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Abstract

In this paper we study complete vertical graphs of constant mean cur-
vature in the Hyperbolic and Steady State spaces. We first derive suitable
formulas for the Laplacians of the height function and of a support-like func-
tion naturally attached to the graph; then, under appropriate restrictions on
the values of the mean curvature and the growth of the height function,
we obtain necessary conditions for the existence of such a graph. In the
two-dimensional case we apply this analytical framework to state and prove
Bernstein-type results in each of these ambient spaces.

1 Introduction

This paper deals with complete non-compact constant mean curvature graphs
over a horosphere of the Hyperbolic space, as well as over horizontal hyperplanes
(slices) in the Steady State space. In connection with our work, L.J. Alı́as and M.
Dajczer (cf. [2]) studied properly immersed complete surfaces of the 3−dimensio-
nal Hyperbolic space contained between two horospheres, obtaining a Bernstein-
type result for the case of constant mean curvature between −1 and 1. In de
Sitter space, K. Akutagawa (cf. [4]) proved that complete spacelike hypersurfaces
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having constant mean curvature in a specific interval of the real line are totally
umbilical. Also for de Sitter space, among other interesting results S. Montiel
(cf. [15]) proves that, under an appropriate restriction on their hyperbolic Gauss
map, complete spacelike hypersurfaces of constant mean curvature greater than
or equal to 1 must actually have mean curvature 1. More recently, A.L. Albujer
and L.J. Alı́as (cf. [1]) have proved that if a hypersurface is bounded away from
the infinity of the Steady State space Hn+1, then its mean curvature must be iden-
tically 1. As a consequence of this result, they concluded that the only complete
spacelike surfaces with constant mean curvature in H3 which are bounded away
from the infinity are the totally umbilical flat surfaces.

For the Lorentz case, our motivation to restrict attention to the Steady State
space comes from the fact that there exists a natural duality between the Gauss
maps of Riemannian hypersurfaces of this space and those of the Hyperbolic
space, provided we model these as hyperquadrics of the Lorentz-Minkowski
space (cf. Section 5). Besides, in physical context the Steady State space appears
naturally as an exact solution for the Einstein equations, being a cosmological
model where matter is supposed to travel along geodesics normal to horizon-
tal hyperplanes; these, in turn, serve as the initial data for the Cauchy problem
associated to those equations (cf. [7], Chapter 5).

In this work we model both our ambient spaces as semi-Riemannian warped
products to obtain necessary conditions for the existence of the types of graphs
mentioned in the beginning of this introduction. More precisely, under appro-
priate restrictions on the values of the mean curvature and the growth of the
height function of these graphs, we actually prove that the mean curvature has
to be identically 1 (cf. Theorem 4.1 and Theorem 5.1). We also prove (under a
slightly stronger hypothesis in the hyperbolic case) that the scalar curvature of
our graphs cannot be globally bounded away from zero in a certain sense. The
analytical framework we use to prove the above-mentioned results consists of the
generalized maximum principle of Omori and Yau. Specifically, we apply Lemma
3 of [4] on nonnegative solutions to the partial differential inequality ∆g ≥ ag2

(a being a positive real constant) to a carefully chosen combination of functions
naturally attached to our immersions.

In dimension 2, for complete surfaces of non-negative Gaussian curvature, we
are able to obtain Bernstein-type theorems related to our previous general results
by using the fact that those surfaces are parabolic in the sense of Riemann surfaces
(cf. [8]). Indeed, if the size of the gradient of the height function of the graph is
suitably bounded, then the graph has to be a horosphere in the 3−dimensional
Hyperbolic space (cf. Theorem 5.2), or a horizontal plane in the 3−dimensional
Steady State space (cf. Theorem 4.5).

This paper is organized in the following manner: in Section 2 we discuss gen-
eral semi-Riemannian manifolds furnished with conformal vector fields, and de-
rive a formula for the Laplacian of a support-like function associated to an ori-
ented Riemannian hypersurface of such an ambient space. Section 3 recasts the
result of the previous one in the particular context of semi-Riemannian warped
products with Riemannian fiber; we also compute the Laplacian of a general
height function and close the section by defining the objects of our main inter-
est, namely, vertical graphs over fibers of such an warped product. Finally, Sec-
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tions 4 and 5 are respectively devoted to applications of this general picture to
the special cases of the Steady State space and the Hyperbolic space.

