 + O

(

N

v

))2

= v4

(

1 + O

(

1

λ

))

,

while

(v − N)2(v2 + 4v + 3) = v4

(

1 + O

(

N

v

))2 (

1 + O

(

1

v

))

= v4

(

1 + O

(

1

λ

))

.
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Hence,

z2 = v4

(

1 + O

(

1

λ

))

− v4

(

1 + O

(

1

λ

))

= O

(

v4

λ

)

,

giving

z = O

(

v2

√
λ

)

.

Thus,

u =
N(1 + v/N + 2N/v2 ± z/v2)

(1 − N/v)2
= N

(

1 + O

(

1√
λ

))

= N + O

(

X√
T

)

.

Let c be the constant implied by the above Landau symbol and let Y = cX/T1/2.
Then u = N + m, where 0 < |m| ≤ Y. Replacing in relation (3) the variable u by
2p + m and simplifying a factor of p2, we get the relation

λ2m2 − 4λ((2p + m)2 + 2(2p + m)p − 4p) + 4(2p + m − 1)(2p + m − 3) = 0.

(In Case 2, we replace v = N +m = 2p+m in (2) and, after simplifying a factor of
p2, we obtain λ2m2 − 4λ((2p+m)2 + 2(2p+m)p+ 4p)+ 4(2p+m+ 1)(2p+m+
3) = 0.) Multiplying both sides of the above relation by 1 − 2λ and regrouping it
we get

W2 = 2λ3m2 − λ2(12m − 4) + 8λ + 4, (8)

where W = 4(1 − 2λ)p + 2(m − 2)− λ(3m − 2). (In a similar way, in Case 2, we
obtain W2 = 2λ3m2 + λ2(12m+ 4)+ 8λ+ 4, where W = 4(1− 2λ)p+ 2(m+ 2)−
λ(3m + 2).) It is easy to check that the two variable polynomial

P(Λ, M) = 2Λ3M2 − Λ2(12M − 4) + 8Λ + 4

is irreducible as a polynomial in C[Λ, M]. Indeed,

ΛP(Λ, M) = 2((Λ2M − 3Λ)2 + 2Λ3 − Λ2 + 8Λ)

and −2Λ3 + Λ2 − 8Λ is not the square of some polynomial in C[Λ]. This shows
that P(Λ, M) is irreducible as a quadratic polynomial in M over C[Λ], so in par-
ticular P(Λ, M) is irreducible in C[Λ, M]. (A similar argument shows that the
polynomial Q(Λ, M) = 2Λ3M2 + Λ2(12M + 4) + 8Λ + 4 of Case 2 is also irre-
ducible.)

Assume that m is an integer such that P(Λ, m) is still irreducible as a polyno-
mial of degree 3 in Λ with integer coefficients. Let θm be any root of P(Λ, m) and
let ∆m be the discriminant of the cubic field Q[θm]. Corollary 3.12 in [3] shows
that the number of integer solutions (W, λ) of equation (8) is

≪ |∆m|0.201. (9)

Notice that ∆m is a divisor of the discriminant of the polynomial
Λ3 + 4Λ2 − (12m− 4)Λ+ 4m2 (obtained by rewriting the equation P(Λ, m) = 0 as
a monic polynomial equation in 2/Λ) and this last discriminant is
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−16(27m4 − 216m3 + 280m2 − 48m). (In Case 2, Q(Λ, m) produces the polyno-
mial Λ3 + 4Λ2 + (12m + 4)Λ + 4m2, whose discriminant is −16(27m4 + 216m3 +
280m2 + 48m).) In both cases, these expressions are never zero if m is a non-zero
integer, which is an observation that will be useful later. For the moment, we
simply record that estimate (9) and the above calculation show that the number
of integer solutions to equation (8) is ≪ |m|.804. Clearly, every integer solution
(W, λ) of equation (8) determines p uniquely. This shows that the number of
primes p that can arise in this way when P(Λ, m) is irreducible and 1 ≤ |m| ≤ Y
is

≪ ∑
1≤|m|≤Y

m.804 ≪ Y1.804 ≪ X1.804

T.902
.

Assume finally that 1 ≤ |m| ≤ Y is such that P(Λ, m) is reducible as a poly-
nomial in Λ with integer coefficients. By Hilbert’s Irreducibility Theorem, the
number of such values for m is ≪ Y1/2 log Y ≪ Y1/2 log X (see, for example, [2],
or Theorem 1, Section 13.1 in [7]). Multiplying both sides of equation (8) by 4m4,
we get

U2 = V3 − (12m − 4)V2 + 16m2V + 16m4,

where U = 2m2W and V = 2λm2 (in Case 2, we get the equation U2 = V3 +
(12m + 4)V2 + 16m2V + 16m4 with similarly defined U, V, as in Case 1). Write

Λ3 − (12m − 4)Λ2 + 16m2Λ + 16m4 = (Λ + a)(Λ2 + bΛ + c),

where a, b and c are integers. Then there exist two squarefree integers d1 and d2

dividing the discriminant of the above polynomial (which is 16m4∆m), such that

V + a = d1U2
1 and V2 + bV + c = d2U2

2 .

