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Abstract

Harrison’s criterion characterizes the isomorphy of the Witt rings of two
fields in terms of properties of these fields. In this article, we discuss about
the existence of such characterizations for the isomorphism of Witt groups of
hermitian forms over certain algebras with involution. In the cases where we
consider the Witt group of a quadratic extension with its non-trivial automor-
phism or the Witt group of a quaternion division algebra with its canonical
involution, such criteria are proved. In the framework of global fields, these
criteria are reformulated in terms of properties involving certain real places
of the considered fields.

1 Introduction

One of the basic questions in the algebraic theory of quadratic forms is to give
necessary and sufficient conditions for two fields K1 and K2 to have isomorphic
Witt rings: in this case, K1 and K2 are said to be Witt equivalent. In [6], Harrison
expresses Witt equivalence in the following terms:

Theorem 1.1 (Harrison). Let K1 and K2 be two fields of characteristic different from 2.
Then the following are equivalent:
(1) K1 and K2 are Witt equivalent.

(2) There is a group isomorphism t : K1
∗/K1

∗2 → K2
∗/K2

∗2 with t(−1) = −1 such
that the quadratic form 〈x, y〉 represents 1 over K1 if and only if the quadratic form
〈t(x), t(y)〉 represents 1 over K2 for all x, y ∈ K1

∗.
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In the literature, the previous Theorem is known as “Harrison’s criterion”.

In [1], Baeza and Moresi study the possibilities to extend Harrison’s criterion
to fields K1 and K2 of characteristic 2. On the one hand, they show that the bilinear
Witt rings W(K1) and W(K2) of K1 and K2 are isomorphic if and only if K1 and
K2 are isomorphic in the case where dimK1

2 K1 = dimK2
2 K2 > 2, and they give

a complete treatment of the cases where dimK1
2 K1 = dimK2

2 K2 = 1 or 2: see

[1, Theorem 2.9, Proposition 2.10]. On the other hand, in [1, Theorem 3.1], they
characterize the isomorphy of the quadratic Witt modules Wq(K1) and Wq(K2) in
the following way:

Theorem 1.2 (Baeza-Moresi). Let K1 and K2 be two fields of characteristic 2. Then the
following are equivalent:
(1) There exist a ring isomorphism Φ : W(K1) → W(K2) and a group isomorphism
Ψ : Wq(K1) → Wq(K2) such that Ψ(b.q) = Φ(b).Ψ(q) for all b ∈ W(K1) and for all
q ∈ Wq(K1).
(2) There exist groups isomorphisms

t1 : K1
∗/K1

∗2 → K2
∗/K2

∗2, t2 : K1/℘(K1) → K2/℘(K2)

such that t1(DK1
(〈1, a〉)) = DK2

(〈1, t1(a)〉), t2(DK1
[1, b]) = DK2

[1, t2(b)] for all a ∈
K1

∗ and for all b ∈ K1 (where ℘(Ki) = {a + a2 | a ∈ Ki}, i = 1, 2).

Such criteria are very useful. For example, Theorem 1.1 is used by Mináč and
Spira to connect the Witt equivalence of two fields K1 and K2 to the isomorphy
of some groups GK1

and GK2
(called W-groups), GKi

being the Galois group of

a certain field extension Ki
(3) of Ki for i = 1, 2: see [11]. Another consequence

of Theorem 1.1 is the classification of Witt rings of order at most 32 up to Witt
equivalence by their group structure: see [3, Theorem 7.1].

In this context, a natural question arises: is it possible to obtain such criteria
for the Witt group of a central simple algebra with involution ? After recalling
some notations and basic facts in Section 2, we explain how to obtain such criteria
in two particular cases in Section 3. We first treat the case of the Witt group of a
quadratic field extension equipped with its nontrivial automorphism:

Theorem 1.3. Let K1 and K2 be two fields of characteristic different from 2. Let L1 =
K1(

√
a1) (resp. L2 = K2(

√
a2)) be a quadratic field extension of K1 (resp. K2) equipped

with its non trivial automorphism σ1 (resp. σ2). Then, the following are equivalent:
(1) W(L1, σ1) ≃ W(L2, σ2) as rings.
(2) There is a group isomorphism t : K1

∗/NL1/K1
(L1

∗) → K∗
2 /NL2/K2

(L2
∗) with

t(−1) = −1 such that the quadratic form 〈〈a1, x, y〉〉 is hyperbolic over K1 if and only
if the quadratic form 〈〈a2, t(x), t(y)〉〉 is hyperbolic over K2 for all x, y ∈ K1

∗, where
NLi/Ki

(Li
∗) denotes the norm group of the extension Li/Ki for i = 1, 2.

Next, we consider the case of the Witt group of a quaternion division algebra
endowed with its canonical involution. In this direction, we obtain Theorem 3.7
whose statement is similar to Theorem 1.2. The similarity of this result with The-
orem 1.1 shows up by taking K1 = K2 = K:
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Corollary 1.4. Let Q1 = (a, b)K (resp. Q2 = (c, d)K) be a quaternion division algebra
over K endowed with its canonical involution γ1 (resp. γ2). Then, the following are
equivalent:
(1) W(Q1, γ1) ≃ W(Q2, γ2) as W(K)-modules.
(2) There is a group isomorphism t̃ : K∗/NrdQ1/K(Q1

∗) ≃ K∗/NrdQ2/K(Q2
∗) with

t̃(−1) = −1 such that the quadratic form 〈〈a, b, u, v〉〉 is hyperbolic over K if and only
if the quadratic form 〈〈c, d, t̃(u), t̃(v)〉〉 is hyperbolic over K for all u, v ∈ K∗, where
NrdQi/K(Qi

∗) denotes the group of reduced norms from the quaternion algebra Qi for
i = 1, 2.

