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Abstract

A geometric characterization of the extension property is given for Cantor-

type sets. The condition can also be done in terms of the rate of growth of

certain sequences to the Robin constants of local parts of the set.

1 Introduction

Given a compact set K ⊂ Rn, E(K) denotes the space of Whitney jets on K, that
is the space of traces on K of C∞ functions. It is said that K has the extension
property if there exists a linear continuous extension operator L : E(K) → C∞(Rn).
The problem of a geometric characterization of the extension property was raised
by Mityagin ([8], Problem 5). Even for the one-dimensional case this problem is still
open, in spite of the presence of numerous particular results ([12], [2], [13], [14], [10],
[5], [1], [4]). Here we suggest a complete criterion (compare to [14], [5], [1]) of the
extension property for Cantor-type sets in certain geometric terms. The condition
can be described also in terms of the theory of logarithmic potential.
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2 Sequences of subexponential growth

Let (σs)
∞
0 be a sequence of positive numbers. We say that (σs)

∞
0 has a subexponential

growth if σs = exp(o(s)), that is log σs

s
→ 0, as s → ∞. Also, the family (σ(n))∞n=1 =

(σn, s)
∞ ∞
n=1, s=0 is of uniform subexponential growth if log σn, s

s
tends to 0, as s → ∞,

uniformly with respect to n.
Let σs ↑ σ ≤ ∞ and f(s) = log σs. We are interested in the condition

f(s + 1) − f(s) → 0, as s → ∞. (1)

Proposition 1. The condition (1) implies that the sequence (σs)
∞
0 is of subexpo-

nential growth. If the function f is concave or if σ < ∞, then the subexponential
growth of (σs)

∞
0 is equivalent to (1).

Proof : Suppose, contrary to our claim, that for some ε0 and sk ↑ ∞ we get
f(sk) ≥ 2ε0 sk. Then one can find a sequence of disjoint nonempty intervals (mk, nk)∞k=1

with mk, nk ∈ N such that f(nk) − f(mk) ≥ ε0 (nk − mk). Therefore at least one
term f(j + 1) − f(j), j = mk, · · · , nk − 1 exceeds ε0, contrary to (1).

If the function f is concave, then f(s + 1) − f(s) ↓ a and the growth condition
f(s)/s → 0 implies a = 0. In the case σ < ∞ the result immediately follows from
monotonicity of f .

An easy example of a sequence (σs)
∞
0 of subexponential growth without the

condition (1) can be done by f(s) = f(sk) = f(sk−1) + 1 for sk ≤ s < sk+1 provided
sk/k → ∞.

3 Extension property of Cantor-type sets

Given l1 with 0 < l1 < 1 and a sequence (αs)
∞
s=2 with αs > 1 let us denote by K(αs)

the Cantor set associated with the sequence l0 = 1, l1, l2 = lα2

1 , · · · , ls = lα2α3···αs

1 , · · · ,
that is K(αs) =

⋂∞
s=0 Es, where E0 = I1, 0 = [0, 1], Es is a union of 2s closed basic

intervals Ij, s of length ls and Es+1 is obtained by deleting of open centric interval of
length ls − 2 ls+1 from each Ij, s , j = 1, 2, ...2s. In the case αs = α, s = 2, 3, · · · , the
compact set K(α) has the extension property if and only if α ≤ 2 ([5], [6]).

Let x be an endpoint of some basic interval. Then there exists the minimal
number s ( the type of x) such that x is the endpoint of some Ij,m for every m ≥ s.

For simplicity, we consider here only the Cantor-type sets such that αs ≥ 1 +
ε0, s ≥ s0 for some positive ε0 and ls ≥ 4 ls+1 for all s.

We use the notations: πn, 0 := 1 and πn, k = 2−k αn+1αn+2 · · ·αn+k for n, k ∈ N.
Also let σn, s =

∑s
k=0 πn, k. The condition

σn, s+1 / σn, s ⇉ 1, as s → ∞ (2)

implies that the the family (σn, · )
∞
n=1 has uniform subexponential growth. Here and

in what follows the symbol ⇉ denotes the convergence that is uniform with respect
to n. Clearly, (2) is equivalent to

πn, s

/

s
∑

k=0

πn, k ⇉ 0 as s → ∞ (3)
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and also to

∀v ∈ N

s
∑

k=s−v

πn, k

/

s
∑

k=0

πn, k ⇉ 0 as s → ∞. (4)

