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Abstract

Let K be a non-trivially non-archimedean valued field that is complete
with respect to the valuation | | : K−→[0,∞), let X be a non-empty subset of
K without isolated points. For n ∈ {0, 1, . . .} the K-Banach space BCn(X),
consisting of all Cn-functions X−→K whose difference quotients up to order
n are bounded, is defined in a natural way. It is proved that BCn(X) is of
countable type if and only if X is compact. In addition we will show that
BC∞(X) :=

⋂
n BCn(X), which is a Fréchet space with its usual projective

topology, is of countable type if and only if X is precompact.

1 Preliminaries

For a non-empty subset V of R its supremum is denoted by sup V , where by con-
vention sup V = ∞ if V is not bounded above. The closure of a subset Y of a
topological space is denoted by Y .

Throughout this paper K = (K, | |) is a non-archimedean valued field as in the
Abstract. For basic notions and facts on normed and locally convex spaces over K
we refer to [2] and [5] respectively.

For a finite subset S of K containing at least two elements we denote its diameter
max{|x− y| : x, y ∈ S} by dS. Then 0 < dS < ∞.

For a non-empty topological space Z we denote by C(Z) the collection of all
continuous functions Z−→K. It is a K-vector space under pointwise operations.
For f ∈ C(Z) we put ‖f‖ := sup{|f(z)| : z ∈ Z}. We set BC(Z) := {f ∈ C(Z) :
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‖f‖ < ∞}. It is easily seen that (BC(Z), ‖ ‖) is a Banach space over K. If Z is
compact then BC(Z) = C(Z).

Recall ([2], p. 66) that a normed space over K is said to be of countable type
if it contains a countable set whose linear hull is dense. The natural extension to
locally convex spaces reads as follows. A locally convex space E over K is called of
countable type if for every continuous seminorm p, (1) below holds.

The space Ep := E/Kerp, equipped with the norm p defined
by the formula p(x + Kerp) = p(x), is of countable type.

(1)

It is easily seen that E is of countable type as soon as (1) holds for each p ∈ P ,
where P is a collection of seminorms on E generating the topology.

Proposition 1.1 ([4] 4.12) Subspaces, continuous linear images, and products of
locally convex spaces of countable type are of countable type.

The Banach space BC(I), where I carries the discrete topology is usually called
`∞(I), and `∞ := BC(N). The following fact is well-known, but it seems hard to
find a direct reference, so we provide a proof.

Proposition 1.2 If I is infinite then `∞(I) is not of countable type.

Proof. If `∞(I) (= BC(I), I with the discrete topology) were of countable type
then, by 1.1, the subspace RC(I) of all functions I−→K with precompact image
would be also of countable type, which implies that I is compact ([1], Theorem 14),
a contradiction.

2 An inequality for an arbitrary function X−→K

Throughout this section we fix an infinite subset X of K, an n ∈ {0, 1, . . .} and a
function f : X−→K. In the spirit of [3] 29.1 we put

5n+1X := {(x1, . . . , xn+1) ∈ Xn+1 : if i 6= j then xi 6= xj }

(notice that∇1X = X) and define the nth order difference quotient Φnf : 5n+1X−→K
inductively by Φ0f := f and, for n ≥ 1,

Φnf(x1, . . . , xn+1) :=
Φn−1f(x1, x3, . . . , xn+1)− Φn−1f(x2, x3, . . . , xn+1)

x1 − x2

.

We set

‖Φnf‖ := sup{|Φnf(v)| : v ∈ 5n+1X} and

‖f‖n := max{‖Φif‖ : 0 ≤ i ≤ n}

(allowing ‖f‖n to be ∞ if ‖Φif‖ = ∞ for some i).
Now let Xn be the collection of all subsets of X containing precisely n + 1

elements. Since Φnf is a symmetric function of its n + 1 variables ([3] 29.2) it
induces naturally a function Φ̃nf : Xn−→K via the formula

Φ̃nf(S) = Φnf(x1, . . . , xn+1) (S := {x1, . . . , xn+1} ∈ Xn).