In this framework, another interesting problem is to give necessary and suffi-
cient conditions for two global fields to be Witt equivalent. This problem is now
entirely solved. In [12, §3, §4], Perlis, Szymiczek, Conner and Litherland prove
that two global fields K1 and K2 of characteristic different from 2 are Witt equiva-
lent if and only if they are reciprocity equivalent (i.e. if there exist a group isomor-
phism t between their square class groups and a bijection T between their non-
trivial places such that the Hilbert symbols (x, y)P and (t(x), t(y))T(P) are equal

for any x, y ∈ K1
∗/K1

∗2 and for any non trivial place P over K1).

In Section 4, we obtain similar results for the two types of Witt groups men-
tioned above when the base fields are supposed to be global. We naturally adapt
the notion of reciprocity equivalence in each of this two cases: the square class
groups are replaced by norm class groups (resp. reduced norm class groups) and
the role of the nontrivial places is played by the real places (resp. certain real
places): see Definition 4.5 and Theorem 4.6. In the first case, we get:

Theorem 1.5. Let K1 and K2 be two global fields of characteristic different from 2. Let
L1 = K1(

√
a1) (resp. L2 = K2(

√
a2)) be a quadratic field extension of K1 (resp. K2)

equipped with its nontrivial automorphism σ1 (resp. σ2). Then, the following are equiva-
lent:
(1) W(L1, σ1) ≃ W(L2, σ2) as rings.
(2) There is an (a1, a2)-quadratic reciprocity equivalence between K1 and K2.

2 Basic results and notations

From now on, all fields are supposed to be of characteristic different from 2.

2.1 Central simple algebras with involution

The general reference for the theory of central simple algebras with involution is
[8]: see also [13, Chapter 8]

In this Section, K will be a field and D will denote a finite-dimensional division
algebra over K. Then dimK D = n2 for some n ∈ N, and n = deg D is called the
degree of D. Suppose that D is endowed with an involution σ. The map σ restricts
to an involution of K and we can distinguish two cases: if σ|K is the identity, we
say that σ is of the first kind, otherwise σ|K is of the second kind.
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A central simple algebra D of degree 2 is called a quaternion algebra.
As char(K) 6= 2, every quaternion algebra has a quaternion basis {1, i, j, k}, that
is a basis of the K-algebra Q subject to the relations

i2 = a ∈ K∗, j2 = b ∈ K∗, ij = k = −ji.

This algebra Q is then denoted by Q = (a, b)K . Note also that every quaternion
algebra has a canonical involution (usually denoted by γ) which is of the first
kind and defined as follows:

γ(i) = −i, γ(j) = −j.

2.2 Hermitian forms

The standard reference for the theory of hermitian forms is [13, Chapter 7]. All
vector spaces considered will be finite dimensional right vector spaces.

A hermitian form over (D, σ) is a pair (V, h) where V is a D-vector space and h
is a map h : V × V → D which is σ-sesquilinear in the first argument, D-linear in
the second argument and which satisfies

σ(h(x, y)) = h(y, x) for any x, y ∈ V.

If D = K and σ = idK then a hermitian form is a symmetric bilinear form which
can be identified with a quadratic form as char(K) 6= 2. All forms considered
will be nondegenerate. Every hermitian form over (D, σ) can be diagonalized
and such a diagonalization will be denoted by 〈a1, · · · , an〉 where σ(ai) = ai for
i = 1, · · · , n.

If y is an element of D such that h(x, x) = y for a certain x ∈ V \ {0}, then we
say that h represents y. If h represents 0, we say that h is isotropic, anisotropic other-
wise. If q is a quadratic form over K, denote by DK(q) the set of those elements of
K∗ that are represented by q.

Let (V, h) and (V ′, h′) be two hermitian forms over (D, σ). If these forms are
isometric then we write h ≃ h′ for short. Their orthogonal sum is denoted by h⊥h′.

2.3 The Witt group of a division algebra with involution

We refer to [13, Chapter 7, 10] for more details about the Witt group.
The orthogonal sum induces a commutative monoı̈d structure on the set of

isometry classes of nondegenerate hermitian forms over (D, σ). The Witt group
of (D, σ) is the quotient group of the Grothendieck group of this commutative
monoı̈d by the subgroup generated by hyperbolic forms and is denoted by W(D, σ).
In the case where D = K, the tensor product can be used to define a structure of
ring on W(K, σ). If moreover σ = idK, this ring is called the Witt ring of K and is
denoted by W(K).

The tensor product gives a W(K, σ|K)-module structure on W(D, σ). The sub-
module generated by nondegenerate hermitian forms of even dimension is de-

noted by I1(D, σ) (or by I(K) if D = K and σ = idK). We write In(K) for (I(K))n
.
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The ideal In(K) is additively generated by the so-called n-fold Pfister forms

〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 := 〈〈a1, · · · , an〉〉,
for a1, · · · , an ∈ K∗.