2 Conformal vector fields

Let M
n+1

be a connected semi-Riemannian manifold with metric g = 〈 , 〉 of
index ν ≤ 1, and semi-Riemannian connection ∇. For a vector field X ∈ X (M),
let ǫ(X) = 〈X, X〉; X is said to be a unit vector field if ǫ(X) = ±1, timelike if
ǫ(X) = −1.

A vector field V on M
n+1

is said to be conformal if

LV〈 , 〉 = 2φ〈 , 〉 (2.1)

for some function φ ∈ C∞(M), where L stands for the Lie derivative of the metric
of M. The function φ is called the conformal factor of V.

Since LV(X) = [V, X] for all X ∈ X (M), it follows from the tensorial character
of LV that V ∈ X (M) is conformal if and only if

〈∇XV, Y〉+ 〈X,∇YV〉 = 2φ〈X, Y〉, (2.2)

for all X, Y ∈ X (M). In particular, V is a Killing vector field relatively to g if and
only if φ ≡ 0.

In all that follows, we consider Riemannian immersions ψ : Σn → M
n+1

, namely,
immersions from a connected, n−dimensional orientable differentiable manifold
Σ into M, such that the induced metric g = ψ∗(g) turns Σ into a Riemannian
manifold (in the Lorentz case ν = 1, we refer to (Σ, g) as a spacelike hypersur-
face of M), with Levi-Civita connection ∇. We orient Σ by the choice of a unit
normal vector field N on it, let A denote the corresponding shape operator and
H = ǫ(N) tr(A)/n the corresponding mean curvature.

The following proposition appeared for the first time in [17], there in the Rie-
mannian setting. In a joint work with A.B. Barros and A. Brasil (cf. [5]) the first
author generalized it to the Lorentz setting. Here we present a unified version of
it, together with a proof.

Proposition 2.1. Let M
n+1

be semi-Riemannian manifold furnished with a conformal

vector field V with conformal factor φ : M
n+1 → R, and ψ : Σn → M

n+1
a Riemannian

immersion. If η = 〈V, N〉, then

∆η = −ǫ n〈V,∇H〉 − ǫ η
{

Ric(N, N) + |A|2
}

− n {ǫ Hφ + N(φ)} , (2.3)

where ǫ = ǫ(N), ∇H the gradient of H in the metric of Σ, Ric is the Ricci tensor of M
and |A| is the Hilbert-Schmidt norm of A.

Proof. Fix p ∈ Σ and let {ek} be an orthonormal moving frame on a neighborhood
of p in Σ, geodesic at p. Extend the ek to a neighborhood of p in M, so that
(∇Nek)(p) = 0, and let

V =
n

∑
l

αlel + ǫ ηN.
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Then

η = 〈N, V〉 ⇒ ek(η) = 〈∇ek
N, V〉+ 〈N,∇ek

V〉
= −〈Aek, V〉+ 〈N,∇ek

V〉,

so that

∆η = ∑
k

ek(ek(η)) = −∑
k

ek〈Aek, V〉+ ∑
k

ek〈N,∇ek
V〉

= −∑
k

〈∇ek
Aek, V〉 − 2 ∑

k

〈Aek,∇ek
V〉+ ∑

k

〈N,∇ek
∇ek

V〉. (2.4)

Now, differentiating Aek = ∑l hklel with respect to ek, one gets at p

∑
k

〈∇ek
Aek, V〉 = ∑

k,l

ek(hkl)〈el , V〉+ ∑
k,l

hkl〈∇ek
el, V〉

= ∑
k,l

αlek(hkl) + ǫ ∑
k,l

hkl〈∇ek
el, N〉〈V, N〉

= ∑
k,l

αlek(hkl) + ǫ ∑
k,l

h2
klη

= ∑
k,l

αlek(hkl) + ǫ η|A|2. (2.5)

Asking further that Aek = λkek at p (which is always possible), we have at p

∑
k

〈Aek,∇ek
V〉 = ∑

k

λk〈ek,∇ek
V〉 = ∑

k

λkφ = ǫ nHφ. (2.6)

In order to compute the last summand of (2.4), note that the conformality of
V gives

〈∇NV, ek〉+ 〈N,∇ek
V〉 = 0

for all k. Hence, differentiating the above relation in the direction of ek, we get

〈∇ek
∇NV, ek〉+ 〈∇NV,∇ek

ek〉+ 〈∇ek
N,∇ek

V〉+ 〈N,∇ek
∇ek

V〉 = 0.

