The product of a regular form by a polynomial
generalized: the case zu = \z%v

O.F. Kamech M. Mejri *

Abstract

We consider the problem: given a regular form (linear functional) v, find
all the regular forms u which satisfy the relation zu = Az?v, A € C — {0}.
We give the second-order recurrence relation of the orthogonal polynomial
sequence with respect to u. Some examples are studied.

Introduction

In the present paper, we intend to study the following problem: Let v be a regular
form (linear functional), R and D are non-zero polynomials. Find all regular forms
u satisfying:

Ru = Dv. (1)

This problem has been studied in some particular cases. In fact the product of a
linear form by a polynomial (R(x)=1) is studied in [5,6,7] and the inverse problem
(D(z) = X\, A € C—{0}) is considered in [12,15,19,21]. More generally, when R and
D have non-trivial common factor the authors of [13] found necessary and sufficient
conditions for u to be a regular form. The case where R = D is treated in [2,3,12,14].
The aim of this contribution is to analyze the case in which R(z) = z and D(z) =
Az?, A € C — {0}. We remark that R and D have a common factor and R # D.
In fact, the inverse problem is studied in [23,24]. On the other hand, this situation
generalizes the case treated in [14] ( see (1.2) below).

In the first section, we will give the regularity conditions and the coefficients of the
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second-order recurrence relation satisfied by the monic orthogonal sequence (MOPS)
with respect to u. We will study the case where v is a symmetric form: the regularity
conditions become simpler. The particular case where v is a symmetric positive
definite form is analyzed. The second section is devoted to the case where v is
a semi-classical. We will prove that u is also semi-classical form and some results
concerning the class of u are given. In the last section, some examples will be treated.
The regular forms found in theses examples are semi-classical of class s € {1,2}. The
integral representations of these regular forms and they coefficients of the second-
order recurrence satisfied by the MOPS with respect to u are given. As a result, we
also found that the list given in [4] is not complete ( see proposition 3.2 below).

1 The problem xu = \x2v

1.1 The main problem

Let P be the vector space of polynomials with coefficients in C and P’ its dual. We
denote by (u, f) the action of u € P' on f € P. Let us recall that a form w is called
regular if there exists a monic polynomial sequence {P,},>0, deg P, = n, n > 0
such that (u, P,P) = mn0nm, n,m >0, r, # 0, n > 0. The left-multiplication hw
of the form w by a polynomial h is defined by (hw, p) := (w, hp) for all p € P.
We consider the following problem: given a regular form v, find all regular forms u
satisfying

zu = \r*v , A € C — {0}, (1.1)
with the constraints

(u)O =1, (U)O =1,

where (u), := (u,2™), n > 0, are the moments of u. This is equivalent to
u= v+ (1 — A(v)1)d, (1.2)
where (4, f) = f(0).

We see that when 1 — A(v); # 0 and xv is regular, we meet again the problem
studied in [14].
We suppose that the form v possesses the following integral representation:

+oo

(v, f) = / V(x)f(x)dx, for each polynomialf,

— 00

where V' is a locally integrable function with rapid decay. Then the form w is
represented by

(w,f) =X [ aV(@)f@)de + (1= A0))f(0). (1.3)

Let {S,}n>0 denote the sequence of monic orthogonal polynomials with respect to
v, we have

So(x) =1, Si(z)=2—-%& ,

Spia2(x) = (¥ — §ny1)Sny1 () — On 15, (x), n > 0, (1.4)
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" (v, 253 (x)) (v,951)
UV, Lo, T U, 0,
g’n <’U S2> ) Un+1 = <U S—;; ) n Z 0 (15>

When u is regular, let {Z,},>0 be the corresponding monic orthogonal sequence
ZO(x):l ) Zl(x):x_ﬁ() ’
Zny2(x) = (v — Boy1) Zn1 (T) — Yny1Zn(), n > 0,

where 7,.1 # 0 for all n > 0.

From (1.1), we know that the existence of the sequence {Z,},>0 is among all the
strictly quasi-orthogonal sequences of order one with respect to Az*v = w, (w is not
necessarily a regular form) [8,16,18,20]. This is

LU2Z0(.§L’) = SQ(SL’) + 0151(.]7) —+ b(],

(1.6)

1.7
I2Zn+l(x) = Sn+3($) + Cn+2Sn+2($) + bn—i-lSn-i-l(x) + Cl,nSn(l'), n Z 07 ( )
with a,, #0 , n > 0.
By virtue of (1.7), we can deduce
Sn+3(0) + Cn+25n+2(0) —+ bn—i-lSn—i-l(O) + anSn(O) = 0, n Z 0. (18)
8 Zn1(®) = (005n+3) (@) + cny2(00Sn12) (@) + bnt1 (60 Sn+1) () + an(0Sn) (@),
n>0. (1.9)
Zn1(w) = (0550+3) (@) + Cns2(05Sn42) (@) + b1 (055041) () + @n(055,) (),
n >0, (1.10)

with in general (0,f)(z) :={2=LD ceC feP.

Lemma 1.1. Let {Z,},>0 be a sequence of polynomials satisfying (1.7) where ay, by,
and ¢, are complex numbers such that a, # 0 for all n > 0. The sequence {Z,}n>0
1s orthogonal with respect to w if and only if

(uy, Zps1) =0, n > 0. (1.11)

Proof.

The condition (1.11) is necessary from the definition of the orthogonality of {Z,,},>0
with respect to u.