2.4 The (refined) discriminant of a hermitian form

We refer to [2, §2] for more general statements about this invariant.
Let (V, h) be a hermitian form over (D, σ) and suppose first that σ is an invo-

lution of the first kind. Let {e1, · · · , en} be a D-basis of the right D-vector space V.
Let M be the matrix of h with respect to this basis, E = Mn(D) and m = n deg(D).
We define the signed discriminant of (V, h) by

d±(h) = (−1)
m(m−1)

2 NrdE/K(M) ∈ K∗,

where NrdE/K denotes the usual reduced norm map: see [4, §22]. One can show
that d± induces a well-defined group homomorphism, again denoted by d±

d± : I1(D, σ) → K∗/K∗2.

More precisely, if NrdD/K(D∗) is the group of reduced norms from D, d± induces
a group homomorphism

Disc : I1(D, σ) → NrdD/K(D∗)/NrdD/K(D∗)2,

which is called the refined discriminant.
If σ is an involution of the second kind and if F is the fixed field of σ in K,

the signed discriminant of (V, h) is defined by the formula above and induces a
group homomorphism

d± : I1(D, σ) → F∗/NK/F(K∗),

where NK/F(K∗) is the group of norms of K/F.
In both cases, the kernel of the signed discriminant homomorphism is denoted

by I2(D, σ).

2.5 Chain equivalence

Throughout this Subsection we will use the notations of [9, Chapter I, §5] and will
refer to it for more general statements.

Let D be a division algebra over K endowed with an involution σ (of arbitrary
kind). Let h = 〈a1, · · · , an〉 and h′ = 〈a′1, · · · , a′n〉 be two hermitian forms over
(D, σ). They are said to be simply equivalent if there exists indices i, j ∈ {1, · · · , n}
such that 〈ai , aj〉 ≃ 〈bi, bj〉 and ak = bk for every k different from i and j (note
that, if i = j, the expression 〈ai , aj〉 is understood to be 〈ai〉). Two (diagonalized)
hermitian forms h and h′ over (D, σ) are chain equivalent if there is a sequence of
diagonalized hermitian forms f0, · · · , fm over (D, σ) such that h = f0, h′ = fm

and such that fi is simply equivalent to fi+1 for 0 ≤ i ≤ m − 1. We immediately
see that two chain equivalent forms are isometric. In fact, the converse is also true
by “Witt’s Chain equivalence Theorem”:
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Theorem 2.1 (Witt). If h and h′ are two (diagonalized) hermitian forms over (D, σ) and
if h is isometric to h′ then h and h′ are chain equivalent.

Proof. The proof can be easily adapted from [9, Chapter I, Theorem 5.2] by replac-
ing usual squares by hermitian squares (that is, elements of the form σ(x)x).

2.6 Further results

We state two results that are used several times in this paper.
The following result known as “Arason-Pfister Hauptsatz”gives a dimension-

theoretic sufficient condition for a quadratic form to belong to In(K).

Theorem 2.2 (Arason-Pfister). Let q be a positive-dimensional anisotropic quadratic
form over K. If q ∈ In(K), then dim q ≥ 2n.

Proof. See [9, Chapter X, Hauptsatz 5.1] or [13, Chapter 4, Theorem 5.6].

Let L/K, L = K(
√

a), be a quadratic field extension endowed with its non
trivial automorphism − and D = (a, b)K be a quaternion algebra endowed with
its canonical involution γ. We define the following usual transfer maps

πL :

{
W(L,−) → W(K)

[h] 7→ [x 7→ h(x, x)]
, πD :

{
W(D, γ) → W(K)

[h] 7→ [x 7→ h(x, x)]
.

Theorem 2.3 (Jacobson). With the above notations, the maps πL and πD are injective.

Proof. See [13, Chapter 10, 1.1, 1.2, 1.7] or [7].

Moreover, im(πL) = 〈〈a〉〉W(K) and for any positive integer n, πL(I1(L,−)n) =
〈〈a〉〉In(K).

3 Analogues of Harrison’s criterion

In this Section, we prove isomorphy criteria for the Witt group of a quadratic field
extension with its nontrivial automorphism and for the Witt group of a quater-
nion division algebra with its canonical involution, in analogy with Theorem 1.1.

3.1 The case of quadratic field extensions

Let us keep the same notations as in Theorem 1.3. First, we rephrase Theorem 1.1
by introducing another equivalent condition and it is this condition we will then
generalize to the setting of hermitian forms.

Lemma 3.1. Let K1 and K2 be two fields of characteristic different from 2. Then the
following are equivalent:
(1) K1 and K2 are Witt equivalent.

(2) There is a group isomorphism t : K1
∗/K1

∗2 → K2
∗/K2

∗2 with t(−1) = −1 and
such that the quadratic form 〈〈x, y〉〉 is hyperbolic over K1 if and only if the quadratic
form 〈〈t(x), t(y)〉〉 is hyperbolic over K2 for all x, y ∈ K1

∗.
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Proof. The quadratic form 〈x, y〉 represents 1 over K1 if and only if the 2-fold Pfis-
ter form 〈〈x, y〉〉 is hyperbolic over K1. The equivalence then follows from Theo-
rem 1.1.

In the proof of Theorem 1.3, we will need the following two lemmas.

Lemma 3.2. For i = 1, 2, the signed discriminant induces a group isomorphism d± :
I1(Li , σi)/I2(Li, σi) ≃ Ki

∗/NLi/Ki
(Li

∗).

Proof. The kernel of d± : I1(Li, σi) → Ki
∗/NLi/Ki

(Li
∗) is I2(Li, σi). If b ∈ Ki

∗, then
d±(〈1,−b〉) = b mod NLi/Ki

(Li
∗), hence d± is onto.

As in the case of quadratic forms, the ideals I1 and I2 are related as follows:

Lemma 3.3. We have (I1(Li, σi))
2

= I2(Li, σi) for i = 1, 2.