However, at p one has

〈∇NV,∇ek
ek〉 = ǫ〈∇NV, 〈∇ek

ek, N〉N〉 = ǫ〈∇NV, λkN〉
= ǫλkφ〈N, N〉 = λkφ

and

〈∇ek
N,∇ek

V〉 = −λk〈ek,∇ek
V〉 = −λkφ,

so that

〈∇ek
∇NV, ek〉+ 〈N,∇ek

∇ek
V〉 = 0 (2.7)

at p. On the other hand, since

[N, ek](p) = (∇Nek)(p) − (∇ek
N)(p) = λkek(p),
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it follows from (2.7) that

〈R(N, ek)V, ek〉p = 〈∇ek
∇NV −∇N∇ek

V + ∇[N,ek]
V, ek〉p

= −〈N,∇ek
∇ek

V〉p − N〈∇ek
V, ek〉p + 〈∇λkek

V, ek〉p

= −〈N,∇ek
∇ek

V〉p − N(φ) + λkφ,

and hence

∑
k

〈N,∇ek
∇ek

V〉p = −nN(φ) + ǫ nHφ − Ric(N, V)p (2.8)

Finally,

Ric(N, V) = ∑
l

αlRic(N, el) + ǫ ηRic(N, N)

= ∑
k,l

αl〈R(ek, el)ek, N〉+ ǫ ηRic(N, N),

and

〈R(ek, el)ek, N〉p = 〈∇el
∇ek

ek −∇ek
∇el

ek, N〉p

= el〈∇ek
ek, N〉p − 〈∇ek

ek,∇el
N〉p − ek〈∇el

ek, N〉p

+〈∇el
ek,∇ek

N〉p

= −el〈ek,∇ek
N〉p + ek〈ek,∇el

N〉p

= el(hkk) − ek(hkl),

so that
Ric(N, V)p = ∑

k,l

αlel(hkk)−∑
k,l

αlek(hkl) + ǫ ηRic(N, N)p ,

and it follows from (2.8) that

∑
k

〈N,∇ek
∇ek

V〉p = −nN(φ) + ǫ nHφ − V⊤(ǫ nH)

+ ∑
k,l

αlek(hkl) − ǫ ηRic(N, N). (2.9)

Substituting (2.5), (2.6) and (2.9) into (2.4), one gets the desired formula (2.3).

3 Semi-Riemannian warped products

Let Mn be a connected, n-dimensional oriented Riemannian manifold, I ⊂ R an
interval and f : I → R a positive smooth function. In the product differentiable

manifold M
n+1

= I × Mn, let πI and πM denote the projections onto the I and M
factors, respectively.

A particular class of semi-Riemannian manifolds having conformal vector
fields is the one obtained by furnishing M with the metric

〈v, w〉p = ǫ〈(πI)∗v, (πI)∗w〉+ f (p)2〈(πM)∗v, (πM)∗w〉,
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where ǫ = −1 or ǫ = 1 for all p ∈ M and all v, w ∈ TpM. Indeed (cf. [13] and [14]),
the vector field

V = ( f ◦ πI)∂t

is conformal and closed (in the sense that its dual 1−form is closed), with confor-
mal factor φ = f ′, where the prime denotes differentiation with respect to t ∈ I.
Such a space is called a semi-Riemannian warped product, and in what follows we

shall write M
n+1

= ǫI × f Mn to denote it.

If ψ : Σn → M
n+1

is a Riemannian immersion, with Σ oriented by the unit
vector field N, one obviously has ǫ = ǫ(∂t) = ǫ(N). The following result restates
Proposition 2.1 in this context, in the spirit of [3].

Proposition 3.1. Let M
n+1

= ǫ I × f Mn. In the notations of proposition 2.1, if Σ has
constant mean curvature H, then

∆η = −ǫ η
{

Ric(N⊤, N⊤) + (n − 1)(log f )′′(1 − 〈N, ∂t〉2) + |A|2
}

− ǫ nH f ′.
(3.1)

where Ric denotes the Ricci tensor of M and N⊤ = (πM)∗N.

