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Abstract

We present a multidimensional analogue of the classical Takens normal

form for a nilpotent singularity of a vector field.

Recall the result of F. Takens.

Theorem 1. ([13]) Given an analytic germ of planar vector field of the form
V = x2∂x1

+ h.o.t. there exists a formal change of the coordinates x1, x2 reducing it
to the form

V Takens = (x2 + a (x1))∂x1
+ b (x1) ∂x2

where a (x1) = a2x
2
1 + ... and b (x1) = b2x

2
1 + ... are formal power series.

The Takens normal form is obtained by solving the homological equation

[x2∂x1
, Z] = W

which is a linear approximation to the condition

(
g1

Z

)∗
V = V Takens,

where gt
Z is the formal flow generated by a formal vector field Z and V = V Takens+W.

It means that the space x2
1C [[x1]] ∂x1

+x2
1C2 [[x1]] ∂x2

is complementary to the space
adx2∂x1

{C [[x1, x2]]
≥2 ∂x1

+ C [[x1, x2]]≥2 ∂x2
}, where C [[x1]]≥2 is the space of series

with second order zero at x1 = x2 = 0. This is the definition of the Takens normal
form.

Remark 1. The Takens normal form is not complete. A. Baider and J. Sanders
[2], A. Algaba, E. Freire and E. Gamaro [1] and H. Kokubu, H. Oka and D. Wang
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[8] showed that some terms in the power series a(x1) and b(x1) can be cancelled.
In some cases a complete normal form was obtained, but many cases still remain
unsolved.

Consider now germs of analytic vector fields in (Cn, 0) with nilpotent linear part
at the singular point x = 0. Assume firstly that there is only one Jordan cell.
Therefore we take

V = X + h.o.t. (0.1)

where

X = (n − 1)x2∂x1
+ (n − 2)x3∂x2

+ . . . + xn∂xn−1
. (0.2)

(The coefficients before xi+1∂xi
can be chosen arbitrarily). Define the following

additional vector fields

Y = x1∂x2
+ 2x2∂x3

+ . . . + (n − 1)xn−1∂xn
,

H = −(n − 1)x1∂x1
− (n − 3)x2∂x2

+ . . . + (n − 1)xn∂xn
.

(0.3)

Lemma 1. The vector fields X, Y, H define an irreducible representation σ of
the Lie algebra sl (2, C) such that

σ(A) = X, σ(B) = Y, σ(C) = H,

where A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
and C =

(
1 0
0 −1

)
generate sl(2, C).

Proof. See the book of J.-P. Serre [11] and the papers [5], [6].

The vector field Y , treated as a differentiation of the ring C [x] = C[x1, . . . , xn],
is a so-called locally nilpotent derivation (see [7]). It means that for any polynomial
f (x) ∈ C[x] we have

Y N (f) ≡ 0

for some N > 0. (Of course, X is also a locally nilpotent derivation). With any
locally nilpotent derivation one associates its ring of constants, i.e.

C [x]Y = {g ∈ C [x] : Y g = 0} .

Lemma 2. We have

C [x]Y = C [G1, G2, . . . , Gn−1] [x−1
1 ] ∩ C[x]

where G1 = C1 = x1 and Gj are homogeneous polynomial of degree j defined
inductively by

Gj = Cj · x1
j−1,

Cj = xj+1 −

(
j

1

)
Cj−1

(
x2

x1

)1

− . . . −

(
j

j − 2

)
C2

(
x2

x1

)j−2

−

(
j

j

)
C1

(
x2

x1

)j

.
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Proof. The system of equations defining the vector field Y is following

ẋ1 = 0, ẋ2 = x1, ẋ3 = 2x2, . . .

Since x1(t) ≡ C1 = const and since we can shift the time t, we can assume that
x2(t) = x1t, or

t = x2/x1.

The other equations are solved in the form

xj+1(t) = Cj + j
∫ t

0
xj(s)ds.

From this the formulas from the lemma follow. Also the homogeneity of the poly-
nomials Gj from this follows.

On the other hand, the space of solutions is parametrized by the constants of
motion Cj . Each Cj, j ≥ 2, depends linearly on xj+1, with coefficient being a power
of x1; the same is true for Gj, j ≥ 2. Since any polynomial first integral de-
pends polynomially on x3, . . . , xn, we can replace the latter variables by functions
of G2, . . . , Gn−1 and of x1 and x2; moreover, the dependence on x2 is polynomial.
Thus our first integral becomes a polynomial in x2 with coefficients depending on
elementary first integrals G1, . . . , Gn−1.

As the latter polynomial represents a first integral of Y, it cannot contain positive
powers of x2.

Remark 2. For n = 2 we get C [x]Y = C [x1] . It is easy to prove that for n = 3
we have C [x]Y = C [G1, G2] .