Proof. We obviously have (I1(Li, σi))
2 ⊆ I2(Li, σi). Conversely, suppose that φ ∈

I2(Li , σi) and that dim φ = 2s. We proceed by induction on s. When s = 1, φ

is an hyperbolic plane hence φ ∈ (I1(Li , σi))
2
. If s = 2 and φ ≃ 〈a, b, c, d〉 then

d = abc ∈ Ki
∗/NLi/Ki

(Li
∗) and φ ≃ 〈a〉 ⊗ 〈1, ab〉 ⊗ 〈1, ac〉 thus φ ∈ (I1(Li , σi))

2
.

Suppose now that s ≥ 3. Write φ = 〈a, b, c〉⊥φ′ with dim φ′ ≥ 1 and

φ = 〈a, b, c, abc〉
︸ ︷︷ ︸

α

⊥ (φ′⊥〈−abc〉)
︸ ︷︷ ︸

β

∈ W(Li , σi).

As d±(φ) = 1 and d±(α) = 1, it follows that d±(β) = 1. By induction,

β ∈ (I1(Li , σi))
2

hence φ ∈ (I1(Li , σi))
2
.

Proof of Theorem 1.3: (1) ⇒ (2) : let Φ : W(L1, σ1) ≃ W(L2, σ2) be a ring iso-
morphism. Since I1(Li , σi) is the only ideal of index 2 in W(Li , σi), we must have
Φ(I1(L1, σ1)) = I1(L2, σ2), and thus also Φ(I2(L1, σ1)) = I2(L2, σ2) by Lemma 3.3.
By means of Lemma 3.2, Φ induces the following group isomorphism

t :

{
K1

∗/NL1/K1
(L1

∗) → K2
∗/NL2/K2

(L2
∗)

c 7→ d± (Φ(〈1,−c〉)) ,

which obviously satisfies t(−1) = −1.
As Φ induces a factor ring isomorphism u from I1(L1, σ1)

2/I1(L1, σ1)
3 to

I1(L2, σ2)
2/I1(L2, σ2)

3, we obtain the following commutative diagram:

(K1
∗/NL1/K1

(L1
∗)) × (K1

∗/NL1/K1
(L1

∗))

(t, t)
��

θL1
// (I1(L1, σ1))

2
/(I1(L1, σ1))

3

u
��

(K2
∗/NL2/K2

(L2
∗)) × (K2

∗/NL2/K2
(L2

∗))
θL2

// (I1(L2, σ2))
2
/(I1(L2, σ2))

3

with θLi
(x, y) = 〈1,−x〉 ⊗ 〈1,−y〉 mod I1(Li, σi)

3 for all x, y ∈ Ki
∗ and for

i = 1, 2. We claim that the hermitian form 〈1,−x,−y, xy〉 is hyperbolic over
(L1, σ1) if and only if it belongs to I1(L1, σ1)

3. The “only if”part is clear. Con-
versely, let 〈1,−x,−y, xy〉 ∈ I1(L1, σ1)

3. Using the notations of Subsection 2.6,
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we know that πL1
(〈1,−x,−y, xy〉) ∈ I4(K1). Applying successively 2.2 and 2.3, it

follows that the hermitian form 〈1,−x,−y, xy〉 is hyperbolic over (L1, σ1).
Lastly, the quadratic form 〈〈a1, x, y〉〉 = πL1

(〈1,−x,−y, xy〉) is hyperbolic
over K1 if and only if 〈1,−x,−y, xy〉 ∈ I1(L1, σ1)

3 by the claim and Theorem
2.3. By commutativity of the previous diagram, this is equivalent to the fact that
〈1,−t(x),−t(y), t(xy)〉 ∈ I1(L2, σ2)

3 which in turn is equivalent to the hyperbol-
icity of the quadratic form 〈〈a2, t(x), t(y)〉〉 = πL2

(〈1,−t(x),−t(y), t(xy)〉) over
K2.
(2) ⇒ (1) : we define a map Φ on diagonal forms by

Φ(〈b1, · · · , bn〉) = 〈t(b1), · · · , t(bn)〉.
We first show that this definition does not depend on the chosen diagonalization.
If n = 1, this is clear. If n = 2, suppose that 〈u, v〉 ≃ 〈u′, v′〉 as hermitian forms
over (L1, σ1). By taking the signed discriminant on both sides, we have uv =
u′v′ ∈ K1

∗/NL1/K1
(L1

∗). If we let the one-dimensional hermitian form 〈u〉 act on
both sides, it follows that the hermitian form 〈1,−uu′ ,−uv′, u′v′〉 is hyperbolic
over (L1, σ1). As a consequence, the hermitian forms 〈t(u), t(v)〉 and 〈t(u′), t(v′)〉
are isometric over (L2, σ2). If n > 2, the result comes from Theorem 2.1 and
from the fact that the property holds for n = 2. As t(−1) = −1, Φ preserves
hyperbolicity and induces a well-defined map between W(L1, σ1) and W(L2, σ2).
Besides, Φ is additive and multiplicative (Φ being multiplicative over rank one
forms which generate additively W(L1, σ1)) and t−1 provides an inverse for Φ

which is thus a ring isomorphism.