Proof. First of all, η = 〈V, N〉 = f 〈N, ∂t〉, and it thus follows from (2.3) that

∆η = −ǫ η
{

Ric(N, N) + |A|2
}

− n
{

ǫH f ′ + N( f ′)
}

.

Now, N( f ′) = ǫ f ′′〈N, ∂t〉 = ǫ ( f ′′/ f )η. On the other hand, since N = N⊤ +
ǫ〈N, ∂t〉∂t, it follows from Corollary 7.43 of [16] that

Ric(N, N) = Ric(N⊤, N⊤) + 〈N, ∂t〉2Ric(∂t, ∂t)

= Ric(N⊤, N⊤)− ǫ〈N⊤, N⊤〉
{

f ′′

f
+ (n − 1)

( f ′)2

f 2

}

− n f ′′

f
〈N, ∂t〉2

= Ric(N⊤, N⊤)−
{

f ′′

f
+ (n − 1)

( f ′)2

f 2

}

− (n − 1)

(

f ′

f

)′
〈N, ∂t〉2,

where we used that 〈N⊤, N⊤〉 = ǫ(1 − 〈N, ∂t〉2) in the last equality above.

∆η = −ǫ η

{

Ric(N⊤, N⊤)−
{

f ′′

f + (n − 1)
( f ′)2

f 2

}

− (n − 1)
(

f ′

f

)′
〈N, ∂t〉2

}

−ǫ η|A|2 − ǫ n
{

H f ′ + f ′′

f η
}

= −ǫ η
{

Ric(N⊤, N⊤) + (n − 1)(log f )′′(1 − 〈N, ∂t〉2) + |A|2
}

− ǫ nH f ′.

If ψ : Σn → M
n+1

is a Riemannian immersion as above, we let h = πI|Σ : Σ →
I denote the height function of Σ with respect to the unit vector field ∂t. As far as
we know, the following proposition appeared for the first time in [3], as a special
case of Lemma 4.1; here we present a direct proof of the particular case which is
needed for the applications we have in mind.
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Proposition 3.2. In the above notation,

∆h = (log f )′(h){ǫ n − |∇h|2} + ǫ nH〈N, ∂t〉, (3.2)

where H denotes the mean curvature of Σ with respect to N.

Proof. Since h = πI|Σ, one has

∇h = ∇(πI|Σ) = (∇πI)
⊤ = ǫ∂⊤t

= ǫ ∂t − 〈N, ∂t〉N.

where ∇ denotes the gradient with respect to the metric of the ambient space,
and X⊤ the tangential component of a vector field X ∈ X (M) in Σ. Now fix
p ∈ M, v ∈ TpM and let A denote the Weingarten map with respect to N. Write

v = w + ǫ〈v, ∂t〉∂t, so that w ∈ TpM is tangent to the fiber of M passing through p.
Therefore, by repeated use of the formulas of item (2) of Proposition 7.35 of [16],
we get

∇v∂t = ∇w∂t + ǫ〈v, ∂t〉∇∂t
∂t = ∇w∂t

= (log f )′w = (log f )′(v − ǫ〈v, ∂t〉∂t),

so that

∇v∇h = ∇v∇h − ǫ〈Av,∇h〉N

= ∇v(ǫ ∂t − 〈N, ∂t〉N) − ǫ〈Av,∇h〉N

= ǫ(log f )′w − v(〈N, ∂t〉)N + 〈N, ∂t〉Av − ǫ〈Av,∇h〉N

= ǫ(log f )′w + (〈Av, ∂t〉 − 〈N,∇v∂t〉)N + 〈N, ∂t〉Av − ǫ〈Av,∇h〉N

= ǫ(log f )′w + (〈Av, ∂⊤t 〉 − 〈N, (log f )′w〉)N + 〈N, ∂t〉Av − ǫ〈Av,∇h〉N

= ǫ(log f )′w + ǫ(log f )′〈v, ∂t〉〈N, ∂t〉N + 〈N, ∂t〉Av

= ǫ(log f )′{v − 〈v, ∂t〉(ǫ ∂t − 〈N, ∂t〉N)} + 〈N, ∂t〉Av

= (log f )′(ǫ v − ǫ〈v, ∂⊤t 〉∇h) + 〈N, ∂t〉Av

= (log f )′(ǫ v − 〈v,∇h〉∇h) + 〈N, ∂t〉Av.