The second equation can be rewritten as

V2
1 + ∆ = d2U2

3 , (10)

where V1 = 2V + b, U3 = 2U2 and ∆ = 4c − b2. Note that ∆ 6= 0, since if ∆ = 0,
then P(Λ, m) has a double root, and, as we have seen, this is not possible if m 6= 0
is an integer. Note that ac = 16m4 and ab + c = 16m2, therefore |c| ≤ 16m4

and |b| ≤ 16m2 + 16m4 ≤ 32m4, which shows that |∆| ≪ m8. It is now easy to
check that max{|V1|, |U3|} ≪ X8. The arguments from the first part of our proof
(the case when λ < T) show that for fixed values of ∆ and d2, the number of
integer solutions (V1, U3) to equation (10) is ≪ τ(|∆|) log X ≪ Xo(1) as X → ∞.

Since d2 can be chosen in at most τ(|∆m|) ≤ Xo(1) ways for a fixed m, there are
only O(Y1/2 log X) possibilities for m, and each quadruple (m, d2, V1, U3) arising
in this way determines p uniquely, we get that the number of possibilities for p is

at most Y1/2Xo(1) < X2/3 whenever X is sufficiently large. (The same argument
holds for Case 2.) Putting everything together, we get that the number of primes
p ∈ (X/2, X) such that the Diophantine equation (1) can have a non-trivial proper
solution is

≪ T(log X)2 +
X1.804

T.902
+ X2/3.
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Choosing T = X1.804/1.902, we get that the number of such possibilities for p is
< X0.95 for large values of X. Since there are ≥ (0.5 + o(1))X/ log X primes
p ∈ (X/2, X) as X → ∞, we deduce that for most primes p in the above interval,
equation (1) has no non-trivial reduced solutions when N = 2p. This completes
the proof of the theorem.

3 Related elliptic curves

In the construction of solutions, Stroeker obtained elliptic curves of the following
equations (see formulas (14) and (14’) in [6])

z2 = 4(N − 1)(v + 1)3 + (N − 3v − 2)2, (11)

and
w2 = 4(N + 1)(u − 1)3 + (N − 3u + 2)2. (12)

If u = (N + 3)/4, then

(v, z) = ((N − 3)/4, N(N + 1)/4) (13)

is a point on the elliptic curve defined by (11). In the same way,

(u, w) = ((N + 3)/4, N(N − 1)/4) (14)

is a point on the elliptic curve defined by (12).

Theorem 2. The above points (v, z) and (u, w) are not torsion points except if N = 3, 9.
Moreover, if N = 3, both points are of order 9 and if N = 9, they are of order 6.

Proof. Using Magma [1], for 2 ≤ N ≤ 100, we checked that the points (13) and
(14) are not torsion points on the curves (11) and (12), respectively, except for
N = 3, 9. If N = 3, both are torsion points of order 9, while when N = 9, both
are torsion points of order 6. To achieve this, multiply both members of equation
(11) by 4(N − 1)2 and put X = 4(N − 1)v and Y = 4(N − 1)z to obtain

Y2 = X3 + (12N − 3)X2 + 24N(N − 1)X + (4N(N − 1))2.

Now we set y = Y and x = X + 4N − 1 and arrive at

y2 = x3 + (−24N2 − 3)x + 16N4 + 40N2 − 2. (15)

If u = (N + 3)/4, then v = (N − 3)/4 and z = N(N + 1)/4. One can deduce that
x = N(N − 1) and y = 5N − 4. Therefore P = (x, y) = (N2 + 2, N(N2 − 1)) is the
point on (15) corresponding to the initial point (v, z) = ((N − 3)/4, N(N − 1)/4)
on (11) via the above birational transformation. We follow a similar procedure for
equation (12) and we obtain the same equation (15) with the same corresponding
point P = (x, y) = (N2 + 2, N(N2 − 1)) to the point (u, w) when u = (N + 3)/4
on (12). So, we deal only with equation (15).

Let kP = (xk, yk) be the sum of P = (x, y) = (N2 + 2, N(N2 − 1)) with itself
k times in the Mordell-Weil group of (15). By Mazur’s Theorem (see [5]), if P is a
torsion point then kP = O for some k ∈ {1, . . . , 12}. So, we computed (xk, yk) for
all 1 ≤ k ≤ 12. In fact, consider the associated projective points (Xk : Yk : Zk) with
Xk, Yk, Zk ∈ Z[N]. We solved separately each one of the polynomial equations
Yk(N) = 0, Zk(N) = 0 for 2 ≤ k ≤ 12. Here are the results:
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• If Yk(N)Zk(N) = 0 for some positive integer N and 1 ≤ k ≤ 12, then
k ∈ {3, 6, 9, 12}.

• If Y3(N) = 0, then N = 9;

• If Z6(N) = 0, then N = 9. If Y6(N) = 0, then N = 9;

• If Z9(N) = 0, then N = 3;

• If Z12(N) = 0, then N = 9.
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