In Theorem 1.3, we can show that the condition t(−1) = −1 is not a consequence
of the other two conditions of Assertion (2):

Example 3.4. Let K1 = Q3 and K2 = Q5. Then K1
∗/K1

∗2 (resp. K2
∗/K2

∗2) consists
of four elements, represented by 1,−1, 3,−3 (resp. 1, 2, 5, 10). For a field K, denote
by u(K) the u-invariant of K (see [9, Chapter XI, §6]). Then, u(K1) = u(K2) = 4,
and the unique anisotropic quadratic form of dimension 4 over K1 (resp. over
K2) is 〈1, 1,−3,−3〉 (resp. 〈1,−2,−5, 10〉) (see [9, Chapter VI, Theorem 2.2]). Let

L1 = K1(
√

3) and L2 = K2(
√

2). It is easy to show that |K1
∗/DK1

(〈1,−3〉)| = 2 =
|K2

∗/DK2
(〈1,−2〉)| and that we have a group isomorphism defined by

t : K1
∗/DK1

(〈1,−3〉) → K2
∗/DK2

(〈1,−2〉)
1 7→ 1

−1 7→ 5

As u(K1) = u(K2) = 4, the quadratic form 〈〈3, x, y〉〉 (resp. 〈〈2, t(x), t(y)〉〉) is
hyperbolic over K1 (resp. over K2) for all x, y ∈ K1

∗. Finally, 〈1,−2〉 clearly
represents −1 over K2 and t(−1) 6= −1 = 1 ∈ K2

∗/DK2
(〈1,−2〉).

3.2 The case of quaternion division algebras

In this Subsection, Q1 = (a, b)K1
(resp. Q2 = (c, d)K2

) will denote a quaternion
division algebra over K1 (resp. over K2) with its canonical involution γ1 (resp.
γ2).
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The following two examples show that the group structure of the Witt ring
is not sufficient to classify fields up to Witt equivalence as in Theorem 1.1 thus
motivating our choice of the module structure in Theorem 3.7 and Corollary 1.4.
In the first example, the cardinality of the Witt rings is infinite and in the second,
it is finite.

Examples 3.5. (1) One can find this example in [12, §7]. If K1 = Q( 3
√

2) and
K2 = Q, one can show that W(K1) ≃ W(K2) as groups. But, by [12, §4, Corollary
2], W(K1) and W(K2) are not isomorphic as rings.
(2) One can find this example in [3, Example 7.2]. The construction is based on [5,

§II.1] which was obtained in 1965 by Gross and Fischer. We choose K1 = Q2(
√

d)

where d ∈ Q∗
2\ ± Q∗

2
2. Then, we have |K1

∗/K1
∗2| = 16 (see [9, Chapter VI,

Corollary 2.23]). By [3, Theorem 4.5], there exists a field K2 with |K2
∗/K2

∗2| = 8
and such that W(K1) ≃ W(K2) ≃ C4 × C4 × C2 × C2 as groups. But W(K1) and

W(K2) are not isomorphic as rings by Theorem 1.1 as we have |K1
∗/K1

∗2| 6=
|K2

∗/K2
∗2|.

In order to simplify the statement of Theorem 3.7, we define:

Definition 3.6. Two fields K1 and K2 of characteristic different from 2 are said
to be (Q1, Q2)-equivalent if there is a group homomorphism t : K1

∗/K1
∗2 →

K2
∗/K2

∗2 with t(−1) = −1 such that, if the quadratic form 〈〈x, y〉〉 is hyper-
bolic over K1, then the quadratic form 〈〈t(x), t(y)〉〉 is hyperbolic over K2 for
all x, y ∈ K1

∗ and which induces a group isomorphism t̃ : K1
∗/DK1

(〈〈a, b〉〉) ≃
K2

∗/DK2
(〈〈c, d〉〉). The pair (t, t̃) is called a (Q1, Q2)-equivalence.

Theorem 3.7. The following are equivalent:
(1) There exist a ring homomorphism Φ : W(K1) → W(K2) sending one-dimensional
forms to one-dimensional forms and a group isomorphism Ψ : W(Q1, γ1) → W(Q2, γ2)
such that Ψ(〈1〉) = 〈1〉 and Ψ(q.h) = Φ(q).Ψ(h), for all q ∈ W(K1), h ∈ W(Q1, γ1).
(2) There is a (Q1, Q2)-equivalence (t, t̃) between K1 and K2 such that the hermitian
forms 〈u, v〉 and 〈u′, v′〉 are isometric over (Q1, γ1) if and only if the hermitian forms
〈t̃(u), t̃(v)〉 and 〈t̃(u′), t̃(v′)〉 are isometric over (Q2, γ2) for all u, v, u′, v′ ∈ K1

∗.
(3) There is a (Q1, Q2)-equivalence (t, t̃) between K1 and K2 such that the quadratic form
〈〈a, b, u, v〉〉 is hyperbolic over K1 if and only if the quadratic form 〈〈c, d, t̃(u), t̃(v)〉〉 is
hyperbolic over K2 for all u, v ∈ K1

∗.

First, we need to prove the following lemma:

Lemma 3.8. Let Q be a quaternion division algebra over a field K with norm form NQ.
Let u, v, u′, v′ ∈ K∗. Suppose that the quadratic form NQ ⊗〈u, v,−u′,−v′〉 is hyperbolic
over K. Then uvu′v′ is represented by NQ.

Proof. As the quadratic forms q = 〈u, v,−u′,−v′〉 and q′ = 〈1,−uvu′v′〉 have the
same signed discriminant, q⊥(−q′) belongs to I2(K). Thus,

NQ ⊗ 〈u, v,−u′,−v′〉 ≡ NQ ⊗ 〈1,−uvu′v′〉 mod I4(K).