Now, fixing p ∈ Σ and an orthonormal frame {ei} at TpΣ, one gets

∆h = tr(∇2h) =
n

∑
i=1

〈∇ei
∇h, ei〉

=
n

∑
i=1

〈(log f )′(ǫ ei − 〈ei,∇h〉∇h) + 〈N, ∂t〉Aei, ei〉

= (log f )′{ǫ n − |∇h|2}+ 〈N, ∂t〉tr(A)

= (log f )′{ǫ n − |∇h|2}+ ǫ nH〈N, ∂t〉.

Let us consider again a semi-Riemannian warped product M
n+1

= ǫI × f Mn.
For t0 ∈ R, we orient the fiber Mn

t0
= {t0} × Mn by using the unit normal vector

field ∂t. According to Proposition 1 of [13] (see also Proposition 1 of [14]), Mt0 has
constant mean curvature −ǫ f ′(t0)/ f (t0). We are finally in position to define the
objects of our main concern.
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Definition 3.3. Let ψ : Σn → M
n+1

be a Riemannian immersion. We say that Σ

is a vertical graph over the fiber Mn
t0

if ψ(x) = (u(x), x) for some smooth function

u : Mt0 → [0, +∞).

Three remarks are in order. First of all, if we let h denote the height function
associated to a vertical graph over the fiber Mt0 , with corresponding function
u : Mt0 → [0, +∞), then one obviously has u = h ◦ ψ − t0. Secondly, in the
Lorentz case the condition that ψ is Riemannian in the above definition amounts
to |Du| < 1, where by Du we mean the gradient of u ◦ ι with respect to the metric
of M, where ι : M → Mt0 is the canonical map (cf. [15], Section 4). At last,
our applications in the following sections all deal with semi-Riemannian warped
products with warping function f (t) = et. According to the discussion preceding
the above definition, in this setting all fibers have mean curvature −ǫ, and due to
this fact we will assume that our vertical graphs are those over M0, i.e., such that
u = h ◦ ψ ≥ 0. This agreement clarifies our exposition and does not imply in any
loss of generality; indeed, changing u by u + t0, all of the arguments to come can
be easily adapted to vertical graphs over Mt0 .

4 Vertical graphs in the Steady State space

In this section we consider a particular model of Lorentzian warped product, the
Steady State space, namely, the warped product

Hn+1 = −R ×et R
n. (4.1)

In Cosmology, this space corresponds to the steady state model of the universe
proposed by Bondi, Gold and Hoyle (cf. [7], p. 126).

An alternative description of the Steady State space Hn+1 can be given as
follows (cf. [15]; see also [9]). Let Ln+2 denote the (n + 2)-dimensional Lorentz-
Minkowski space (n ≥ 2), that is, the real vector space Rn+2, endowed with the
Lorentz metric

〈v, w〉 =
n+1

∑
i=1

viwi − vn+2wn+2,

for all v, w ∈ R
n+2. We define the (n + 1)-dimensional de Sitter space S

n+1
1 as the

hyperquadric

S
n+1
1 =

{

p ∈ Ln+2; 〈p, p〉 = 1
}

of Ln+2. From the above definition it is easy to show that the metric induced

from 〈 , 〉 turns S
n+1
1 into a Lorentz manifold with constant sectional curvature 1.

Moreover, for p ∈ S
n+1
1 , we have

TpS
n+1
1 =

{

v ∈ L
n+2; 〈v, p〉 = 0

}

.

Let a ∈ Ln+2 be a nonzero null vector of the null cone with vertex in the origin,
such that 〈a, en+2〉 > 0, where en+2 = (0, . . . , 0, 1). It can be shown that the open
region

{

p ∈ S
n+1
1 ; 〈p, a〉 > 0

}
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of the de Sitter space S
n+1
1 is isometric to Hn+1. Therefore, as a subset of S

n+1
1 , the

boundary of Hn+1 is the null hypersurface

{

p ∈ S
n+1
1 ; 〈p, a〉 = 0

}

.