But for n = 4 the ring of constants of the derivation Y is not equal the polynomial
ring of our three polynomials. We have G2 = x1x3 −x2

2, G3 = x2
1x4 − 3x1x2x3 + 2x3

2.
However the following first integral G̃4 = 3x2

2x
2
3 − 4x3

2x4 + 6x1x2x3x4 − 4x1x
3
3 −x2

1x
2
4

cannot be expressed as a polynomial in G1, G2, G3. In fact, for n = 4 the ring
C[x]Y is a ring of regular functions on the algebraic hypersurface in C4 defined by
8x2u − y3 + 8z2 = 0 (see [10]). Also for greater dimensions the ring C[x]Y is not
equal C[Cn−1].

By a theorem of Weitzenböck [14] the ring C[x]Y is finitely generated, but its
structure for general n is not known. There exist examples of locally nilpotent
derivations such that their rings of constants are not finitely generated.

For more informations we refer the reader to the habilitation thesis of A. Nowicki
[10] and to the book of Freudenburg [7].

Among the first integrals for the vector field Y we distinguish those which are
also first integrals for the vector field X. It is easy to see that they are altogether
first integrals for the vector field H.

From the examples in Remark 2 we find that G2 = x1x3 − x2
2 is also first in-

tegral for X when n = 3; it is invariant with respect to the change (x1, x2, x3) →
(x3, x2, x1) . Similarly, the integral G̃4 is a first integral for sl(2, C) when n = 4.

The vector field H defines a quasi-homogeneous gradation degH in the ring C [x] ,
such that

degH xj = 2j − n − 1.
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It follows that the first integrals F for Y which are first integrals for sl(2, C) can be
characterized by the property

degH F = 0,

i.e. that they contain only monomials of quasi-homogeneous degree 0.
Note that the first integrals Gj defined in Lemma 2 have degH Gj < 0. Generally

any first integral of Y contains only terms of degH ≤ 0. Denote by C [x]Y,0 =
ker Y ∩ ker X, respectively by C [x]Y,<0 = ker Y ⊖ ker X, the ring of polynomial first
integrals for sl(2, C), respectively the ring of polynomial first integrals for Y which
contain only terms of nonzero quasi-homogeneous degree degH .

Remark 3. The three vector fields X, Y, H define a distribution D ⊂ TCn, i.e.
a (singular) subbundle such that the fiber Dx at a point x is spanned by the vectors
X(x), Y (x), H(x). If n ≥ 4 then at a general point the dimension of the space Dx

equals 3, but at some points this dimension falls down. If n = 2, 3 then typically
dimDx = 2.

Since the vector fields generate a Lie algebra, the distribution is integrable. By
the Frobenius theorem there exists a foliation F with typical leaves L of dimension
3 (for n ≥ 4) or of dimension 2 (n = 3). In fact, the leaves are orbits of the action
of the Lie group SL(2, C). Since the phase flows gt

X and gt
Y are polynomial (as X

and Y are locally nilpotent derivations) and since (gt
H)∗xj = et·degH xjxj arises from

an algebraic action of C∗, the leaves L are algebraic varietes. So there should exist
algebraic first integrals for the foliation F .

Existence of polynomial first integrals for F follows also from the Clebsch–
Gordan formula.

We can now formulate the main result of this work. Denote by C[x]k and C[[x]]≥k

(respectively C[x]Yk , C[[x]]Y≥k, C[x]Y,<0
k , C[[x]]Y,<0

≥k ) the subspaces of C[[x]] (respec-
tively of C[[x]]Y , C[[x]]Y,<0) consisting of homogeneous polynomials of degree k and
of series which have zero of order ≥ k at the origin.

Theorem 2. Any germ of the form (0.1) can be reduced by means of a formal
change of variables x1, ..., xn to the following

V Takens = X + F1 (G) ∂x1
+ . . . + Fn (G) ∂xn

, (0.4)

where Fj (G) = Fj (G1, . . . , Gn−1) are formal power series in G2, . . . , Gn−1 with
coefficients being Laurent polynomials in G1 = x1 and such that Fj ◦G (x) ∈ C[[x]]≥2

and Fj ∈ C[[x]]Y,<0 for j = 1, . . . , n − 1. Moreover, the form (0.4) is unique in a
sense that the space

C[[x]]Y,<0
≥2 · ∂x1

+ . . . + C[[x]]Y,<0
≥2 · ∂xn−1

+ C[[x]]Y≥2 · ∂xn

is complementary to the space

adX {C[[x]]≥2 · ∂x1
+ . . . + C[[x]]≥2 · ∂xn

} .

Example 1. For n = 3 the Takens normal form is following

ẋ1 = 2x2 + x1Φ1(x1, G2), ẋ2 = x3 + x1Φ2(x1, G2), ẋ3 = Φ3(x1, G2).
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For n = 4 we have

Fj =
∑

a,b,c,d≥0

f
(j)
a,b,c,dG

a
1G

b
2G

c
3G̃

d
4,

where a + 2b + 3c + 4d ≥ 2, a = 0, 1 if d > 0, and 3a + 2b + 3c > 0 for j = 1, 2, 3.

