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Abstract

In [11] we showed that if the multiple point Seshadri constants of an am-
ple line bundle on a smooth projective surface in very general points satisfy
certain inequality then the surface is fibred by curves computing these con-
stants. Here we characterize the border case of polarized surfaces whose
Seshadri constants in general points fulfill the equality instead of inequality
and which are not fibred by Seshadri curves. It turns out that these surfaces
are the projective plane and surfaces of minimal degree.

Introduction and the main result

Given a smooth projective variety X and a nef line bundle L on X, Demailly de-
fines the Seshadri constant of L at a point P ∈ X as the real number

ε(L; P) := inf
C

L.C

multPC
,

where the infimum is taken over all reduced and irreducible curves passing through
P (see [3] and [7, Chapt. 5]).

This concept was extended by Xu [13] to finite subsets of a given variety. Let
r be an integer and P1, . . . , Pr points in X. Then the r-tuple Seshadri constant of L
at the set P1, . . . , Pr is the real number

ε(L; P1, . . . , Pr) := inf
C∩{P1,...,Pr}6=∅

L.C

∑ multPi
C

,

where the infimum is taken over all irreducible curves passing through at least
one of the points P1, . . . , Pr.
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There is an alternative and useful description of Seshadri constants in terms of
the nef cone of a blown up variety. Specifically, let f : Y −→ X be the blowing up
of P1, . . . , Pr ∈ X with exceptional divisors E1, . . . , Er. Then the Seshadri constant
can be computed as

ε(L; P1, . . . , Pr) = sup

{

λ > 0 : f ∗L − λ ·
r

∑
i=1

Ei is nef

}

.

The Kleiman criterion of ampleness implies then that the multiple point Se-
shadri constants are subject to the following upper bound which depends only
on the degree of L and the number of points

ε(L; P1, . . . , Pr) 6
dim X

√

Ldim X

r
=: α(L; r).

Whenever there is a strong inequality

ε(L; P1, . . . , Pr) < α(L; r) (1)

then the Seshadri constant is actually computed by a curve and not approximated
by a sequence of curves. For Seshadri constants at a single point this follows from
[1, Lemma 5.2] and the argument easily modifies to the multiple point case. We
call any curve C with

ε(L; P1, . . . , Pr) =
L.C

∑ multPi
C

a Seshadri curve for L at the r-tuple P1, . . . , Pr.
Oguiso (see [9]) studied the behavior of Seshadri constants ε(L; P) under the

variation of the point P. He showed that the Seshadri function

ε1 : X ∋ P −→ ε(L; P) ∈ R

is semi-continuous and that it attains its maximal value at a set which is a comple-
ment of an at most countable union of Zariski closed proper subsets of X i.e. for
a very general point P. Oguiso arguments can be easily adapted to finite subsets.
By ε(L; r) we will abbreviate the maximal value of the function

εr : Xr ∋ (P1, . . . , Pr) −→ ε(L; P1, . . . , Pr) ∈ R

i.e. ε(L; r) := max εr.
Nakamaye (see [8, Corollary 3]) observed that in case of surfaces an inequality

of type
ε(L; 1) < λ · α(L; 1)

with a small factor λ has strong consequences for the geometry of the surface.
Namely there exists a non-trivial fibration of X over a curve B whose fibers are Se-
shadri curves for L. On surfaces this was studied in more detail by Tutaj-Gasińska
and the second author [12]. Hwang and Keum passed from surfaces to varieties
of arbitrary dimension (see [5]). In [11] we started research along the same lines
for multiple point Seshadri constants. In particular we proved the following the-
orem.
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Theorem on fibrations. Let X be a smooth projective surface, L a nef and big line
bundle on X and r > 2 a fixed integer. If

ε(L; r) <

√

r − 1

r
· α(L; r) (2)

then there exists a fibration f : X −→ B over a curve B such that given P1, . . . , Pr ∈ X
very general, for arbitrary i = 1, . . . , r the fiber f−1( f (Pi)) computes ε(L; P1, . . . , Pr)
i.e. the fiber is a Seshadri curve of L.

Furthermore we showed that the bound in the Theorem is sharp in the sense
that for every integer r there exists a surface X together with an ample line bundle
L such that one has equality in (2) and X is not fibred by Seshadri curves of L.