Back to the warped product model of Hn+1, if ψ : Σn → Hn+1 is a spacelike
hypersurface oriented by the timelike unit vector field N such that 〈N, ∂t〉 < 0,
the hyperbolic angle θ of ψ is the smooth function θ : ψ(Σ) → [0, +∞) such that

cosh θ = −〈N, ∂t〉 ≥ 1. (4.2)

In the following result, the right hand side of (4.3) must be interpreted as +∞

when cosh θ = 1.

Theorem 4.1. Let ψ : Σn → Hn+1 be a complete spacelike vertical graph in the (n + 1)-
dimensional Steady State space, with constant mean curvature H ≥ 1. If

h ≤ − log(cosh θ − 1), (4.3)

then:

(a) H = 1 on Σ.

(b) The scalar curvature R of Σ is non-negative and not globally bounded away from
zero.

Proof. Let g : Σ → R be defined by g = −eh − η. It follows easily from (4.2) and
the definition of h that g ≥ 0 on Σ. On the other hand, our hypothesis on the
growth of h assures that g ≤ 1 on Σ.

A straightforward computation gives us ∆eh = eh{|∇h|2 + ∆h}. Moreover,
since the Riemannian fiber of Hn+1 is Rn, by computing the Laplacian of g with
the aid of Propositions 3.1 and 3.2 we get

∆g = −∆eh − ∆η

= −eh{|∇h|2 + ∆h} − ∆η

= neh{1 + H〈N, ∂t〉} − η|A|2 − nHeh.

Now, let S2 denote the second elementary symmetric function on the eigen-
values of A, and H2 = 2S2/n(n − 1) denote the mean value of S2. Elementary
algebra gives

|A|2 = n2H2 − n(n − 1)H2,

which put into the above formula gives, after a little more algebra,

∆g = n(H − 1){−eh − Hη} − n(n − 1)(H2 − H2)η

≥ n(H − 1)g + n(n − 1)(H2 − H2), (4.4)

where for the inequality we used that −η ≥ eh ≥ 1.



100 A. Caminha – H. F. de Lima

(a) Suppose, by contradiction, that H > 1. Since 0 ≤ g ≤ 1 and (from the
Cauchy-Schwarz inequality) H2 − H2 ≥ 0, we get

∆g ≥ n(H − 1)g2.

Now let RicΣ denote the Ricci curvature of Σ; by applying Gauss’ equation, we
get the estimate

RicΣ ≥ (n − 1)− n2H2

4
, (4.5)

so that we are in position to apply Lemma 3 of [4] to conclude that g ≡ 0. Thus,
η ≡ −eh, so that 〈N, ∂t〉 ≡ −1, i.e., ψ(Σ) is a slice of H. However, such a slice has
constant mean curvature 1, and we arrive at a contradiction. Thus H = 1.

(b) Back to (4.4), we obtain

∆g ≥ n(n − 1)(1 − H2) = R ≥ 0,

where we used Gauss’ equation once more to get the last equality, and H2 − H2 ≥
0 to get the sign for R.

Hence, if there exists α > 0 such that R ≥ α on Σ, from the above we could
derive the inequality

∆g ≥ αg2,

which once more would give us g ≡ 0, so that ψ(Σ) would also be a slice. How-
ever, such a slice is isometric to Rn, thus having scalar curvature R ≡ 0. We,
therefore, have got another contradiction.

Remark 4.2. It is easy to see that hypothesis (4.3) on the growth of h is implied by
the estimate

|∇h| ≤ e−h/2

for the gradient of h, which in turn is taken as a natural one in the literature (see,
for instance, Corollary 16.6 of [6]).

Remark 4.3. As a consequence of Bonnet-Myers Theorem, a complete spacelike
hypersurface ψ : Σn → Hn+1 having (not necessarily constant) mean curvature
H, such that |H| ≤ ̺ < 2

√
n − 1/n (̺ constant), has to be compact; in fact, for

such a bound on H, equation (4.5) would give us

RicΣ ≥ (n − 1)− n2ρ2/4 > 0.

However, since ψ(Σ) is a graph over Rn, it cannot be compact. Therefore, since
2
√

n − 1/n ≤ 1 for n ≥ 2, in a certain sense it is natural to restrict attention to
H ≥ 1.