For 0 < k < n we have

<u> $k+1Zn+l(x)> = <ZL’U, l’an-i-l(l’))
= Mv, "2 Z,1(2)), n >0 (by (1.1)).
Taking the relation (1.7) into account, we get
(u, 2" Z, 1 (2)) =Mv, 258, 13(2)) + Aenso (v, 25, 1o(2))
4+ Ayt (v, 2%S, 11 () + Aay (v, 275, ()
From the orthogonality of {S,, },>0, we obtain

(u,a"' Z1(2)) =0, 0<k<n—1,n>1,
(u, 2" Z, 1(2)) = Aan(v, S2) #0, n > 0.
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Consequently, the precedent relation and (1.11) prove that {Z,},>¢ is orthogonal
with respect to w. This proves the Lemma.

Based on (1.7) and (1.11), we get

0 = Sp+3(0) + cni25042(0) 4 bpy15041(0) + @, S, (0),
0= 5745(0) + n+255,45(0) + but155,41(0) + @,.S;,(0),
0= <u, Zn+1>

= (U, 035 13) + Coyo (U, 08Snia) + bui1{u, 03Sn41) + an(u, 055,), n >0, (1.12)

with the following initial conditions:

0= 52(0) + 0151(0) + b()S()(O),

0= S5(0) + 151 (0) + by Sh(0). (1.13)

If we denote
Sn+2(0) Sn-i-l(o) Sn(o)
Api=| S ,0) S0 S0 |, n>o0. (1.14)
<u7 ‘9(2]Sn+2> <u7 Hgsn-i-l) <u7 HSSTL>

From the Cramer rule, we get

Apa, = —=A,1, n > 0. (1.15)
Sn+2(0) - n+3(0) Sn(o)
Apbpi1 =] Sp42(0) —Spn13(0) 5,(0) |, n=0. (1.16)

(0,025 0s0) (0, 63S4s) (. 625,)
“Sua(0)  Suna(0)  Su(0)
Mcwrz=| ~Si5(0)  Sia(0) S0 [nzo0. (D)
(0,035 sa) (0, 0351} (. 63S,)

Proposition 1.2. The form w is regular if and only if A, # 0, n > 0. In this case
the coefficients of the second-order recurrence relation of {Z,}n>0 are given by the
following formulas:

Ay
= —-A—. 1.18
T Ay ( )
AN,
Tnto = —"2 G0, n > 0. (1.19)
An-‘,—l
Br1 = —bn+1A—nlUn+1 + 2 — Snra — &ny1, 2> 0. (1.21)
n+
Proof.
Necessity.

Through (1.14), we have
Ag = —57(0)(u, 03S,) = —1. (1.22)
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{Zn}n>0 is orthogonal with respect to w, hence it is strictly quasi-orthogonal of
order one with respect to z%v, which satisfies (1.7) with a,, # 0, n > 0. This implies
A, # 0, n > 0. Assuming the contrary, there exists an ny > 1 such that A,, = 0.
Then from (1.15), Ay = 0 becomes a contradiction.

Sufficiency.

Let

c1 = —55(0). (1.23)
b() = —0151(0) — SQ(O) (124)
Then the initial conditions (1.13) are satisfied.
Furthermore, the system (1.12) is a Cramer system whose solution is given by (1.15),
(1.16) and (1.17). The numbers a,, b, and ¢, (n > 0) define a sequence of polyno-
mials {Z,}n>0 by (1.7). Therefore, it follows from (1.12) and Lemma 1.1 that u is

regular ( {Z,}n>0 is the corresponding monic orthogonal polynomial sequence).
Moreover, we have

(u, Zy 1) = (u, 2" Zoga (2)) = Mo, 2™ Zpga(2), n > 0,
by (1.7) and the orthogonality of {S,},>0. We get
(u, Z2.1) = Aa,(v,S2), n > 0.
Taking the relation (1.15) into account, we obtain

An—l—l
A

Making n = 0 in the latter equation, we get (1.18).
On the other hand, we have

(u, Z:1) = =\ (v,5%), n > 0. (1.25)

<u Zn+2>
Yn ,n=>0.
= <U Zr2z+1>

9).

7) and the orthogonality of {5, },>0

Based on the relation (1.25), we can deduce (1.1
We have 3y = (u, z) = Mv, 2*Zy(x)) and by (1.
we obtain (1.20).

From (1.9) and the orthogonality of {Z, },>0, we obtain

(u, 2251 (%)) = (U, Zp11005013) + Cnyalu, Z3,.1), n > 0. (1.26)

HH

Using (1.4), we have
00Sn13 = Sna2 — £ni200Snio — Oni2600Sni1, n > 0.
Through the latter relation and the orthogonality of {Z,},>0, we get
(U, Zpn1100Sns3) = (U, Zny1Sn12) — Envalu, Z72L+1>’ n > 0.

However, we have

<u> Zn+1Sn+2> = (xu, Zn+1Sn+1> - gn-l-l(ua Zr2z+l> (bY(1'4))
= M, #° Zp 41 (2) S (7)) — Ensa(u, Z2 1), n > 0, (by (1.1)).
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On account of (1.7) and the orthogonality of {S,},>0, we get
<U, Zn—l—lSn—i-Z) - )\bn+1<v> Sr2z+l> - §n+1<u> Zr27,+1>7 n Z 07

then the latter becomes

(U, Zn1100Sn13) = Abpy1 (v, 52+1> — (&1 + Enr2) (s Z72H-1>7 n 2 0.

Therefore, (1.26) can be written as the following

<“ er2L+1( )) = )\bn+1<v, Si+1> + (Cn+2 —&ng1 — §n+2)<ua Z72L+1>7 n = 0.