By assumption and by Theorem 2.2, the quadratic form NQ ⊗ 〈1,−uvu′v′〉 is hy-
perbolic over K and it follows that uvu′v′ ∈ DK(NQ).
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Proof of Theorem 3.7: (3) ⇒ (2) : let u, v, u′, v′ ∈ K1
∗ be such that 〈u, v〉 ≃ 〈u′, v′〉

as hermitian forms over (Q1, γ1). By Theorem 2.3, this is equivalent to the hyper-
bolicity of the quadratic form 〈〈a, b〉〉 ⊗ 〈u, v,−u′,−v′〉 over K1. By Lemma 3.8,
uvu′v′ ∈ DK1

(〈〈a, b〉〉) and t(uvu′v′) ∈ DK2
(〈〈c, d〉〉). Now we also have 〈1, uv〉 ≃

〈uu′ , uv′〉 as hermitian forms over (Q1, γ1) and, since uvu′v′ ∈ DK1
(〈〈a, b〉〉), it

follows that 〈1, u′v′〉 ≃ 〈vv′, vu′〉 as hermitian forms over (Q1, γ1). This is equiv-
alent to the hyperbolicity of the quadratic form 〈〈a, b, vv′ , vu′〉〉 over K1 and it
follows from Assertion (3) that the quadratic form 〈〈c, d, t̃(vv′), t̃(vu′)〉〉 is hyper-
bolic over K2. Now, the hermitian forms 〈t̃(u), t̃(v)〉 and 〈t̃(u′), t̃(v′)〉 are isomet-
ric over (Q2, γ2). The converse is similar.
(2) ⇒ (1) : let (t, t̃) be a (Q1, Q2)-equivalence between K1 and K2 satisfying the
conditions of Assertion (2). Mimicking the first part of the proof of Theorem 1.3,
one can define a group homomorphism Φ : W(K1) → W(K2) sending a one-
dimensional form to a one-dimensional form. We define Ψ in the following way

Ψ :

{
W(Q1, γ1) → W(Q2, γ2)
〈a1, · · · , an〉 7→ 〈t̃(a1), · · · , t̃(an)〉 .

As in the proof of Theorem 1.3, by using Theorem 2.1, we can show that Ψ is a
well-defined map which induces a group homomorphism, and that the inverse
of t̃ induces an inverse for Ψ. Finally, the compatibility relation between Φ and Ψ

is easily proved.
(1) ⇒ (3) : let us suppose the existence of Φ and Ψ as in Assertion (1). As
Φ(I(K1)) ⊂ I(K2), Φ induces the following group homomorphism

t :

{

K1
∗/K1

∗2 → K2
∗/K2

∗2

a 7→ d± (Φ(〈1,−a〉))
and t satisfies the other properties stated in Definition 3.6 by Theorem 1.1. We are
going to show that

DK1
(〈〈a, b〉〉)/K1

∗2 = t−1(DK2
(〈〈c, d〉〉)/K2

∗2). (1)

Let u ∈ DK1
(〈〈a, b〉〉)/K1

∗2. Then Ψ(〈u〉) = Ψ(〈1〉) = 〈1〉 on the one hand,
and Ψ(〈u〉) = Φ(〈u〉).〈1〉 on the other hand (note that Φ(〈u〉) is a quadratic form
over K2 whereas Ψ(〈u〉) is a hermitian form over (Q2, γ2)). Denote Φ(〈u〉) =
〈x〉. Then, we easily see that t(u) = x and that x ∈ DK2

(〈〈c, d〉〉) hence t(u) ∈
DK2

(〈〈c, d〉〉)/K2
∗2).

Let v ∈ DK2
(〈〈c, d〉〉)/K2

∗2 be such that t(y) = v for a y ∈ K1
∗. As Φ(〈y〉) =

〈v〉,
Ψ(〈y〉) = Φ(〈y〉).〈1〉 = 〈v〉.〈1〉 = 〈1〉.

By injectivity of Ψ, it follows that 〈y〉 ≃ 〈1〉 and (1) holds.
Hence, t induces a unique injective group homomorphism

t̃ :

{
K1

∗/DK1
(〈〈a, b〉〉) → K2

∗/DK2
(〈〈c, d〉〉)

x 7→ t(x)

Now, we show that t̃ is onto. Let w ∈ K2
∗/DK2

(〈〈c, d〉〉). Ψ being surjective,
there is a hermitian form h over (Q1, γ1) such that Ψ(h) = 〈w〉 = Φ(q).〈1〉 where
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h = q.〈1〉 and q is a quadratic form over K. Without loss of generality, one can
suppose that h = 〈a1, · · · , an〉 and Φ(q) = 〈b1, · · · , bn〉 with a1, · · · , an, b1, · · · , bn

∈ K1
∗ (note that n is odd). By taking the refined signed discriminant on both

sides of the previous equality, we obtain

n

∏
i=1

bi
2 = w2 mod DK2

(〈〈c, d〉〉)2
.

Consequently, there is a δ ∈ Q2
∗ such that (

n

∏
i=1

bi
2).NrdQ2/K2

(δ)2 = w2 and

w = ±(
n

∏
i=1

bi).NrdQ2/K2
(δ). (2)

An easy calculation and Equation (2) show that

t̃(±
n

∏
i=1

ai) = ±
n

∏
i=1

bi mod DK2
(〈〈c, d〉〉) = w,

hence t̃ is a group isomorphism.
Lastly, let u, v ∈ K1

∗ be such that the quadratic form 〈〈a, b, u, v〉〉 is hyperbolic
over K1. By Theorem 2.3 we have

0 = Ψ(〈1,−u,−v, uv〉) = (Φ(〈1,−u〉) ⊗ Φ(〈1,−v〉)).〈1〉 ∈ W(Q1, γ1).