As a consequence of the previous result, we have the following Bernstein-type
theorem in H3:

Theorem 4.4. Let ψ : Σ2 → H3 be a complete spacelike vertical graph in the 3-
dimensional Steady State space, with constant mean curvature H ≥ 1. If

h ≤ − log(cosh θ − 1),

then ψ(Σ) is a slice of H3.
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Proof. From the previous result, H = 1 on Σ. Now apply the main Theorem
1 of [4] and the classification of umbilical hypersurfaces of the de Sitter space
(cf. [12], Example 1).

We can also apply the result of Proposition 3.2 to prove yet another Bernstein-
type theorem for complete surfaces (not necessarily graphs) of the 3−dimensional
Steady State space.

Theorem 4.5. Let ψ : Σ2 → H3 be a Riemannian immersion of a complete surface of
nonnegative Gaussian curvature KΣ, with constant mean curvature H ≥ 1. If

|∇h|2 ≤ H2 − 1, (4.6)

then ψ (Σ) is a slice of H3.

Proof. By applying the result of Proposition 3.2, we get

△e−h = e−h
{

|∇h|2 −△h
}

= 2e−h
{

|∇h|2 + 1 + H〈N, ∂t〉
}

.

On the other hand, since |∇h|2 = 〈N, ∂t〉2 − 1, hypothesis (4.6) is equivalent
to

|∇h|2 + 1 + H〈N, ∂t〉 ≤ 0,

so that the function e−h is a superharmonic positive function on Σ. However, a
classical result due to A. Huber [8] assures that complete surfaces of non-negative
Gaussian curvature must be parabolic; therefore, h is constant on Σ, i.e., ψ (Σ) is
a slice.

Remark 4.6. We observe that, in relation to our Theorems 4.4 and 4.5, A.L. Albujer
and L.J. Alı́as have recently found another interesting Bernstein-type results in
the 3−dimensional Steady State space (cf. [1], Theorems 3 and 5).

5 Vertical graphs in the Hyperbolic space

In this section, instead of the more commonly used half-space model for the (n +
1)−dimensional Hyperbolic space, we consider the warped product model

H
n+1 = R ×et R

n.

An explicit isometry between these two models can be found at [2], from where
it can easily be seen that the fibers Mt0 = {t0} ×Rn of the warped product model
are precisely the horospheres of H

n+1. Moreover, according to the last paragraph
of section 3, these have constant mean curvature 1 if we take the orientation given
by the unit normal vector field N = −∂t.

Another useful model for Hn+1 is (following the notation of the previous sec-
tion) the so-called Lorentz model, obtained by furnishing the hyperquadric

{p ∈ L
n+2; 〈p, p〉 = −1, pn+2 > 0}
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with the (Riemannian) metric induced by the Lorentz metric of L
n+2. In this

setting, if a ∈ Ln+2 denotes a fixed null vector as in the beginning of the previous
section, a typical horosphere is

Lτ = {p ∈ H
n+1; 〈p, a〉 = τ},

where τ is a positive real number. A straightforward computation shows that

ξp = p +
1

τ
a ∈ Hn+1

is a unit normal vector field along Lτ, with respect to which Lτ has mean curva-
ture −1 (cf. [11]). Therefore, any isometry Φ between the warped product and
Lorentz models of Hn+1 must carry (∂t)q to Φ∗(∂t) = ξΦ(q).

If ψ : Σn → Hn+1 is a vertical graph over Rn, we orient Σ by choosing a
unit normal vector field N such that η = 〈N, V〉 < 0, and hence −eh ≤ η < 0.
Following the discussion of the previous paragraph, it is natural to consider the
Lorentz Gauss map of Σ with respect to N as given by

Σn → Hn+1

p 7→ −Φ∗(Np)

We are finally in position to state and prove, in the Hyperbolic setting, ana-
logues of two of the results of the previous section, starting with Theorem 4.1.

Theorem 5.1. Let Σ be a complete Riemannian manifold with Ricci curvature globally
bounded from below, and ψ : Σn → H

n+1 be a vertical graph in the (n + 1)-dimensional
hyperbolic space, with constant mean curvature 0 ≤ H ≤ 1. If

h ≤ − log(1 + 〈N, ∂t〉), (5.1)

then:

(a) H = 1 on Σ.