As a matter of fact, we get

(v, 225,.1(x))

/8 — <,U7 S72l+1>
n <u7 Zrzz+1>

<u7 Zrzz-i-l)
By virtue of (1.25), we can deduce (1.21).

= )\bn-‘rl + Cnt2 — §n+1 - €n+2> n > 0.

1.2 The computation of A,

As we have seen in the proposition 1.2, it is very important to have an explicit

expression of A,,.
First, we need the following lemma:
Lemma 1.3. The following formulas hold
(u, 0pS,) = A(v Sn) = ASH(0) + (1 — A(v)1)S.,(0), n > 0.
1
(1, 63.8,) = .S1(0) + A(S{2,(0) — S,(0) — 5 ()15:(0)), n =0,

(v, 82%) = < 0)S(0) = Si1(0)S24(0), n > 0,

n

with S (x) = (v, L?"“(E)) n >0 and SU)(z) = 0.
Proof.

Both formulas (1.27) and (1.28) can be deduced from (1.2).
The formula (1.29) is proved in [23].

By (1.4), we successively obtain the following relations:

Sn42(0) = =&n115041(0) — 04415,(0), n > 0.

§,12(0) = S01(0) = €151 (0) = G S, (0), m > 0.
(00.Sh+2)(2) = Sp41(2) — &at1(00Snt1)(@) — ont1(60Sn)(2), n = 0.
(65Sn+2)(2) = (B0Sn+1) (%) = Enr1(05Sn11)(2) — 041 (655,)(x), n > 0.

Using (1.33), we get
(1,03 Sn42) = (U, 005n41) — Ens1 (U, 05 n41) — Ongr(u, 055n), n > 0.

Taking the relations (1.30), (1.31) and (1.34) into account, we get (1.14)
written as the following:

0 Sn41(0)  Sn(0)
Ap=| Spa(0) 5,400 S5,(0) |, n=>0,
(u, 00Snt1)  (u, ‘9(2]Sn+1> (u, 9(2)5n>

(1.27)
(1.28)
(1.29)
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that is

Do = =Sy1(0)] Sa(0)(u, 83,) = 5,(0) (. 635, |

317

+ (1,00S012){ S (0)54(0) = 5,(0)S,.4, (0) ), m 2 0.

From the relations (1.27), (1.28) and (1.29), we get

B = M 80410)(0,57) = (001 (35010, (0) = 8110 (0)

2
with
Xn(2) = Sp(2)8, 11 (x) = Snpa ()5, (2), n 2 0.
If the form w is regular, for (1.15), (1.16) and (1.17) we obtain
An-i—l
A,
bpi1 = AYAE, + F,) + 0pya, n > 0.
Cns2 = =D (MG + Hp) + &g, 1 > 0,

a, = — ,n>0.

where
Ey = S,12(0)(€4(0) + %( )111,(0)) = (W)1.5,,45(0)p1a(0), 1 = 0
Fo = =3 Sus2(O(0) + Sla(0)pa(0), n > 0
G = S12(0) (0, 52) - %( JX(0)) + (1)1 (0)S)22(0), 7.2 0

with

fn() = Spa()Sh () — St o .
O, () = S, (2) Sy (x) — Spya(a) LY, (2), n > 0.

3
N

S
S
\Y
o

1.3 The case where v is a symmetric form

In the following sequel we will assume that v is a symmetric regular form.

We need the following result:
Lemma 1.4. [23] When {Sn}>0 is a symmetric sequence, we have

SZn = H O2u+1 = >0 s S2n+1(0) =0 , N Z 0.

U2n+1 =0

S2n+1()_0 n>07 Sén()_o nZO

;LO

1 / /
+ _Sn-i-l(O)Xn(O) - Sn+1(0)Xn(O)> n 2 O>

(1.35)

(1.36)

(1.40)
(1.41)
(1.42)

(1.43)
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where

= Z 124 0 >0, (1.46)

0 92v+1 =0 O2u o
with oo = (u)y = 1.
Proposition 1.5. We have the following formulas:

(_1)n+1 n 2, n )
Ay, = > (H Uzu) (H U2u+1)An7 n > 0.
2n+1 =0 . . (147>
Agpy1 = A(—=1)"H! (H ‘72u> (H 2u+1) n >0,
pn=0 =
Proof.
By virtue of lemma 1.4, for (1.36) we get
A 2n+1 2n+1
2(0) = — ou,n>0; nt1(0) = A, o, n > 0.
Xan(0) O2n+1 };[0 ! Xan1(0) };[0 g (1.48)

Xn(0) =0,n >0

When v is a symmetric form, we have (v); = 0, then (1.35) becomes
1
An = )\Sn+l(0)<v> 572L> + §Sn+l(O)X;L(O) - S;L+1(O)Xn(0)a n > O>

by (1.48), we get (1.47).

Theorem 1.6. The form u is regular if and only if A, # 0, n > 0.
Proof.
We get the desired result from the proposition 1.5.

Corollary 1.7. When wv is a positive definite form u is a reqular form.
Proof.
If v is a positive definite then o, > 0. Therefore, we obtain A,, > 0, n > 0, thus the
desired result.

