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Abstract

Let K be a non-trivially non-archimedean valued field that is complete
with respect to the valuation | | : K—[0, 00), let X be a non-empty subset of
K without isolated points. For n € {0,1,...} the K-Banach space BC"™(X),
consisting of all C"-functions X — K whose difference quotients up to order
n are bounded, is defined in a natural way. It is proved that BC™(X) is of
countable type if and only if X is compact. In addition we will show that
BC*(X) =), BC"(X), which is a Fréchet space with its usual projective
topology, is of countable type if and only if X is precompact.

1 Preliminaries

For a non-empty subset V' of R its supremum is denoted by sup V', where by con-
vention sup V' = oo if V' is not bounded above. The closure of a subset Y of a
topological space is denoted by Y.

Throughout this paper K = (K| |) is a non-archimedean valued field as in the
Abstract. For basic notions and facts on normed and locally convex spaces over K
we refer to [2] and [5] respectively.

For a finite subset S of K containing at least two elements we denote its diameter
max{|r —y| : z,y € S} by dg. Then 0 < dg < 0.

For a non-empty topological space Z we denote by C(Z) the collection of all
continuous functions Z— K. It is a K-vector space under pointwise operations.

For f € C(Z) we put ||f]| := sup{|f(2)| : z € Z}. We set BC(Z) :={f € C(Z) :
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|fIl < oo}. It is easily seen that (BC(Z),] ||) is a Banach space over K. If Z is
compact then BC(Z) = C(Z).

Recall ([2], p. 66) that a normed space over K is said to be of countable type
if it contains a countable set whose linear hull is dense. The natural extension to
locally convex spaces reads as follows. A locally convex space E over K is called of
countable type if for every continuous seminorm p, (1) below holds.

The space E, := E/Kerp, equipped with the norm p defined (1)
by the formula p(z + Kerp) = p(z), is of countable type.

It is easily seen that E is of countable type as soon as (1) holds for each p € P,
where P is a collection of seminorms on £ generating the topology.

Proposition 1.1 ([4] 4.12) Subspaces, continuous linear images, and products of
locally conver spaces of countable type are of countable type.

The Banach space BC(I), where I carries the discrete topology is usually called
(>°(I), and ¢ := BC(N). The following fact is well-known, but it seems hard to
find a direct reference, so we provide a proof.

Proposition 1.2 If I is infinite then (>°(I) is not of countable type.

Proof. 1f (1) (= BC(I), I with the discrete topology) were of countable type
then, by 1.1, the subspace RC(I) of all functions /— K with precompact image
would be also of countable type, which implies that I is compact ([1], Theorem 14),
a contradiction.

2 An inequality for an arbitrary function X—K

Throughout this section we fix an infinite subset X of K, an n € {0,1,...} and a
function f: X— K. In the spirit of [3] 29.1 we put
VX = {(21, .., vp) € XM if G £ j then x; # x; )

(notice that V!X = X) and define the nth order difference quotient @, f : "M X—K
inductively by ®qf := f and, for n > 1,

D, LT3y ey Tpg1) — P T3y Tp
D, f(z1,. .., Tpg) == 1 f (1, 75 Tni1) 1 f(xg, 23 z +1)'
1 — X2
We set
1D, f|| = sup{|®nf(v)]:ve "X} and

[flln = max{[[®;f]|: 0 <@ <n}

(allowing || f||. to be oo if ||®;f]| = oo for some 7).

Now let X, be the collection of all subsets of X containing precisely n + 1
elements. Since @, f is a symmetric function of its n + 1 variables ([3] 29.2) it
induces naturally a function &Dn f: X,,— K via the formula

O, f(S) = ®nf(zr,. . np1) (S ={x1,..., 2011} € X,).
Setting ||®,,f|| := sup{|®,f(S)|: S € X,,} we have obviously ||®,f|| = ||®,f]|-
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Lemma 2.1 Let n > 2, S, € X,,. Then there exists an S,_1 € X,_1 such that
Sn_1 C S, and
(@ £(Sn)| < ds) [@n1£(Sn)]-

Proof. Let x,y € S, be such that |z — y| = dg,. Then writing S,, = {x,y,z1, ...,
Zn—1} we obtain

@nf(S0)| = |Puf(@,y, 71, 20)]
= |z — y|_1 1Dy 1 f(x, 21, ) — P f(y, 21,0y 1)
< dgj max (|Pp_1f(z, 21, ..., Tno1)|, [ Pra f(y, 21, ..y Tno1)])
= dgj ‘&)n—lf<5n—1)

)

where S,_1 € X, is either {z,x1,...,2,1} (f |Pp_1f(z,21,...,20-1)] >
|1 f(y, 1, ..., Zn—1)]) or {y, 21, ..., 2,1} (otherwise).