Therefore the negation of (2) can be written in the following way

∃C, v : ∀s we get
s
∑

k=0

πn, k ≤ C
s
∑

k=s−v

πn, k for n = nj ↑ ∞. (5)

In addition we write the condition (2) in geometric terms as

∀M > 0 ∃sM : lMn+s > l2
s

n l2
s−1

n+1 · · · ln+s, ∀n ∀s ≥ sM . (6)

We proceed to characterize the extension property of the set K(αs). The topology
of the space E(K(αs)) is given by the family of norms

‖ f ‖ q = |f | q + sup

{

|(Rq
yf)(k)(x)|

|x − y|q−k
: x, y ∈ K(αs), x 6= y, k = 0, 1, ...q

}

,

q = 0, 1, ..., where | f | q = sup{| f (k)(x)| : x ∈ K(αs), k ≤ q} and Rq
yf(x) = f(x) −

T q
y f(x) is the Taylor remainder.

For an infinitely differentiable function F with compact support, |F |(R)
q denotes

sup{|F (k)(x)| : x ∈ R, k ≤ q}.

Theorem 1. The compact set K(αs) has the extension property if and only if the
condition (2) is fulfilled.

Proof : Suppose the condition (2) is valid. We can present the extension operator
L : E(K(αs)) → C∞(R) explicitly. At first we extend properly the basis elements of
the space, and then we define the operator L by linearity.

Let us prove that the condition (2) implies boundedness of the sequence (αs).
Suppose, contrary to our claim, that for some subsequence (ns) we have αns

>
2s, s ∈ N. Without loss of generality let ns > s, s ∈ N. Then for n = ns − s we
get

∑s
k=0 πn, k/πn, s = 1 + α−1

n+s [2 +
∑s−2

k=0
2s−k

αn+k+1···αn+s−1
] < 1 + α−1

n+s

∑s−1
k=0 2s−k, since

αk > 1, k ∈ N. Therefore,
∑s

k=0 πn, k/πn, s < 3, contrary to (3).
Let A := sups αs.
For a fixed basic interval Ij, s = [aj, s, bj, s], let us choose the sequence (xn,j, s)

∞
n=1 of

points by including all endpoints of basic subintervals of Ij, s in the order of increase
of the type. For the points of the same type we first take the endpoints of the
largest gaps between the points of this type; here the intervals (−∞, x), (x,∞) are
considered as gaps. From points adjacent to the equal gaps, we choose the left one
x and then bj,s − x. Thus, x1,j, s = aj, s, x2,j, s = bj, s, x3,j, s = aj, s + ls+1, · · · , x7,j, s =
aj, s+ls+1−ls+2, · · · . We follow [7] to define eN,j, s =

∏N
n=1(x−xn,j, s) if x ∈ K(αs)∩Ij,s

and eN,j, s = 0 on K(αs) otherwise.
Given a nondecreasing unbounded sequence (Ns)

∞
s=0 of natural numbers of the

form Ns = 2ns, we consider the sequence B = (eN, j, s)
∞, 2s, Ns

s=0, j=1,N=Ms
, where M0 = 0

and for s ≥ 1 we take Ms = Ns−1/2 + 1 if the number j is odd, Ms = Ns−1/2 for
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even j. By Theorem 2 in [7], the sequence B forms a basis in the space E(K(αs)),
provided the condition

2Ns ls ≤ 1 for all s ≥ 1. (7)

Given δ > 0, and a compact set E, we take a C∞− function u(·, δ, E) with the
properties: u(·, δ, E) ≡ 1 on E, u(x, δ, E) = 0 for dist(x, E) > δ and | u|(R)

p ≤
cp δ−p, p ∈ N, where the constant cp depends only on p. Let (cp) ↑ .

Fix s ∈ N and N with Ms ≤ N ≤ Ns. Then 2m−1 < N ≤ 2m for some m from the
set {ns−1−1, · · · , ns}. Let δN, s = ls+m−1. Now for j = 1, · · · , 2s we define L(eN, j, s)
as ẽN, j, s u(· , δN,s , Ij,s ∩ K(αs)), where ẽN, j, s denotes the analytic extension of the
corresponding polynomial. The operator L is well-defined on the basis elements.
For its continuity it is sufficient to show that for any p ∈ N there exist q ∈ N and
C > 0 such that

| ẽN, j, s u(· , δN,s , Ij,s ∩ K(αs))|(R)
p ≤ C || eN, j, s|| q (8)

for all admissible values of s, j and N.
Fix p ∈ N and q in the form q = 2v such that for any n we have