Proposition 1.8. When u is a regular form, we have

n
O2u+1
= —)\Ugn_HA 2 I I e , n 2 O,
=0 %2

n
M
Aoni1 = A" 05,000 4 II ; n 2 0.
=0 U2u+1

(1.49)

bay, = O2pt1, 1 > 0,
(1.50)

n
o
o -1 2pu+1
bont1 = Oonga + A, I I ,n>0.
u=0 O2u

01:0

L Ot
Con —AA, 2 = n >0,
B HO 24 (1.51)

Cont3 = A~ 'A nAnt 102042 H

=0 U2u+l

o
2 ,n > 0.
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Proof.
On account of (1.47) and (1.37), we get (1.49).
By (1.13), it follows that
b(] =07 , C = 0. (152)

For (1.44) and (1.45) we have

15,(0) = (H 0-2;1) (ﬁ 0’2p+1), n>0, ph1(0)=0n>0,
n=0

02n+1 =0

by the preceding relations and (1.48), for (1.40)-(1.43) we obtain

& H Uzu) (H O-Q,u—l—l) n > 0,

O2n+1 =0

L (ﬁazu)(];[oazwl),nZO,

E,=0,n>0; Fp,=(-1)""

Fos1=0,n>0 ; G =
O2n+1 =

G2n+1—0,n20 ) HQnIO,nZO,

H2n+1 = <_1>na2n+2AnAn+l(H Uzu)z H O2u+1, N > 0.

pn=0 pu=0

Taking the previous relations and (1.52) into account, the relations (1.38) and (1.39)
give (1.50) and (1.51).

2 Some results on the semi-classical case

Let us recall that a form w is called semi-classical if it is regular and there exists two
polynomials ¢ and 1) such that

(pu)" + pu =0,

where the distributional derivative w’ of a form w is defined by (w', p) = —(w, p’), p €
P.

The class of the semi-classical form u is s = max(deg ¢ — 2,deg — 1) if and only if
the following condition is satisfied:

TI(16(0) + () |+ (w00 + 826} 1) > . (21)

where ¢ € {z : ¢(x) = 0} [16].
In the following sequel, the form v is taken to be semi-classical of class s satisfying

(pv) + v =0.

From (1.1) when the form w is regular, it is also semi-classical and it satisfies
(ou)' +u =0,

with

¢(z) =a¢(x)  and  P(z) =2")(z) - 3z(). (2.2)
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Lemma 2.1.
(a) We have the following formulas:

(Oc(f9))(x) = f(2)(0cg)(x) + g(c)(0-f)(x) , f,9 €P. (2.3)
<SL”UJ, 90f> = <w7 f) + C<w7 Hcf> - (w)Of(C) 9 f € P , W e P/' (24>
(b) Let f,g € P ,w e P, if we have (fw) + gw = 0 then (w,g) = 0.
Proposition 2.2. The class of u depends only on the zero x = 0.

We use the following lemma to prove it:
Lemma 2.3. For all zero ¢ of ¢, we have

(U, 0.0 + 020) = A* (v, 0c1) + 626)
+ (@(0) + ¢'(e)){c+ (W = M +c(v)1 + (v)2)}, (25)

and . .
(e +8(0) = (0 + 4(0). (2.6)
Proof.
Let ¢ be a zero of ¢, we can write the following equation:
o(x) = 2*(x — ¢)(0:9) (). (2.7)

On account of (2.3), we successively obtain

(020)(x) = 2*(620) (x) + ¢/(c) (B(1)) (). (2.8)
(0:4)(2) = 22 (0:0) () + () (B:(t%)) () — 32 (6.9) (). (2.9)

Then
(u, 000 + 620) = (&%, 0 + 676) — 3w, 0e0) + (1 () + ¢'(0)) (u, () (),
by (1.1), we have zu = Az?v and z?u = Az®v therefore, it follows that
(u, 0 + 026) = Mav, 0.0 + 626) — 3M (2”0, 6.6) + (1)(c)
+¢/(c)(u, 6.(°) (). (2.10)
Using (2.4), we get successively

(@0, 0 + 020) = (v, 2°P) + c{v, 29) + (v, ) + (v, 2¢) + 2c(v, ¢)
+ 3¢ (v,0.0) + (v, 0.0 + 62)

— (@(0) + ¢'(0)) ()2 + clw)r + &),
(@%0,0:0) = (v, 20) + c(v, §) + ¢*(v,0c0).
Consequently (2.10) can be written
(u, 0.0 + 020) = Mv, 2% — 22¢) + (v, 2 — ¢) + A\ (v, )
+ A0, 00 + 020) + {{u, 0(t7)(2)) — Mc® + c(v)1 + (v)2) Heb(e) + ¢/(c)).
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But (¢v)’ + v = 0. Then (z¢v) + (21) — ¢)v = 0 and (2%¢v)" + (2% — 2xd)v =

by the lemma 2.1, we obtain

<U71/}> =0, <va7vb - ¢> =0, <U,$2¢ - 2$¢> =0.

Therefore,

(u, 0 + 02) = A (v, 0 + 029)
+ {{u, 0c(t%)(2)) — Mc? + c(v)1 + (v)2) () + ¢'(c)).

On the other hand, (u, 0.(t?)(z)) = (u,z + ¢) = (u); + ¢, thus (2.5).
From (2.2), we can deduce (2.6).
Proof of the proposition 2.2.
Let ¢ be a zero of ¢ such that ¢ # 0.
If 9(c) + ¢'(c) = 0, using (2.5), (u, 0 + 02¢) = A3 (v, 0. + 02¢) # 0 since v is
semi-classical of class s and so satisfies (2.1).

If ¢(c) + ¢'(c) # 0, then (c) + ¢'(c) # 0, from (2.6).

In all cases, we cannot simplify (2.2) by = — c.