The purpose of this note is to characterize the pairs (X, L) for which one has
an equality in (2) and X is not fibred by Seshadri curves. The description of such
pairs is provided in the next theorem which is our main result.

Theorem 1. Let r > 2 be a given integer, X a smooth projective surface and L a nef and
big line bundle on X such that

ε(L; r) =

√

r − 1

r
· α(L; r) . (3)

If X is not fibred by Seshadri curves for L, then

a) either r = 2, X = P
2 and L = O(1),

b) or X is a surface of minimal degree in P
r and L = OX(1).

Remarks.
(i) A similar theorem for r = 1 was already obtained by us in [11, Theorem

3.2] but the result and the methods are somewhat different.
(ii) A smooth surface is of minimal degree if and only if it is the Veronese

surface in P
5 or a rational normal scroll. This was proved by Del Pezzo (see [2]).

(iii) The converse of the Theorem holds: for any surface X of minimal degree
and L = OX(1), the equality (3) holds. This is easy to see taking the hyperplane
section through r given points.

1 Useful Lemmas

Here we recall two Lemmas which are essential for the proof of the main result.
The first Lemma goes back to Xu [13, Lemma 1].

Lemma 1.1. Let X be a smooth projective surface, let (Ct, (P1)t, . . . , (Pr)t)t∈∆ be a non-
trivial one parameter family of pointed reduced and irreducible curves on X and let mi be
positive integers such that mult(Pi)t

Ct > mi for all i = 1, . . . , r. Then

for r = 1 and m1 > 2 C2
t > m1(m1 − 1) + 1 and

for r > 2 C2
t > ∑

r
i=1 m2

i − min{m1, . . . , mr}.
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The second lemma was obtained by Küchle in [6] and has purely arithmetical
character.

Lemma 1.2. Let r > 2 and m1, . . . , mr ∈ Z be integers with m1 > . . . > mr > 1 and
m1 > 2. Then we have

(r + 1)
r

∑
i=1

m2
i >

(

r

∑
i=1

mi

)2

+ mr(r + 1).

2 Proof of the Theorem

In this section we prove Theorem 1. First we give a short overview of the proof.
Since the Seshadri constants of the line bundle in Theorem 1 are strictly less than
the upper bound, they must be computed by Seshadri curves.

We investigate properties of these curves in three steps. First we show that
under assumptions of Theorem 1 the multiplicities of Seshadri curves in points
P1, . . . , Pr must all be equal to 1. This is an arithmetical part of the proof.

In the second step which is more analytical, we show that Seshadri curves
must be rational.

The third step is geometrical and realizes Seshadri curves as hyperplane sec-
tions of X embedded in a projective space as a surface of minimal degree.

Let us now turn to the details.

2.1 Multiplicities of Seshadri curves

By assumptions of the Theorem 1 inequality (1) is satisfied so for every r-tuple
P1, . . . , Pr there exists a Seshadri curve (C; P1, . . . , Pr). By [10, Proposition 1.3]
there are finitely many such curves for every r-tuple. For a very general r-tuple
we have the equality

L.(C; P1, . . . , Pr)

∑
r
i=1 multPi

C
=

1

r
·
√

(r − 1)L2. (4)

The number of algebraic families of curves satisfying this equality is at most
countable. So at least one of these families must not be discrete. From now on we
are interested in Seshadri curves (Ct; (P1)t, . . . , (Pr)t) for L moving in a non-trivial
family over some algebraic set ∆. Let mi be the biggest integers such that

mult(Pi)t
Ct > mi

for all t ∈ ∆. Making ∆ a little bit smaller if necessary we may assume that
actually mi = mult(Pi)t

Ct for all t.
Renumbering the points if necessary we may also assume that

m1 > . . . > mr.

There are the following three cases possible:
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(A) mr > 1 and m1 > 2;

(B) m1 = . . . mr = 1;

(C) mr = 0.

In this step we want to exclude (A) and (C).
In case (A) we are in the position to apply Lemma 1.2. Thus

1

r + 1

(

r

∑
i=1

mi

)2

<

r

∑
i=1

m2
i − mr 6 C2

t ,

where the second inequality is assured by Lemma 1.1. Multiplying the above
inequality by L2 and applying the index theorem on the right hand side we arrive
to the following inequality

1

r + 1

(

r

∑
i=1

mi

)2

· L2
< (L.Ct)

2.