p A2 πn, v−3 <
v−3
∑

k=0

πn, k,

which is possible due to (3).
Given p, q, using (7), we choose s0 with Np

s0
≤ 2Ns0 and 4 N q

s0
lε0

s0
< 1. In what

follows we consider only s ≥ s0.
The polynomial ẽN, j, s has its zeros at all points of the type at most s + m − 2

and possibly at some points of the type s + m − 1 on the interval Ij,s. Let us fix
a point z with dist(z, Ij,s ∩ K(αs)) ≤ ls+m−1 and n ≤ p such that | ẽN, j, s u|(R)

p =

| (ẽN, j, s u)(n)(z)|. For this z we take the point x of the type ≤ s + m − 2 that is
the nearest to z. If there are two such points, then we take any of them. Clearly,
| x − z | ≤ 2 ls+m−1. By (ρk)N

k=1 we denote distances from x to the zeros of ẽN, j, s

ordered increasingly. Thus, ρ1 = 0, ls+m−1 ≤ ρ2 ≤ ls+m−2, etcetera.
By the Leibniz Rule,

| (ẽN, j, s u)(n)(z)| ≤
n
∑

i=0

(

n

i

)

cn−i l
i−n
s+m−1 | (ẽN, j, s)

(i)(z) |.

The derivative (ẽN, j, s)
(i)(z) is a sum of N !/(N−i)! terms and every term is a product

of N − i factors of type (z − xn,j, s) . Since | z − xn,j, s | ≤ | x− xn,j, s | + 2 ls+m−1, we
can write | (ẽN, j, s)

(i)(z) | ≤ N i∏N
k=i+1(ρk + 2 ls+m−1) and

| (ẽN, j, s u)(n)(z)| ≤ 2n cn maxi≤n[li−n
s+m−1 N i

N
∏

k=i+1

(ρk + 2 ls+m−1)].

The distance between any two zeros of ẽN, j, s is not smaller than ls+m−1. It implies
that ρk + 2 ls+m−1 ≤ ρk+2 for k ≤ N − 2. Clearly, ρN−1 + 2 ls+m−1 ≤ ρN + 2 ls+m−1 <
2 ls. Therefore,

| (ẽN, j, s u)(n)(z)| ≤ 2p+2 cp l2s maxi≤n[ li−n
s+m−1 N i

N
∏

k=i+3

ρk].
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For i > 0 the expression in square brackets can be written as
li+1

s+m−1
N i

ρ3···ρi+2
l−1−n
s+m−1

∏N
k=3 ρk. The fraction here does not exceed 1, because

ls+m−1 N i ≤ ls Np
s ≤ ls 2Ns ≤ 1, by (7). In the case where i = 0 we also have the

desired bound. Thus finally,

| ẽN, j, s u|(R)
p ≤ 2p+2 cp l2s l−1−p

s+m−1

N
∏

k=3

ρk. (9)

We proceed to get a lower bound of || eN, j, s|| q. With the same x as above, we

get || eN, j, s|| q ≥ | eN, j, s| q ≥ | e
( r)
N, j, s(x) | for any r ≤ q.

Any basic subinterval Ii, s+m−k contains from 2k−1 to 2k zeros of ẽN, j, s, k =
1, · · · , m. The point x belongs to a certain interval Ii, s+m−v that contains r, q/2 ≤

r ≤ q, zeros of ẽN, j, s. Here 1
r!

e
( r)
N, j, s(x) is a sum of

(

N
r

)

terms and every term is a

product of N − r factors of type (x − xn,j, s). Only one of these products does not
contain (x−xn,j, s) for xn,j, s ∈ Ii, s+m−v and the modulus of this product is

∏N
k=r+1 ρk.

All other products contain terms with | x− xn,j, s| ≤ ls+m−v. Therefore the modulus
of any other product does not exceed ρr

∏N
k=r+2 ρk. The sum of all such products

can be estimated from above by [
(

N
r

)

− 1] ρr
∏N

k=r+2 ρk. It follows that

| e
( r)
N, j, s(x)| ≥

N
∏

k=r+1

ρk − N r ρr

N
∏

k=r+2

ρk.

Because of the choice of r we get ρr ≤ ls+m−v, ρr+1 ≥ ls+m−v−1 − 2 ls+m−v. It is
easy to check that ρr/ρr+1 < 2 lε0

s . Therefore, N r ρr/ρr+1 ≤ 1/2, due to the choice
of s0. It implies that || eN, j, s|| q ≥ 1

2

∏N
k=r+1 ρk ≥ 1

2

∏N
k=q/2+1 ρk. Comparing this to

(9), we see that it is enough to show that the sequence (l−p−1
s+m−1

∏q/2
k=3 ρk)s=s0, m≤ns

is
bounded.