By definition of t and t̃, we then have

0 = Ψ(〈1,−u,−v, uv〉) = 〈1,−t̃(u),−t̃(v), t̃(u)t̃(v)〉 ∈ W(Q1, γ1).

It follows that the quadratic form 〈〈c, d, t̃(u), t̃(v)〉〉 is hyperbolic over K2. Con-
versely, if the quadratic form 〈〈c, d, t̃(u), t̃(v)〉〉 is hyperbolic over K2 then the
quadratic form 〈〈a, b, u, v〉〉 is hyperbolic over K1 by Theorem 2.3 and by injec-
tivity of Ψ.

In the particular case where K1 = K2 = K, Theorem 3.7 readily implies Corollary
1.4 stated in the Introduction.

Remark 3.9. In [10], Leep and Marshall construct a surjective map between
Aut (W(K1)) and the set of the so-called “Harrison maps”(i.e. satisfying Asser-
tion (2) of Theorem 1.1) and describe the kernel of this map. To prove their re-
sults, they used the fact that every ρ ∈ Homring (W(K1), W(K2)) induces an ele-

ment ρ ∈ Homring (W(K1), W(K2)) respecting the dimension of quadratic forms
and characterized by

ρ(q) ≡ ρ(q) mod (I(K2))
2

for all q ∈ W(K1). It might be interesting to check if such properties hold for
hermitian forms over a quaternion division algebra.
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4 Reciprocity equivalence

In this Section we recall some basic results about global fields and reciprocity
equivalence and refer to [12] for a complete treatment of reciprocity equivalence.
Finally, we define the notion of quadratic reciprocity equivalence and prove The-
orem 1.5.

4.1 Preliminaries

A global field is either an algebraic number field (i.e. a finite field extension of Q)
or an algebraic function field in one variable (i.e. a finite field extension of a field
of the form Fq(X) where Fq is the finite field with q elements for some prime
power q and X is an indeterminate).

Let K be a global field, P be a nontrivial place of K and KP be a completion of
K at P. Let ΩK be the set of nontrivial places of K and set Ωr

K = {real places of K}.
Let K be a global field and suppose P ∈ Ωr

K. Then, there is a topological
isomorphism φ : KP ≃ R. Via φ, KP is an ordered field, real closed and euclidean,
with unique ordering KP

2 (see [13, Chapter 3, Theorem 1.1.4]). We thus say that

an element a ∈ K∗ is positive at P if a ∈ K∗
P

2, and we write a >P 0, negative
otherwise. If a ∈ K∗, we introduce the notation

Ωa
K = {P ∈ Ωr

K | a <P 0}.

The following result will be useful in Subsection 4.3:

Lemma 4.1. Let K be a global field and P ∈ Ωr
K. A n-fold Pfister form q = 〈〈a1, · · · , an〉〉

is anisotropic over KP if and only if ai <P 0 for i = 1, · · · , n.

Proof. The Lemma follows from the well-known properties of quadratic and Pfis-
ter forms over real-closed fields.

4.2 Reciprocity equivalence

Throughout this Subsection, K1 and K2 will denote global fields of characteristic
different from 2. The notion of reciprocity equivalence between such fields has
been defined in [12, §1]:

Definition 4.2. A reciprocity equivalence between K1 and K2 is a pair of maps (t, T),

where t is a group isomorphism t : K1
∗/K1

∗2 → K2
∗/K2

∗2 and T is a bijection
T : ΩK1

→ ΩK2
such that (t, T) respects Hilbert symbols, i.e.

(x, y)P = (tx, ty)TP

for all x, y ∈ K1
∗/K1

∗2 and for all P ∈ ΩK1
.

Remark 4.3. As (x, y)P = 1 if and only if the 2-fold Pfister form 〈〈x, y〉〉 is hy-
perbolic over (K1)P, one can replace the condition concerning Hilbert symbols in
Definition 4.2 by 〈〈x, y〉〉 being hyperbolic over (K1)P if and only if the quadratic
form 〈〈t(x), t(y)〉〉 is hyperbolic over (K2)T(P).
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The main Theorem of [12] says that:

Theorem 4.4. K1 and K2 are Witt equivalent if and only if they are reciprocity equiva-
lent.

The proof of the “if”-part of this Theorem very much relies on Theorem 1.1. The
proof of the converse is much more difficult and is based on a particular descrip-
tion of the 2-torsion of the Brauer group. We refer to[12, §3, 4] for more details.

4.3 Quadratic Reciprocity equivalence

The purpose of this Subsection is to give a proof of Theorem 1.5. Let us keep the
same notations.

Definition 4.5. An (a1, a2)-quadratic reciprocity equivalence between K1 and K2 is a
pair of maps (t, T) where t : K1

∗/NL1/K1
(L1

∗) → K2
∗/NL2/K2

(L2
∗) is a group iso-

morphism with t(−1) = −1 and where T is a bijection T : Ω
a1
K1

→ Ω
a2
K2

such that

the quadratic form 〈〈a1, x, y〉〉 is hyperbolic over (K1)P if and only if the quadratic
form 〈〈a2, t(x), t(y)〉〉 is hyperbolic over (K2)T(P) for all x, y ∈ K1

∗/NL1/K1
(L1

∗)
and for all P ∈ Ωa

K1
.