Proposition 2.4. Let v be a semi-classical form of class s satisfying

(¢v)' + v =0,
and introduce
Y1 = (1 — A(v)1)9(0), (2.11)
Uy 1= (1 — A(v)1)(¥(0) — ¢(0)), (2.12)
U5 = (1 = AMv)1)¥'(0). (2.13)

The form u given by (1.1) is also a semi-classical of class § satisfying
(¢pu)’ + 1hu = 0.

Moreover,

(1) if 91 #0, then 5§ = s+ 2 and §(z) = 22¢(z), ¥(z) = 2% () — 3xd(2);

(2) if 91 =0 and V5 # 0 or ¢(0) # 0, then § =s+ 1 and ¢p(x) = zp(x), Y(x) =
wip(x) — 2¢(x);

(3) if V1 =0,92 =0, #(0) =0 and ¥3 # 0 or ¢(0) #0 , then § =s and
o(x) = 6lx), P(2) = ¥(x) — (66) ().
Proof.

(1) From (2.2), we have

and
(u, 60) + 650) = (u, 21 (x) — 2¢()) = (wu, ) — 2(u, ¢).

Taking into account the relation (1.2), we obtain

(u, 1) + 620) = MNv, 220 (z) — 2z¢(x)) — 2(1 — A(v)1)$(0).
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But (¢v) + v = 0, then (2%¢(x)v)" + (2% (x) — 22¢(x))v = 0. By virtue of the
lemma 2.1, we have (v, %1 (x) — 2z¢(z)) = 0 so, the latter becomes

(u, 00th + 050) = —2(1 — A(v)1)$(0) = —20,. (2.14)

Therefore, if ¥; # 0, it is not possible to simplify from (2.1), which means that the
class of u is § = s + 2 and u satisfies

(pu) + Yu =0, (2.15)

with
O(z) = 2%6(x), P(x) = 2"Y(x) - 3ze(x).
(2) If ¥, =0, by (2.14) and (2.15) u satisfies

(Gou)’ + dhou = 0, (2.16)
with . 5
¢o(x) = zd(x), Yo(x) = 29 (x) — 2¢(z)
Then . .
U0(0) + ¢(0) = —¢(0), (2.17)
and
<U,90?20 +90€Z~50> (u, v — 0o9)
= Muv, 2 (z) — 2(609)(2)) + (1 — A(v)1)(¥(0) — ¢(0))
= Muv, z¢(z) — ¢(z)) + Ap(0

(0) + (1 = A(v)1)(¥(0) — ¢(0)).
But (¢v)' + v = 0, then (z¢(x)v) + (z¢p(x) — ¢(z))v = 0. By lemma 2.1 we obtain
(v,2(x) — ¢(x)) = 0. As result, we get

(u, Botlo + 986230> = A¢(0) + a. (2.18)

On account of (2.17), (2.18) and (2.1), we can deduce that when ¢(0) # 0 or Y5 # 0,
it impossible to simplify equation (2.16), which means that the class of u is § = s+1.
(3) When ¥, =0, J5 =0 and ¢(0) =0, by (2.16) and (2.18) u satisfies

(G1u) + thu =0, (2.19)
with . 3
¢1(z) = d(z), i(z) =¢(z) — (6o9) (). (2.20)
Then . 3
¥1(0) + ¢1(0) = 9(0), (2.21)
and

(u, Bothr + 031) = (u, 6010) = Mo, 2(00) () + (1 = A(v)1)¢(0),
Consequently, it follows that
(u, Bohr + 65 01) = —Xp(0) + 3. (2.22)

From (2.21) and (2.22), we can deduce that if 1(0) # 0 or Y5 # 0 which means it is
impossible to simplify (2.19) and § = s.
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3 Some examples

3.1. Let us describe the case v := H(7), where H(7) is the generalized Hermite
form. Here is [5]

_n+ 1471+ (-1)")

=0, n>0, 0,41 5 ,n>0. (3.1)
Then
" I'(n+71+3/2) "
Topt1 = , n >0, o9y =1'(n+1), n>0. (3.2)
};[0 e (1 +1/2) };[0 s
We want N ,
Anzz 1 02“+1,n20.
v=0 O2v+1 ;=0 O2u
From (3.1) and (3.2), we have
1 Y O2u+1 o F(V+T+3/2) . 1 h
Ooit jog O (WATH12Tw+1)0(r+1/2)  T(r+1/2)"
where r 1/
h, = w7+l ), v >0,
Fv+1)
fulfilling
(v+ Dhyy1 —vh, = (1 +1/2)h,,
and so
A, = ;ihuz 1 Zn:{(y+1)hu+1—uh,,}.
I'(r+1/2) = (14 1/2)I(1+1/2) =

We can deduce that

~ (n+Dhpr . T(n+71+3/2)
M=) T Trrsrmrn) Mo (33)
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Therefore we have the following table:

Table 1
e TH1/2 T+ 7+3/2)
An B =V w3 nrrrie "o
A
Agpi1 = (—1)”+1mf(n + )% (n+7+3/2), n>0.
B I'n+1)
an a2n——/\(7+1/2)r(7+3/2)m, n->.u,
" B 1 (n+7+3/2)T(n+7+5/2) "> 0
T NF +1/2)0(r + 3/2) T(n+1) =
On bon=n+741/2, n>0 , bonsr =n-+7+3/2, n>0.
I'in+1
cn Con+2 :_)\(T+1/2)F(T+3/2)m, nzO,
_0 B 1 Fin+71+5/2) >0
A= O T NG L 10(r +3/2) Tntl) = =
M= =N(1+1/2)?
I2(n+2)
— )2 212 >
Yrt1 Y2n+3 A (T+1/2) r (T+3/2)F2(n+7+5/2)’ n >0,
- 1 I2(n+7+5/2)
Y2 = S P (e 4 3/2) P12
Bo = AT+ 1/2),
I'(n+2
Banta = AT+ 1/2)['(7 + 3/2)m
1 Fin+71+5/2)
>
Bn N 12T 132 Tt =Y
5 . 1 F'n+7+45/2)
LT NF +1/2)T(r +3/2) I(n+1)
I'(n+1)