For convenience we introduce yet another quantity. We put

A= { I oy o,

Notice that of f|| < [[f] and 1| f]] = [[®1/]].
Proposition 2.2 Let n > 1. Then ||®,f| <. f]l-

Proof. For n =1 the formula (even with an equality sign) holds trivially, so let
n > 2and S, € X,,. By using 2.1 repeatedly we arrive at sets S, O S,,_1 D ... D 5y,
where S; € X, for i € {1,...,n}, for which

[Buf(So)| < ds) - ds |1 £(51)]. 2)

Now let S; := {z,y}. From |z —y| = ds, < ds, < ... < dg, we obtain dg' <
|z —y| " fori € {2,...,n} so that (2) yields the further estimate

[, (S| < o — o] @2 f )] = 2 — o1 1 @) — F@)] <a IS

and ||, f[| = || Dnf]| <nllf]]-

Remark 2.3 The inequality does not hold for n = 0 as is easily seen by taking for
f a non-zero constant function.

Proposition 2.4 For alln >0

[l < @[] fI], wllf1]-

Proof. We have to prove that ||®;f]| < max(||f|], .| f|]) for all i € {0,1,...,n}.
To this end we may assume that i« > 1. Let z,y € X, z # y. If [z —y| > 1
then |z — 5~ |£(@) — f)| < 1) — F@)] < [If]l, wheteas, if |z —y| < 1, we
have |z —y[™" [f(z) = f(y)] < e —y| ™" [f(z) = fy)] <allfIl. We see that 4[| f]| <
max(|[f1, [ f]]); and by 2.2 we find [[®;f[| < max([|f], ol f]])-
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3 The opposite inequality for a locally constant
function X — K

From now on let X be a non-empty subset of K without isolated points. (Then X
is infinite).

Definition 3.1 ([3] 29.1) Let n € {0,1,...}, f: X— K. We say that f € C"(X)
if @, f can (uniquely) be extended to a continuous function @, f : X"™'— K. For
re X weset D,f(z) :=®,f(z,x,...,2). Also, C®(X) :=N{C*(X) :n > 0}.

We recall some facts from basic theory of C™-functions. Notice that C°(X) =
C(X).

Proposition 3.2

(1) ([3] 29.3) C°(X) D CHX) D ... D C>®(X).

(ii) ([3] 29.3) C™(X) (n € {0,1,...}) and C>*(X) are K-vector spaces under
pointwise operations.

(iii) ([3] 29.4, Taylor Formula) Let f € C™(X) (n > 1). Then for all z,y € X

F@) = S = D, () + (& — ) B f (0,31 )

J=0

(iv) ([3] 29.5) Let f € C™(X) (n > 1). Then f is n times differentiable and
J\D;f = f9) for1<j<n.

(v) ([3] 29.10) A locally constant function f: X —K is in C*°(X) and D;f =0
forallj € {1,2,...}.

For f € C"(X) (n € {0,1,...}) we define ||®,f[| := sup{|®, f(v)| : v € X"},
Then by continuity and density of /"™ X in X" we have ||, f|| = ||®.f]-

We now arrive at our goal of this Section.

Theorem 3.3 Let f: X— K be locally constant. Then for n € {0,1,...}

[[f{ln = max([Lf [l ol £1)-

Proof. By 2.4 and || f|| < ||f||» we only have to prove ,||f|| < || f|l.. We may
assume n > 1. By the Taylor Formula 3.2(iii) and the fact that D;f = 0 for all
Jj>1(3.2(v)) we get

f@)=fy)+@—-y)" uf(z,y,...,y) (z,y€X),

so that for # # y and by continuity of ®,, f,

fl)—fw)| =
’M’ = [@uf @) < 12afll < U1l

and the theorem is proved.
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4 The Main Theorem
Definition 4.1 Let n € {0,1,...}. We set
BC"(X):={feC™X) | fll. < oo}

It is straightforward to check that BC™(X) is a subspace of C™(X) and that || ||,,
is a norm on BC™(X) making it into a Banach space. Also notice that BC?(X) =
BC(X). If X is compact then BC™(X) = C™(X).