Setting ‖Φ̃nf‖ := sup{|Φnf(S)| : S ∈ Xn} we have obviously ‖Φnf‖ = ‖Φ̃nf‖.
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Lemma 2.1 Let n ≥ 2, Sn ∈ Xn. Then there exists an Sn−1 ∈ Xn−1 such that
Sn−1 ⊂ Sn and ∣∣∣Φ̃nf(Sn)

∣∣∣ ≤ d−1
Sn

∣∣∣Φ̃n−1f(Sn−1)
∣∣∣ .

Proof. Let x, y ∈ Sn be such that |x− y| = dSn . Then writing Sn = {x, y, x1, . . . ,
xn−1} we obtain∣∣∣Φ̃nf(Sn)

∣∣∣ = |Φnf(x, y, x1, . . . , xn−1)|

= |x− y|−1 |Φn−1f(x, x1, . . . , xn−1)− Φn−1f(y, x1, . . . , xn−1)|
≤ d−1

Sn
max (|Φn−1f(x, x1, . . . , xn−1)| , |Φn−1f(y, x1, . . . , xn−1)|)

= d−1
Sn

∣∣∣Φ̃n−1f(Sn−1)
∣∣∣ ,

where Sn−1 ∈ Xn−1 is either {x, x1, . . . , xn−1} (if |Φn−1f(x, x1, . . . , xn−1)| ≥
|Φn−1f(y, x1, . . . , xn−1)|) or {y, x1, . . . , xn−1} (otherwise).

For convenience we introduce yet another quantity. We put

n‖f‖ := sup

{
|f(x)− f(y)|
|x− y|n

: x, y ∈ X, x 6= y

}
.

Notice that 0‖f‖ ≤ ‖f‖ and 1‖f‖ = ‖Φ1f‖.

Proposition 2.2 Let n ≥ 1. Then ‖Φnf‖ ≤n‖f‖.

Proof. For n = 1 the formula (even with an equality sign) holds trivially, so let
n ≥ 2 and Sn ∈ Xn. By using 2.1 repeatedly we arrive at sets Sn ⊃ Sn−1 ⊃ . . . ⊃ S1,
where Si ∈ Xi for i ∈ {1, . . . , n}, for which∣∣∣Φ̃nf(Sn)

∣∣∣ ≤ d−1
Sn

. . . d−1
S2

∣∣∣Φ̃1f(S1)
∣∣∣ . (2)

Now let S1 := {x, y}. From |x− y| = dS1 ≤ dS2 ≤ . . . ≤ dSn we obtain d−1
Si
≤

|x− y|−1 for i ∈ {2, . . . , n} so that (2) yields the further estimate∣∣∣Φ̃nf(Sn)
∣∣∣ ≤ |x− y|1−n |Φ1f(x, y)| = |x− y|−n |f(x)− f(y)| ≤n‖f‖,

and ‖Φnf‖ = ‖Φ̃nf‖ ≤n‖f‖.

Remark 2.3 The inequality does not hold for n = 0 as is easily seen by taking for
f a non-zero constant function.

Proposition 2.4 For all n ≥ 0

‖f‖n ≤ max(‖f‖, n‖f‖).

Proof. We have to prove that ‖Φif‖ ≤ max(‖f‖, n‖f‖) for all i ∈ {0, 1, . . . , n}.
To this end we may assume that i ≥ 1. Let x, y ∈ X, x 6= y. If |x− y| ≥ 1
then |x− y|−i |f(x)− f(y)| ≤ |f(x)− f(y)| ≤ ‖f‖, whereas, if |x− y| < 1, we
have |x− y|−i |f(x)− f(y)| ≤ |x− y|−n |f(x)− f(y)| ≤n‖f‖. We see that i‖f‖ ≤
max(‖f‖, n‖f‖), and by 2.2 we find ‖Φif‖ ≤ max(‖f‖, n‖f‖).
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3 The opposite inequality for a locally constant

function X−→K

From now on let X be a non-empty subset of K without isolated points. (Then X
is infinite).