Proposition 3.1. If v = H(r) is the generalized Hermite form, then the form wu given
by (1.1) possesses the following integral representation:

—+00

(u, f) = ﬁ / x|z ¥ e_fo(aj)dac + f(0), VfeP, Rr>-1/2. (3.4)

— 00

It is a quasi-antisymmetric and semi-classical form of class s satisfying the following
functional equation

(%u) + (22° — (271 +3)2)u =0, T# —1, s=2. (3.5
(zu) +22%°u =0, 7=—-1, s=1.
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Proof.
It is well known that the generalized Hermite form possesses the following integral repre-
sentation [5]

+oo
w.f)= [ V@)f(w)ds, vf P,

1
with V(z) = T | 2 |*7, z € R, R7 > —1/2. Following from (1.3), we easily

(t+1/2)
obtain (3.4).
Also, the form u is quasi-antisymmetric because it satisfies

(u, 272y = Nv,2?"*3) =0, n > 0.
When 7 = 0, v is the classical Hermite form. The latter satisfies [17]

(¢ov)’ + Yov = 0,

with ¢o(z) = 1, ¢o(x) = 2x. Therefore, (2.15) becomes 91 = 1 # 0. By virtue of the
proposition 2.4, we get R R
(¢ou)’ + ou = 0, (3.7)

where (go(x) =72, zﬁo(x) = 223 — 3z, with u a semi-classical form of class s = 2.
When 7 # 0, the generalized Hermite form is a semi-classical of class one and satisfies [1]

(¢10)" + v =0,
with ¢1(x) =z, 91(x) = 222 — 27 — 1. In this case, for (2.15) and (2.16) we have
U1 =0, Y9=-2(7+1).
If 7 # —1, by virtue of the proposition 2.4, we get
(1) + Pyu =0, (3.8)

with ¢1(x) = 22, ¥1(x) = 22° — (27 + 3)z and u a semi-classical form of class s = 2.
Then, (3.8) gives (3.5).

When 7 = —1, we have ¥1(0) = 1 # 0, by virtue of the proposition 2.4, we can deduce
(3.6).

Proposition 3.2. When 7 = —1, the form u satisfying the equation (3.6) has the
following integral representation:

400 g2
u, ) = _H(AWP_ / ©f(@)ds + (0), VS €P, (3.9)
where [7] . . .
0 T
Proof.

By virtue of the previous proposition, the form u is quasi antisymmetric

(u)2n+2 = 0, n > 0. (310)
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On account of (1.1), we get (zu,1) = M\x?v,1) and we have
(’LL)l = /\(’U)g = /\0'1.

By (3.1), we obtain

A
(u), = -5 (3.11)
From the functional equation (3.6), we get
((zu) 4 22%u, 2" ) =0, n >0,
which is equivalent to
(w)onts = (n+1/2)(w)ony1, n >0,
consequently
I'(n+3/2)
n+3 = oo , n=>0.
By (3.11), we can deduce that
(Wit = ——D(n+1/2), n>0 (3.12)
2n+1 - 2P(1/2) ) - . .
From the definition of the gamma function, we get
+00 +oo
A A 2
2n4+1y n—1/2 T e — / 2n —x d
{(u, ") T(1/2) O/x e dx T1/2) J x“"e x
+00
A 2 2
- __ - n_—x > .
3(1/2) /m eV dr,n>0

Then, we can deduce

A e e
2n+1\ : 2n—+1 2n—+1
(u, ") = 72“1/2);12%(/—% x dx+/—x x da:),nzo.
On account of (3.10), we can write
—€ +OO 2
A _ZCZ —T
u, ") = ————— lim ¢ odr+ odx ,n>1,
' 2I'(1/2) l 0
e— X T
—0o0 €
taking (3.11) into account, we get
—€ 2 -‘rOO 2
A e * e " A
ny _ _ . n n N n > (.
(u,z") 72“1/2);1_)1%(/ . a:da:—i—/ . a:da:) 2(5,m ), >0
—00 €

Hence (3.9).
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Remark. The integral representation given in (3.9) does not exist in the list given in [4].

3.2. Let us describe the case v := J(1/21/2). It is the second kind Chebyshev functional,
which is a particular case of the Jacobi form J, gy for a = 8 = 1/2. Here is [5]:

1
fn:(),nzO s U,H_lzz,nZO. (313)
Then,
L 1 L 1
H02“+1:W, nZO s H02u24—n,n20. (314)
n=0 n=0
So, for (1.46) we get
Ap=n+1,n>0. (3.15)
Therefore, we obtain the table below:
Table 2
A n
" A2n = (_1)TL+1 (n;'rll)27 n 2 O ) A2n+l - )‘(23172%7 n 2 O
a 2
" a2n:_m7n207 a2n+1:%7n20-
b
" b =74, n>0 , b2n+1:4(7;——:_21)7n20-
c
" 01207 C2n+3zw7n207 C2n+2:_man20'
AL s = A2+ 1)2(n+2)2, n>0 , you1 = —I#j_l)g, n > 0.
B Bo=7%, ﬁ2n+2zm+(n+1)(”+2))\_l, n=>0
Bont1 = _W —(n+1)(n+ 2)/\_17 n=>0