Proof of Theorem 2. Let Z = Z1 (x) ∂x1
+ . . . + Zn (x) ∂xn

be a homogenous
vector field of degree k. We have

adXZ = X (Zn) ∂xn

+ (X (Zn−1) − (n − 1)Zn) ∂xn−1

. . . . . . . . . . . . . . . . . . . . .

+ (X (Z1) − Z2) ∂x1
.

Theorem 2 follows from the following two lemmas.

Lemma 3. In the space C [x]k of homogeneous polynomials we have

ker Y ⊕ Im X = C [x]k ,

ker X ⊖ ker Y ⊂ Im X,

where ker X ⊖ ker Y = C [x]X,>0
k denotes the space of first integrals for X which

contain only terms with nonzero quasi-homogeneous degree degH .

Proof. The vector fields X, Y, H define a representation of the Lie algebra sl (2, C)
in the space C [x]k of homogeneous polynomials. It is known that any finite dimen-
sional representation is split into irreducible representations, so-called highest weight
representations (see [11]). Therefore

C [x]k = H1 ⊕ . . . ⊕Hm,

and any Hj has a basis {e1, . . . , ed} such that

Xe1 = 0, Xe2 = (d − 1)e1, . . . , Xed = ed−1,

Y e1 = e2, . . . , Y ed−1 = (d − 1)ed, Y ed = 0,

H (ej) = (2j − d − 1)ej .

We see that Im X = span (e1, . . . , ed−1) , ker X = span (e1) , ker Y = span (ed).
Hence ker Y ⊕ Im X = Hj .

If d > 1 then we see that ker X ⊂ Im X. If d = 1 then X = Y = H = 0 and
ker X ⊖ ker Y = 0 ⊂ Im X.

Now the equalities from Lemma 3 hold when restricted to any subspace Hj .
Therefore they hold also in C[x]k.
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Lemma 4. The space ker Y ⊖ker X ·∂x1
+ . . .+ker Y ⊖ker X ·∂xn−1

+ker Y ·∂xn

is complementary to the space adXXk in the space Xk of homogeneous vector fields
of degree k.

Proof. From Lemma 3 we see that the last component of the action of adX on Z
equals X (Zn), i.e. lies in the image of X in C [x]k. So the n–th component of the
normal form should be the kernel of Y |C[x]k

. Note that the Zn is not unique, when

killing a suitable part in ∂xn
; we can add some Z̃n ∈ ker X to Zn.

The (n − 1)–th component of the action adX equals X (Zn−1) − λn−1Zn. So all
polynomials from Im X can be killed.

We can hope to make an additional cancellation using Z̃n from ker X. Lemma 3
says that we can write Z̃n = Z̃<0

n + Z̃0
n, where

— Z̃<0
n lies in Im X (and we gain nothing);

— Z̃0
n belongs to ker Y ∩ ker X (here we cancel terms from C [x]Y,0

k ).
So, the (n − 1)–th component in the normal form is in ker Y ⊖ ker X.

Analogously we consider successively other components.

Remark 4. We can generalize Theorem 2 to the case when X, the linear part
of V, has several nilpotent Jordan cells. For example, when X is given by the matrix







0 n − 1 . . . 0
0 . . .

0 1
0


 0

0




0 m − 1 . . . 0
0 . . .

0 1
0







Then X and the vector field Y , which is given by the matrix







0
1 0

. . . 0
n − 1 0


 0

0




0
1 0

. . . 0
m − 1 0







,

define a representation of the Lie algebra sl(2, C). The normal form is

V Takens = X +
m+n∑

j=1

Fj (G) ∂xj

where Fj(G1, . . . , Gn−1, G
′
1, . . . , G

′
m−1) are formal series of polynomials G2, . . . , Gn−1,

G′
2, . . . , G

′
m−1 with coefficients being Laurent polynomials in G1 = x1 and G′

1 = xn+1.
The polynomials G′

1, G
′
2, . . . , G

′
m−1 generate the field of constants of the part of Y

associated with the variables xn+1, . . . , xn+m. The polynomials Fj , 6= n, n + m, do
not contain terms with zero quasi-homogeneous degree.
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Remark 5. Another question is whether the Takens form is analytic (provided
that the initial vector field is analytic near the origin). In the two-dimensional case
the analyticity was proved in [12] and [9]. Some partial results in this direction were
obtained also by V. Basov [3, 4].

We began to study this problem for n ≥ 3, but it looks very difficult. We think
that when n ≥ 3 the above normal form is not analytic in general. We plan to
continue investigations.

Remark 6. R. Cushman and J. Sanders [5, 6] also studied the normal form
for the nilpotent singularities and also used the representation theory of the Lie
algebra sl(2, C). However their normal form is more complicated than ours. In
fact, they applied the representation of this Lie algebra directly in the space Xk

of homogeneous vector fields using the operator adX , adY and adH , while we are
working in the space C[x]k of homogeneous polynomials. Moreover, they seem not
to explore the property ker X ⊖ ker Y ⊂ Im X from Lemma 3.
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