Proof of Theorem 1.5: (2) ⇒ (1) : by Theorem 1.3, it suffices to show that the
quadratic form 〈〈a1, x, y〉〉 is hyperbolic over K1 if and only if the quadratic form
〈〈a2, t(x), t(y)〉〉 is hyperbolic over K2. Note that, for all P ∈ ΩK1

\Ω
a1
K1

(resp. for

all Q ∈ ΩK2
\Ω

a2
K2

) and for all x, y ∈ K1
∗, the quadratic form 〈〈a1, x, y〉〉 (resp.

〈〈a2, t(x), t(y)〉〉) is hyperbolic over (K1)P (resp. over (K2)Q). This fact is obvious
if the place is complex or if a1 >P 0 (resp. if a2 >Q 0). If P (resp. Q) is finite, it

comes from the fact that (K1)P (resp. (K2)Q) is a local field with u((K1)P) = 4 =
u((K2)Q) (see [9, Chapter XI, Example 6.2(4)]). If the quadratic form 〈〈a1, x, y〉〉
is hyperbolic over K1, then φ = 〈〈a2, t(x), t(y)〉〉 is hyperbolic over (K2)Q for all

Q ∈ Ωb
K2

hence φ is hyperbolic over K2 by the Hasse-Minkowski-Principle (see
[9, Chapter VI, Hasse-Minkowski-Principle 3.1]). The converse is similar.
(1) ⇒ (2) : take t as in Theorem 1.3. For x, y ∈ K1

∗, the Pfister form 〈〈a,−x,−y〉〉
is isotropic over (K1)P for any nonreal place P on K1. By the Hasse-Minkowski-
Principle, it is anisotropic over K1 if and only if it is anisotropic over (K1)P for
some P ∈ Ωr

K1
if and only if x, y >P 0 for some P ∈ Ωa

K1
by Lemma 4.1. Similarly,

the form 〈〈b,−t(x),−t(y)〉〉 is anisotropic over K2 if and only if t(x), t(y) >Q 0

for some Q ∈ Ωb
K2

. Therefore:

∃P ∈ Ωa
K1

: x, y >P 0 ⇐⇒ ∃Q ∈ Ωb
K2

: t(x), t(y) >Q 0 (3)

Since K1 is global, Ωr
K1

is finite. For every P ∈ Ωa
K1

the Weak Approximation

Theorem gives xP ∈ K1
∗ which is positive with respect to P and negative with

respect to any other places in Ωa
K1

.

For P ∈ Ωa
K1

, Equivalence (3) with y = 1 shows that there exists Q ∈ Ωb
K2

with

t(xP) >Q 0. We choose such Q and denote it by T(P).
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Next we claim that if P, P′ ∈ Ωa
K1

and t(xP) >T(P′) 0, then P = P′. Indeed,

(3) with x = xP and y = xP′ yields P′′ ∈ Ωa
K1

with xP, xP′ >P′′ 0. Necessarily

P = P′′ = P′.
It follows from the claim that T is injective. Hence |Ωa

K1
| ≤ |Ωb

K2
| and by

symmetry, |Ωa
K1
| = |Ωb

K2
| so T is in fact bijective.

Further, if x >P 0 for some P ∈ Ωa
K1

, then (3) yields Q ∈ Ωb
K2

satisfying

t(x), t(xP) >Q 0. By the surjectivity of T and the claim, Q = T(P), and there-
fore t(x) >T(P) 0. Consequently, if 〈〈a,−x,−y〉〉 is anisotropic over (K1)P then

〈〈b,−t(x),−t(y)〉〉 is anisotropic over (K2)T(P). By symmetry, this is actually an
equivalence.

In the case of quaternion algebras, we can prove similarly:

Theorem 4.6. Let K be a global field of characteristic different from 2. Let Q1 = (a, b)K

(resp. Q2 = (c, d)K ) be a quaternion algebra over K endowed with its canonical involu-

tion γ1 (resp. γ2). For α, β ∈ K∗, denote by Ω
(α,β)
K the set of real places at which α and β

are negative. Then, the following are equivalent:
(1) W(Q1, γ1) ≃ W(Q2, γ2) as W(K)-modules.
(2) There exists a pair of maps (t, T) where t is a group isomorphism
t : K∗/NrdQ1/K(Q1

∗) ≃ K∗/NrdQ2/K(Q2
∗) with t(−1) = −1 and where T is a

bijection T : Ω
(a,b)
K → Ω

(c,d)
K such that the quadratic form 〈〈a, b, x, y〉〉 is hyperbolic

over KP if and only if the quadratic form 〈〈c, d, t(x), t(y)〉〉 is hyperbolic over KT(P) for

all x, y ∈ K∗/NrdQ1/K(Q1
∗) and for all P ∈ Ω

(a,b)
K .
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[11] J. MINÁČ, M. SPIRA: Witt rings and Galois groups, Annals of Math. 144
(1996), 35–60.

[12] R. PERLIS, K. SZYMICZEK, P. E. CONNER, R. LITHERLAND: Matching Witts
with global fields, Contemp. Math. 155 (1994), 365–387.

[13] W. SCHARLAU: Quadratic and hermitian forms, Grundlehren Math. Wiss. 270,
Berlin, Springer-Verlag 1985.

IUFM de Haute-Normandie
2 rue du Tronquet - BP 18
76131 MONT-SAINT-AIGNAN Cedex, FRANCE
E-mail address: nicolas.grenier-boley@univ-rouen.fr