Definition 3.1 ([3] 29.1) Let n ∈ {0, 1, . . .}, f : X−→K. We say that f ∈ Cn(X)
if Φnf can (uniquely) be extended to a continuous function Φnf : Xn+1−→K. For
x ∈ X we set Dnf(x) := Φnf(x, x, . . . , x). Also, C∞(X) :=

⋂{Cn(X) : n ≥ 0}.

We recall some facts from basic theory of Cn-functions. Notice that C0(X) =
C(X).

Proposition 3.2
(i) ([3] 29.3) C0(X) ⊃ C1(X) ⊃ . . . ⊃ C∞(X).
(ii) ([3] 29.3) Cn(X) (n ∈ {0, 1, . . .}) and C∞(X) are K-vector spaces under

pointwise operations.
(iii) ([3] 29.4, Taylor Formula) Let f ∈ Cn(X) (n ≥ 1). Then for all x, y ∈ X

f(x) =
n−1∑
j=0

(x− y)jDjf(y) + (x− y)nΦnf(x, y, y, . . . , y).

(iv) ([3] 29.5) Let f ∈ Cn(X) (n ≥ 1). Then f is n times differentiable and
j!Djf = f (j) for 1 ≤ j ≤ n.

(v) ([3] 29.10) A locally constant function f : X−→K is in C∞(X) and Djf = 0
for all j ∈ {1, 2, . . .}.

For f ∈ Cn(X) (n ∈ {0, 1, . . .}) we define ‖Φnf‖ := sup{
∣∣∣Φnf(v)

∣∣∣ : v ∈ Xn+1}.
Then by continuity and density of 5n+1X in Xn+1 we have ‖Φnf‖ = ‖Φnf‖.

We now arrive at our goal of this Section.

Theorem 3.3 Let f : X−→K be locally constant. Then for n ∈ {0, 1, . . .}

‖f‖n = max(‖f‖, n‖f‖).

Proof. By 2.4 and ‖f‖ ≤ ‖f‖n we only have to prove n‖f‖ ≤ ‖f‖n. We may
assume n ≥ 1. By the Taylor Formula 3.2(iii) and the fact that Djf = 0 for all
j ≥ 1 (3.2(v)) we get

f(x) = f(y) + (x− y)n Φnf(x, y, . . . , y) (x, y ∈ X),

so that for x 6= y and by continuity of Φnf ,∣∣∣∣∣f(x)− f(y)

(x− y)n

∣∣∣∣∣ = ∣∣∣Φnf(x, y, . . . , y)
∣∣∣ ≤ ‖Φnf‖ ≤ ‖f‖n

and the theorem is proved.
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4 The Main Theorem

Definition 4.1 Let n ∈ {0, 1, . . .}. We set

BCn(X) := {f ∈ Cn(X) : ‖f‖n < ∞}.

It is straightforward to check that BCn(X) is a subspace of Cn(X) and that ‖ ‖n

is a norm on BCn(X) making it into a Banach space. Also notice that BC0(X) =
BC(X). If X is compact then BCn(X) = Cn(X).

Lemma 4.2 If X is compact then BCn(X) is of countable type.

Proof. The map

f 7−→ (f, Φ1f, . . . , Φnf)

is a linear isometry of BCn(X) into
∏n+1

k=1 C(Xk). Now each Xk is ultrametrizable
so, by [2] 3.T, C(Xk) is of countable type, hence so are

∏n+1
k=1 C(Xk) and its subspace

BCn(X) (by 1.1).

Lemma 4.3 Let BCn(X) be of countable type for some n ∈ {0, 1, . . .}. Then X is
precompact.

Proof. Suppose X is not precompact. Then, for some r > 0, the balls in X of
radius r form an infinite covering of X, say (Bi)i∈I . Choose ai ∈ Bi for each i ∈ I.
Let D be the space of all bounded functions X−→K that are constant on each Bi.
We claim that D ⊂ BCn(X) and that D, equipped with the induced topology, is
linearly homeomorphic to `∞(I). (Then we have a contradiction since by 1.2 `∞(I)
is not of countable type, proving the lemma.)