Dividing by the sum of multiplicities and revoking (4) we obtain

1

r + 1
· L2

<
r − 1

r2
· L2

which is not possible.

In case (C) if r > 3, then we have

L.(C; P1, . . . , Pr−1)

∑
r−1
i=1 mi

=
L.(C; P1, . . . , Pr)

∑
r
i=1 mi

=

√

r − 1

r
· α(L; r) <

√

r − 2

r − 1
· α(L; r − 1).

Hence our Theorem on fibrations shows that X is covered by Seshadri curves for
L contradicting the assumption of Theorem 1.

If r = 2, then by assumption we have

ε(L; 1) =

√

1

4
L2

and in this case we get the same contradiction by [12, Theorem].

Thus we showed that for P1, . . . , Pr very general the Seshadri curve for L has
multiplicities equal 1 at all these points. In particular we conclude from (4) that

L.(C; P1, . . . , Pr) =
√

(r − 1)L2 . (5)

Together with the index theorem we get

C2
6 r − 1. (6)



958 W. Syzdek – T. Szemberg

2.2 Rationality of Seshadri curves

In this part we follow basically the deformation argument of [4] with necessary
modifications. First we observe that one can fix the points P1, . . . , Pr−1 and con-
sider Seshadri curves for the r-tuples P1, · · · , Pr−1, P with the last point moving.
Among these curves one can find again a non-trivial family (Ct; P1, . . . , Pr−1, Pt)
over some smooth base ∆. For t general the corresponding Kodaira-Spencer map

Tt∆ −→ H0(Ct, NCt/X)

factorizes in fact over H0(Ct, NCt/X(−P1 − · · · − Pr−1)).
Lemma 1.1 implies that C2

t > r − 1. In view of (6) we obtain that in fact
deg NCt/X = C2

t = r − 1. Since the image of the Kodaira-Spencer map is non-zero
we conclude that the line bundle NCt/X(−P1 − · · · − Pr−1) is trivial. Equivalently,
there is a section sr in H0(Ct, NCt/X) whose zero locus is exactly the divisor P1 +
· · · + Pr−1. Fixing Pr and moving instead another point in the tuple we get in
the same manner sections s1, s2 . . . , sr in H0(Ct, NCt/X) whose zero loci are P2 +
· · · + Pr, P1 + P3 + · · · + Pr, . . . , P1 + · · · + Pr−1 respectively. They are obviously
independent. This shows that NCt/X is a line bundle of degree r − 1 with at least
r sections. This can happen only in the case when Ct is a rational curve. Thus we
showed that under assumptions of Theorem the Seshadri curves are rational.

2.3 Embedding X as a surface of minimal degree

It follows from the last part that X is rationally connected hence it is a rational
surface. Since C2 = r − 1 for Seshadri curves, it follows from the index theorem
and (5) that the Seshadri curves are numerically equivalent. On rational surfaces
this implies the linear equivalence, so Seshadri curves move in a single linear
system. We call this system |M| and we show that M is in fact very ample.

First we show that M separates points. Let P and Q be two distinct points
on X. Let C be a Seshadri curve for L lying in |M| and passing through P. It
might happen that Q lies also on C. Taking P2, . . . , Pr−1 general on C we have that
(C; P, P2, . . . , Pr−1, Q) is a Seshadri curve for L. Taking Q′ very general away of C
there exists also a Seshadri curve (C′; P, P2, . . . , Pr−1, Q′). Since C.C′ = r − 1 this
new curve cannot pass through Q and thus we separated P and Q.

Next we show that M separates tangent vectors. To this end for a fixed point
P it is enough to find two Seshadri curves intersecting transversally at P. Again,
this is the case for the curves C and C′ from the argument above as they have r −
1 = C.C′ points in common, so must intersect at every of these points transver-
sally.

If r = 2 then M has degree 1. This shows that X is P
2. For r > 3 and a smooth

curve C ∈ |M| we consider the exact sequence

0 −→ OX −→ OX(M) −→ OC(C) −→ 0.

Since H1(OX) = 0 and h0(C,OC(C)) = r as already established in the previous
part, we conclude from the long cohomology sequence that M has r + 1 sections.
Hence the image of X under the mapping given by |M| must be a surface of
minimal degree.
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