Proposition 3.3. If v = J(1/2,1/2), the second kind Chebyshev form, then the form u
given by (1.1) possesses the following integral representation:

1
(u, f) = f(0) + /\\/g/x\/l —22f(x)dz, fE€P. (3.16)
1

The form w is a quasi-antisymmetric and semi-classical of class s = 2 satisfying the
following functional equation:

(2%(2? - 1)u)/ — 32(22% — )u = 0. (3.17)

Proof.
It is well known that the second kind Chebyshev form possesses the following integral

representation [5]:
1

(v, f) = /V(:c)d:c,w P,

-1
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with V(z) = \/g\/l — 22,2 €] — 1,1]. Following from (1.3), we get (3.16).
Also, u is quasi-antisymmetric because it satisfies

(u, 22" 2y = Av,z?"3) =0, n > 0.
The form v is classical and it satisfies [17]
(22 = 1)v)" = 3zv = 0.

Then, ¥; = —1 # 0, by virtue of the proposition 2.4, we get (3.17).

3.3 Let us describe v = J(_1/2,1/2), the third kind Chebyshev form. The latter is the

co-recursive of the second kind Chebyshev form. We have [5]

1 1
60:__7 §n+120,n20 ) Un+1:_7n20'
2 4
We have the following results:
Lemma 3.4. [23] The following formulas hold

Son(0) = L n>0, Sopt1(0) 1" n >0,

22n ~ 92nt1’
“ 1)
S5 (0) = (22,3 ,n>0 , S5.(0)=0,n>0,
n n nn—l—l
Sén(o) =(-1) i 22n—1" n=0, Sén—l—l(o) = (_1) on 0 1t >0,
ne1(n+1) ne1(n+1)

S5,(0) = (~1) “oona " >0, S5,41(0) = (-1) o1 0" > 0.
Following the previous lemma, for (1.36), (1.44) and (1.45) we get

n+
O)ZWJLZU ; X2n+1(0):W7n207

n+1
X5,(0) =0,n >0 , X§n+1(0):?T,”ZO,

)
p2n(0) = o >0, pont1(0) = oiia >0,
n n—+1
112, (0) = Tl >0, p,41(0) = “omni1 " > 0,
1 1
@TL(O) =0,n=>0, <U S2> = 4_n’ n=>0, (U)l = _5-
Then, we obtain

_1\n+1
_1)n+1 1
Agpi1 = AW((l +22 H(n+1)(2n +3) + 1), n > 0.

On account of the proposition 1.2, the form w is regular if and only if
ttn+1)2n+1)—1#0,n>0, t(n+1)(2n+3)+1#0,n >0,

where t = 1 + 2\~ L.

(3.18)

(3.19)

(3.20)
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We assume that the previous conditions are satisfied. Therefore, we get the table be-

low:
Table 3
an _ 1lt(n+1)(2n+3)+1 _1t(n+2)(2n+3) -1
= it enrn 1 "2 e TS et 11 "o
bn _1 _ 1t +2)(2n+3)+1 1+ 1)@2n+3) -1
bo=75, b2n+274t(n—|—1)(2n+3)+1’ n > 0, b2n+174t(n—|—1)(2n—|—1)—1’ n > 0.
Cn __1 _ltn+1)@n+3) -1 Lt D@nt+ 1) +1
T e T S s a1 o T T et ) -1
tn+1)2n+3)+1)(t(n+2)(2n +5) — 1
’712—)\(2)\8+3) ) V2n+3=—i((n )2n +3) )( n )(;L ) )7 n >0,
Ynt1 (tn+2)(2n+3) — 1)
1(tn+1)(2n+1) = 1) (t(n+2)(2n +3) — 1)
727L+2:_Z B) 5 n > 0.
(t(n+1)(2n+3) + 1)
A n+1Dn+2)2n+3)2+1
=5 " = ) 207
5, Po=75, Pamtz (tn+2)2n+3) — 1) (t(n+ 1)(2n +3) +1) n
5 _ t?(n+1)?2n+1)(2n +3) + 1 -0
2041 (tn+1)2n+3)+ 1) (tn+ D@2+ 1) —1)"  —

Proposition 3.5. If v = J_1/2,1/2), the third kind Chebyshev form, then the form u given
by (1.1) possesses the following integral representation:

1
(w, f) = (1 + %A)f(o) + %_/1 x,/i;—zf(x)dx, Fep. (3.21)

The form u is a semi-classical form of class s satisfying the following functional

equation:
A#-2, 5=2, (2%(2® = Du) — (52 + 2 — 3)u =0, (3.22)
A=-2,s=1, (z(@®-1u) - (42’ +z—2)u=0. .

Proof.
It is well known that v = J(_j/21/2) possesses the following integral representation [5]:

1

©.f) = [ V@@, f P,

-1

with V(z) = %,/};—i, x €] — 1,1[. Following from (1.3), we easily obtain (3.21).
The form v is classical and satisfies [17]

(¢v)’ + v =0,
with ¢(x) = 22 — 1, ¢(x) = —2x — 1. Then, (2.15) and (2.16) become
1 1
Y = —5()\4- 2), Vg = —5()\ +2),

and ¢(0) = —1 # 0.
The proposition 2.4 is enough to obtain (3.22).
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3.4. Let us describe the case where v is the form given in [11,22]. We have
1
En:(_l)nvnzo y Onil :—Z,TLZO.