Clearly D ⊂ Cn(X) (in fact, D ⊂ C∞(X) by 3.2(v)). Further, if f ∈ D,

x, y ∈ X, x 6= y we have f(x)−f(y)
(x−y)n = 0 if x, y ∈ Bi for some i ∈ I. Whereas if x ∈ Bi,

y ∈ Bj for i 6= j then |x− y| ≥ r and |f(x)− f(y)| ≤ ‖f‖ = sup{|f(ai)| : i ∈ I}.
So we find

n‖f‖ = sup
x 6=y

|f(x)− f(y)|
|x− y|n

≤ r−n ‖f‖,

implying by 3.3 that f ∈ BCn(X) and that ‖ ‖ is equivalent to ‖ ‖n on D. Then it
is clear that f 7→ (f(ai))i∈I is a surjective linear homeomorphism D−→`∞(I), which
finishes the proof.

Lemma 4.4 Let BCn(X) be of countable type for some n ∈ {0, 1, . . .}. Then X is
compact.

Proof. Suppose X is not compact; we derive a contradiction. By 4.3 X is
precompact, so X is not closed in K, let a ∈ X \ X. From compactness of X
and the ultrametric property one easily derives that the set {|x− a| : x ∈ X} is
discrete with 0 as an accumulation point, say {r1, r2, . . .}, where r1 > r2 > . . . and
limm rm = 0.

For m ∈ N, let Rm := {x ∈ X : |x− a| = rm}. Then R1, R2, . . . is an infinite
clopen covering of X. Choose am ∈ Rm for each m. Let D be the space of all
f ∈ BCn(X) that are constant on each Rm and for which limm f(am) = 0. Let
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λ1, λ2, . . . ∈ K be such that |λm| = r−n
m for each m. As `∞ is not of countable type

(1.2), we are done once we can prove that

f
T7−→ (λ1 f(a1), λ2 f(a2), . . .)

is a linear homeomorphism of D onto `∞.
First we are going to see that for f ∈ D,

sup
m

|f(am)|
rn
m

≤ ‖f‖n ≤ max(rn
1 , 1) sup

m

|f(am)|
rn
m

(which shows that T maps D homeomorphically into `∞). To prove the first in-

equality, let m ∈ N; we show that |f(am)|
rn
m

≤ ‖f‖n. We may suppose f(am) 6= 0 so,

since limj f(aj) = 0, there is a j > m for which |f(aj)| < |f(am)|, so that |f(am)| =
|f(am)− f(aj)|. Also, |am − aj| = max(|am − a| , |aj − a|) = |am − a| = rm. Thus,

we obtain |f(am)|
rn
m

= |f(am)−f(aj)|
|am−aj |n which, by 3.3, is ≤ ‖f‖n. For the second inequality

observe that, for f ∈ D,

n‖f‖ = sup
m>k

|f(am)− f(ak)|
rn
k

≤

≤ sup
m>k

max

(
|f(am)|

rn
m

rn
m

rn
k

,
|f(ak)|

rn
k

)
.

Now rn
m

rn
k
≤ 1 so that the previous expression is ≤ supm>k max

(
|f(am)|

rn
m

, |f(ak)|
rn
k

)
≤

supm
|f(am)|

rn
m

. Further,

‖f‖ = sup
m

|f(am)|
rn
m

rn
m ≤ sup

m

|f(am)|
rn
m

rn
1 .

Hence, by using 3.3,

‖f‖n ≤ max(rn
1 , 1) sup

m

|f(am)|
rn
m

,

and we obtain the desired second inequality.
To finish the proof it has only to be shown that T is surjective i.e. we have to

show that if (µ1, µ2, . . .) is a bounded sequence in K then the function f that has
the value µm

λm
on each Rm, lies in D.