Lemma 4.2 [f X is compact then BC™(X) is of countable type.

Proof. The map
fr—=(f,®1f,..., @0nf)

is a linear isometry of BC™(X) into [[}7] C(X*). Now each X* is ultrametrizable
so, by [2] 3.T, C(X*) is of countable type, hence so are [T}-] C(X*) and its subspace
BC™(X) (by 1.1).

Lemma 4.3 Let BC™(X) be of countable type for some n € {0,1,...}. Then X is
precompact.

Proof. Suppose X is not precompact. Then, for some r > 0, the balls in X of
radius r form an infinite covering of X, say (B;);er. Choose a; € B; for each i € I.
Let D be the space of all bounded functions X — K that are constant on each B;.
We claim that D C BC™(X) and that D, equipped with the induced topology, is
linearly homeomorphic to ¢>°(I). (Then we have a contradiction since by 1.2 £°(1)
is not of countable type, proving the lemma.)

Clearly D C C™(X) (in fact, D C C*(X) by 3.2(v)). Further, if f € D,
x,y € X, x # y we have % =0if z,y € B; for some ¢ € I. Whereas if z € B;,

y € Bj for i # j then [z —y| > 7 and |f(z) = f(y)| < [f]] = sup{|f(a)] - i € I},

So we find
Al =sup D =IO < pony
ety T — Yl
implying by 3.3 that f € BC™(X) and that || || is equivalent to || ||, on D. Then it
is clear that f — (f(a;))ies is a surjective linear homeomorphism D——/¢*°(I), which

finishes the proof.

Lemma 4.4 Let BC™(X) be of countable type for some n € {0,1,...}. Then X is
compact.

Proof. Suppose X is not compact; we derive a contradiction. By 4.3 X is
precompact, so X is not closed in K, let @ € X \ X. From compactness of X
and the ultrametric property one easily derives that the set {|x —a| : z € X} is
discrete with 0 as an accumulation point, say {ry,7s,...}, where r; > ry > ... and
lim,,, r,,, = 0.

For m € N, let R, := {x € X : |x —a| = r,,}. Then Ry, Rs,... is an infinite
clopen covering of X. Choose a,, € R,, for each m. Let D be the space of all
f € BC"™(X) that are constant on each R, and for which lim,, f(a,) = 0. Let
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A1, A2, ... € K be such that |A\,,| = 7, for each m. As (> is not of countable type
(1.2), we are done once we can prove that

Fr (A flan), A flas),...)

is a linear homeomorphism of D onto £°°.
First we are going to see that for f € D,

f am n f a’m
sup 7| S«n ) < || flln < max(r}, 1) sup 7| (7’" )

(which shows that 7" maps D homeomorphically into ¢*°). To prove the first in-
equality, let m € N; we show that Ll < Il f|ln. We may suppose f(a,,) # 0 so,

since lim; f(a;) = 0, thereis a j > m for which |f(a;)] < |f(am)|, so that |f(an)| =
|f(am) — f(a;)|. Also, |am, — aj| = max(|a,, — al,|a; —a|) = |ay, — a| = ry,. Thus,
we obtain ‘f(rfim)‘ — |f(“2:z):ajz(|gj)‘

observe that,wfl’or feDb,

which, by 3.3, is < || f||». For the second inequality

anH = sup |f(am) — f(ak)|

m>k /r]?

(If(am)l " |f<ak>|> |

n n’ n
T'm Tk Tk

IN

< sup max
m>k

Now 2 < 1 so that the previous expression is < sup,,., max ('f(“’")', f(i’“)') <
m)

<
wsb:

n
i s

—~

a

SUDP,, . Further,

| f(anm)] | f(anm)]

[f]l = sup =="==r};, < sup =——== 7.
m TWL m rnl
Hence, by using 3.3,
1l < max(rp, 1) sup L)
m 7“77%

and we obtain the desired second inequality.

To finish the proof it has only to be shown that T is surjective i.e. we have to
show that if (u1, pa,...) is a bounded sequence in K then the function f that has
the value &= on each R,,, lies in D.