Lemma 3.6. We have the following formulas:

1

S, (0) = (—1)n ”; ,n>0.

SV(0) = (—1)tm —"; )

1
$1,0) = (=1 (=1 = ) T n = 0
(=)t

S"(0) = W(n +1)(2n—1+(-1)")(2n+5—(-1)"),n >0,

where 5 ) 1y
]/n: n+ _(_)777,20
4

Proof.

In this case, (1.4) becomes
Solw) =1, Si@) =z -1,
Snsa(@) = (2 4+ (~1)") S (@) + 15a(x), 1> 0,
So, we get
3

So(0) =1, $1(0) = —1, $(0) = —7.

S2(0) = (~1)"8,51(0) + 150 (0), 1.2 0.
From (3.31), we can deduce the following relations:

Sons1(0) = Sons2(0) — 352,1(0), n >0,

Sons3(0) = —Somsa(0) + ngnH(O), n>0.

On account of (3.32), the relation (3.33) becomes

1 1
Son+4(0) + §S2n+2(0) + ESM(O) =0,n >0,

by (3.30), we can deduce that

nln+1

By virtue of the previous relation and (3.32), we obtain

1
Soms1(0) = (4)”“%, n>0.

The relations (3.34) and (3.35) produce (3.24).
The sequence {Sﬁl)}nzo satisfies the following recurrence relation

sP@) =1, sV@) =z+1,

n 1
Sila(e) = (¢ = (-1 S (@) + 350 (@), n > 0.

(3.23)

(3.24)
(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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The above analogous calculations give (3.25).
From (3.29), we obtain

SH0) =0, $(0) =0
12(0) = (18,2 (0) + 7S4(0) + Sy (0), 0 2 0,

Following (3.38), we get
1
Sén—l—l(o) = Sén+2(0) - ZSén(O) - S2n+1(0)7 n 2 0.
1
Sén+2(0) = —5§n+3(0) + 15§n+1(0) + S2n42(0), n > 0.

On account of (3.39), equation (3.40) can be written as following:

1 1
S9n14(0) + §S§n+2( )+ 1652n( ) = S2n43(0) — 152n+1(0) + S2n12(0), n > 0.

By (3.24) and (3.37), we can deduce that
S5,(0) =0, n > 0.
By virtue of the preceding relation and (3.24), equation (3.39) becomes

n+1
S5n+1(0) = (—1)7127, n > 0.

Then, (3.41) and (3.42) give (3.26).
On account of (3.29), we obtain

S6(0) =0, S7(0) =0, S5(0) =
1
n2(0) = (=1)" S5, (0) + 15;{(0) +28,,11(0), n> 0.
Therefore, by (3.44), it follows that
1
Sé/n+1( ) S2n+2( ) _S// (0) - 25&1@—1—1(0)7 n Z 0.
Son13(0) = —S5,,5(0) + S2n+1( ) +285,,2(0), n. > 0.

By (3.45) and (3.26), equation (3.46) can be written as

ni14n +6

1
Son+4(0) + SZn—i—Z( ) + 1—65§/n(0) =(-1) o 20

Then, we get

ne1(n+1)2n+1
54,(0) = (- MDD s

On account of (3.47), (3.26) and (3.45), we obtain

Son1(0) = (_1)nn(n ;—;212);112+ 2), n > 0.

331

(3.37)
(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)
(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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Then (3.47) and (3.48) give (3.27).
Following from lemma 3.6, for (1.36), (1.44) and (1.45) we get

(n+1)(n+2)
Xn(0) = —gontt 0" >0,

(n+1)(n+2)

X (0) = (—1)" (2n+3-3(-1)"), n >0,

3.22n+1
1 2 3
NN(O) :07 n=>0 ’ /’L;L(O) = _(n+ )(Z;n)(n—’_ )’ nz O’
1
Then, we get
(_1)n+1+vn+1
A, = BT T (n+2)t,, n >0, (3.49)
where
th=(Mm+1)(n+2)(n+3)(A—1) — 6. (3.50)

On account of the proposition 1.2, the form w is regular if and only if ¢, # 0, n > 0.

We assume that the previous condition is satisfied. Therefore, we obtain the following
table:

Table 4
o S 20
bn bozz,bw:ﬁ,nzo.
“n 01:0,cn+2:(_21)nZi;tZ:1,n20.
b 50:%)\, 5"“:(_21)n{21;t7;:1_21§ti11}’ n>0.

Proposition 3.7. The form u given by (1.1) have the following integral representation:

1
2 9 11—
() == /13: o (@)da+ (1= X)f(0), ] €P. (3.51)
The form u is a semi-classical form of class s satisfying the following functional equation:
A#AL s=2, (222 — D) + (—62° + 2% + 42)u = 0, (3.52)
A=1, s=1, (z(z?=1)u) + (-p2® + 2z +3)u=0. (3.53)

Proof.
The form v has the following integral representation [22]:

1

w.f) = [ V@ l@ds, 1 eP.

-1
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with V(x) = %x,/ﬁ—;, x €] —1,1] and (v); = 1. Following from (1.3) we obtain (3.51).
The form v is a semi-classical of class one and satisfies [22]

(¢v) + v =0,

where ¢(7) = z(2? — 1), ¥(z) = —42? + 2 + 2. Then ¥; = 0, 2 = 3(1 — \), J3 = 0,
#»(0) =0 and ¥(0) =2 # 0.

By virtue of the proposition 2.4 we get (3.52) and (3.53).
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