Clearly f ∈ C∞(X), hence it is in Cn(X). Also, limm f(am) = limm
µm

λm
= 0 as

(µ1, µ2, . . .) is bounded and |λ−1
m | = rn

m → 0. It remains to see that f ∈ BCn(X)
i.e. that ‖f‖n < ∞. Now f is clearly bounded, so by 3.3 it suffices to prove that

n‖f‖ < ∞. Let x, y ∈ X, x 6= y. We may suppose x ∈ Rm, y ∈ Rk with m > k.
Then |x− y|n = rn

k and |f(x)− f(y)| ≤ max(|f(ak)| , |f(am)|). So we get

|f(x)− f(y)|
|x− y|n

≤ max

(
|f(ak)|

rn
k

,
|f(am)|

rn
m

rn
m

rn
k

)
≤

≤ sup
m

|f(am)|
rn
m

= sup
m

∣∣∣∣µm

λm

λm

∣∣∣∣ = sup
m
|µm|

so that n‖f‖ ≤ supm |µm| < ∞.

Combining 4.2 and 4.4 we obtain the following conclusion.
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Theorem 4.5 Let n ∈ {0, 1, . . .}. Then BCn(X) is of countable type if and only if
X is compact.

5 When BC∞(X) is of countable type?

The space BC∞(X) :=
⋂{BCn(X) : n ∈ {0, 1, . . .}}, equipped with the locally

convex topology induced by the norms ‖ ‖n (n ∈ {0, 1, . . .}), is easily seen to be a
Fréchet space. We will see that, contrary to the previous case, precompactness of X
is enough to ensure that BC∞(X) is of countable type. The reason is the following.

Lemma 5.1 Each f ∈ BC∞(X) extends uniquely to an f ∈ BC∞(X), where X is
the closure of X in K. The map f 7→ f is a linear homeomorphism of BC∞(X)
onto BC∞(X).

Proof. For (x1, . . . , xn+1, a1, . . . , an+1) ∈ 52n+2X we have for all f : X−→K (see
[3] 29.2)

Φnf(x1, . . . , xn+1)−Φnf(a1, . . . , an+1) =
n+1∑
j=1

(xj−aj) Φn+1f(a1, . . . , aj, xj, . . . , xn+1).

As f ∈ C∞(X) we can, for each n ∈ {0, 1, . . .}, extend this by continuity:

Φnf(x1, . . . , xn+1)−Φnf(a1, . . . , an+1) =
n+1∑
j=1

(xj−aj) Φn+1f(a1, . . . , aj, xj, . . . , xn+1)

(3)
for all (x1, . . . , xn+1), (a1, . . . , an+1) ∈ Xn+1.

Denoting the canonical norm on Kn+1 by ‖ ‖∞ we obtain from (3) the following
inequality. ∣∣∣Φnf(u)− Φnf(v)

∣∣∣ ≤ ‖u− v‖∞‖Φn+1f‖ (u, v ∈ Xn+1).

Thus, Φnf is Lipschitz, hence uniformly continuous on Xn+1 and therefore can

uniquely be extended to a (bounded) continuous function hn on X
n+1

. By continuity
hn = Φnh0 for all n ∈ {0, 1, . . .}. Hence, h0 ∈ BC∞(X) and we can take f := h0,
which proves the first statement. The second one is now immediate.

Theorem 5.2 BC∞(X) is of countable type if and only if X is precompact.

Proof. Let X be precompact. Then X is compact and by 4.5 BCn(X) is of
countable type for each n ∈ {0, 1, . . .} and, by 1.1, so are (BC∞(X), ‖ ‖n) (n ∈
{0, 1, . . .}). So BC∞(X) is of countable type, hence so is BC∞(X) by 5.1.

Conversely, suppose X is not precompact. With the same reasoning as in 4.3, we
find an infinite set I, a subspace D of BC∞(X) and a linear map D−→`∞(I) that is
a surjective homeomorphism when we endow D with any of the norms ‖ ‖n. Then
D, with the topology induced by BC∞(X), is linearly homeomorphic to `∞(I). As
`∞(I) is not of countable type (1.2), neither is BC∞(X) by 1.1.
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