(b) If the closure of the image of the Lorentz Gauss map of ψ with respect to N is con-
tained in Hn+1, then the scalar curvature R of Σ is non-positive and not globally
bounded away from zero.

Proof. Let g : Σ → R be defined by g = eh + η. The definition of h, together
with Cauchy-Schwarz inequality, gives us g ≥ 0 on Σ; on the other hand, our
hypothesis on the growth of h assures that g ≤ 1 on Σ.

A straightforward computation gives us ∆eh = eh{|∇h|2 + ∆h}. Moreover,
since the Riemannian fiber of Hn+1 is Rn, by computing the Laplacian of g with
the aid of Propositions 3.1 and 3.2 we get

∆g = ∆eh + ∆η

= eh{|∇h|2 + ∆h} + ∆η

= neh{1 + H〈N, ∂t〉} − η|A|2 − nHeh.
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Now, let S2 denote the second elementary symmetric function on the eigen-
values of A, and H2 = 2S2/n(n − 1) denote the mean value of S2. Elementary
algebra gives

|A|2 = n2H2 − n(n − 1)H2,

which put into the above formula gives, after a little more algebra,

∆g = n(1 − H){eh + Hη} − n(n − 1)(H2 − H2)η

= n(1 − H)g − n(n − 1)(H2 − H2)η. (5.2)

(a) Suppose, by the sake of contradiction, that H < 1 on Σ. Since 0 ≤ g ≤ 1,
−η > 0 and H2 − H2 ≥ 0 (from Cauchy-Schwarz inequality), we get

∆g ≥ n(1 − H)g2.

Thus, from our hypothesis on the Ricci curvature of Σ we are in position to apply
Lemma 3 of [4] to conclude that g ≡ 0, which is the same as 〈N, ∂t〉 ≡ −1. There-
fore, ψ(Σ) is a horosphere of Hn+1. However, such a horosphere has constant
mean curvature 1, and we reached a contradiction.

(b) Back to (5.2), we get

∆g = n(n − 1)(H2 − 1)η = Rη ≥ R〈N, ∂t〉,
where Gauss’ equation was applied for the last equality and we used that η < 0
and H2 − H2 ≤ 0 for the last inequality. The condition on the Lorentz Gauss map
of Σ amounts to the existence of a real number β > 0 such that 〈−N, ∂t〉 ≥ β on
Σ. Therefore, if there existed a positive real number α such that R ≤ −α on Σ, we
would get from 0 ≤ g ≤ 1 that

∆g ≥ −R〈−N, ∂t〉 ≥ αβg2,

so that applying Lemma 3 of [4] once more would give us g ≡ 0. However,
horospheres of Hn+1 are isometric to Rn, thus having scalar curvature identically
0, which is a contradiction.

We close this paper with an analogue of Theorem 4.5 for the Hyperbolic space.

Theorem 5.2. Let ψ : Σ2 → H3 be a complete vertical graph with nonnegative Gaussian

curvature KΣ and constant mean curvature
√

2
2 ≤ H ≤ 1. If

|∇h|2 ≤ 1 − H2, (5.3)

then ψ (Σ) is a horosphere of H3.

Proof. Once more from Proposition 3.2, we have

△e−h = 2e−h
{

|∇h|2 − 1 − H〈N, ∂t〉
}

.

On the other hand, since |∇h|2 = 1 − 〈N, ∂t〉2 and 〈N, ∂t〉 does not change
sign, hypothesis (5.3) is equivalent to

|∇h|2 − 1 − H〈N, ∂t〉 ≤ 0,

so that e−h is a superharmonic and positive on Σ2. Hence, as in the proof of
Theorem 4.5, h is constant on Σ2, i.e., ψ(Σ) is a horosphere.
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Remark 5.3. Since Gauss’s equation gives

KΣ = 2H2 − 1 − 1

2
|A|2,

the assumption KΣ ≥ 0 forces one to restrict attention to the case H ≥
√

2
2 .

Remark 5.4. Under the assumption of properness for ψ, a result similar to the
above can be found in [2].

Acknowledgements

This paper is part of the second author’s doctoral thesis [10] at the Universidade
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2007.
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