ClearlyA"JL‘" € C%(X), hence it is in C™(X). Also, lim,, f(an) = lim,, = = 0 as
(1, pto, - - .) is bounded and |A\ '] = — 0. It remains to see that f € BC™(X)
i.e. that ||f]|, < co. Now f is clearly bounded, so by 3.3 it suffices to prove that
Alfl] < oo. Let z,y € X, © # y. We may suppose x € R,,, y € Ry with m > k.

Then [z — yl" = rf and |f(2) — ()] < max(| /(@) | (am))- So we gt
HOENOI max(\f(ak)\ )] m) p

|z —yl" e oTh TR

< sup @)l _ sup | T /\m‘ = SUP ||
m Tfn m /\m m

so that .|| f]| < sup,, |tm| < co.

Combining 4.2 and 4.4 we obtain the following conclusion.
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Theorem 4.5 Letn € {0,1,...}. Then BC™(X) is of countable type if and only if
X 1s compact.

5 When BC*°(X) is of countable type?

The space BC*(X) := N{BC™(X) : n € {0,1,...}}, equipped with the locally
convex topology induced by the norms || ||, (n € {0,1,...}), is easily seen to be a
Fréchet space. We will see that, contrary to the previous case, precompactness of X
is enough to ensure that BC*°(X) is of countable type. The reason is the following.

Lemma 5.1 Fach f € BC™®(X) extends uniquely to an f € BC>®(X), where X is
the closure of X in K. The map f — f is a linear homeomorphism of BC™(X)
onto BC™(X).

Proof. For (z1,...,Tni1,01,- -, 0an11) € V22X we have for all f: X— K (see
3] 29.2)
n+1
q)nf(l'l, Ce ,$n+1>—q)nf(a1, . 7an+1) = Z(LC]—CLJ> q)n+1f<a1, Ce 7CLJ', .Z'j, Ce 7:Cn+1)-
=1

As f € C(X) we can, for each n € {0,1,...}, extend this by continuity:

n+1

O, f(xy,. . 1) —Puflar, ... an1) = Z(:Bj—aj)(IJan(al,...,aj,a:j,...,:vnH)
j=1

(3)
for all (xy1,...,Tns1), (a1,...,an1) € X"

Denoting the canonical norm on K" by || ||s we obtain from (3) the following
inequality.

[Buf () = Buf(0)] < llu = vllol Brsafll - (w0 € X1,

Thus, ®, f is Lipschitz, hence uniformly continuous on X"*! and therefore can
uniquely be extended to a (bounded) continuous function h,, on X By continuity
h, = ®, hg for all n € {0,1,...}. Hence, hg € BC*®(X) and we can take f := hy,
which proves the first statement. The second one is now immediate.

Theorem 5.2 BC*(X) is of countable type if and only if X is precompact.

Proof. Let X be precompact. Then X is compact and by 4.5 BC™(X) is of
countable type for each n € {0,1,...} and, by 1.1, so are (BC®(X),|| ||.) (n €
{0,1,...}). So BC*(X) is of countable type, hence so is BC*(X) by 5.1.

Conversely, suppose X is not precompact. With the same reasoning as in 4.3, we
find an infinite set I, a subspace D of BC*(X) and a linear map D——/¢>°(I) that is
a surjective homeomorphism when we endow D with any of the norms || ||,,. Then
D, with the topology induced by BC*°(X), is linearly homeomorphic to ¢>°(I). As

¢>(I) is not of countable type (1.2), neither is BC*(X) by 1.1.



1000 W.H. Schikhof

References

[1] J. Aguayo, N. De Grande-De Kimpe, S. Navarro Strict Locally Convex Topolo-
gies on BC(X,K), Lecture Notes in Pure and Appl. Math., 192, Marcel Dekker,
New York, 1997, 1-10.

[2] A.C.M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, New
York, 1978.

[3] W.H. Schikhof, Ultrametric Calculus, University Press, Cambridge, 1984.

[4] W.H. Schikhof, Locally convex spaces over nonspherically complete valued fields
I-II, Bull. Soc. Math. Belg. Sér. B 38 (1986), 187-224.

[5] P. Schneider, Nonarchimedean Functional Analysis, Springer, Berlin, 2002.

Department of Mathematics,
University of Nijmegen, Toernooiveld,
6525 ED Nijmegen,

The Netherlands

E-mail address: w_schikhof@hetnet.nl