In the estimation of the product
∏q/2

k=3 ρk from above we will take into account
only the points of the type ≤ s + m − 2. Clearly, including the points of the type
s + m − 1 can only decrease the product. Hence, ρ3 ≤ ls+m−3 − ls+m−2, ρ4 ≤
ls+m−3, · · · , ρq/2 ≤ ls+m−v and

q/2
∏

k=3

ρk ≤ l2s+m−3 l4s+m−4 · · · l
2v−2

s+m−v = lκs+m−v,

where κ = 2v−2 + 2v−3αs+m−v+1 + 2v−4 αs+m−v+1 αs+m−v+2 + · · · +
2 αs+m−v+1 · · ·αs+m−3 = 2v−2 ∑v−3

k=0 πs+m−v, k.
On the other hand, since πn, k = 1

4
αn+k−1 αn+k πn, k−2 ≤ 1

4
A2 πn, k−2, we get

ls+m−1 = l
2v−1 πs+m−v, v−1

s+m−v ≥ l
2v−3 A2 πs+m−v, v−3

s+m−v . It follows that

l−p−1
s+m−1

∏q/2
k=3 ρk ≤ lκ1

s+m−v, where

κ1 = 2v−2

[

v−3
∑

k=0

πs+m−v, k −
1

2
(p + 1)A2 πs+m−v, v−3

]

,

which is positive by the choice of q. This gives (8) and continuity of the operator L.
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We are now in position to show that the condition (5) implies the lack of the
extension property for the compact set K(αs). In [13] Tidten applied Vogt’s char-
acterization for splitting of exact sequences of Fréchet spaces and proved that a
compact set K has the extension property if and only if the space E(K) has a dom-
inating norm. Due to Frerick [4], the space of Whitney functions has the property
(DN) if and only if for any ε > 0 and for any q ∈ N there exist r ∈ N and C > 0
such that

| · |1+ε
q ≤ C| · | 0 || · || εr.

Therefore we need to show that there exists ε > 0 and q such that for any r ∈ N

one can find a sequence (fj) ⊂ E(K(αs)) with

| fj| 0 || fj||
ε
r | fj|

−1−ε
q → 0 as j → ∞. (10)

Given C and v by the condition (5), we take ε = C−1 and q = 2v. Fix any
r = 2s. Since the norms || · || r increase, we can take r in this form. We choose the
subsequence (nj) from the condition (5) and consider fj = er,1,n for n = nj .

The zeros of er,1,n on I1, n are all points of the type ≤ n + s − 1. Hence for any
x ∈ K(αs) ∩ I1, n the distance from x to some zero of er,1,n is not larger than ln+s,
the distance from x to other zero of er,1,n does not exceed ln+s−1. Then we find two
other points with | x − xi,1,n| ≤ ln+s−2, etcetera. Therefore,

| fj| 0 ≤ ln+s ln+s−1 l2n+s−2 l4n+s−3 · · · l
2s−1

n .

For the lower bound of | fj| q we use the same arguments as above:

| fj| q ≥ | f
( q)
j (0)| ≥ 1/2 l2

v

n+s−v−1 · · · l
2s−1

n .

Here, instead of the condition 4 N q
s lε0

s < 1 we need 4 · 2s q lε0

nj
< 1, which can be

achieved for large enough j.
Since for any x ∈ K(αs) ∩ I1, n the value fj(x) is a product of r small terms

( x− xi,1,n), we get | fj| r = | f
( r)
j | = r!. Also sup

{

|(Rr
yfj)

(k)(x)| | x− y|−r+k
}

will be

realized for k = r. Therefore, || fj|| r = 2 r!.
Thus in order to get (10), it remains to prove that

ln+s ln+s−1 l2n+s−2 · · · l
2v−1

n+s−v (l2
v

n+s−v−1 · · · l
2s−1

n )−ε0 → 0, as n = nj → ∞.

As before, the element of the sequence can be written in the form lκn , where κ =
αn+1 αn+2 · · ·αn+s+αn+1 · · ·αn+s−1+2 αn+1 · · ·αn+s−2+· · ·+2v−1 αn+1 · · ·αn+s−v−
ε0 [2v αn+1 · · ·αn+s−v−1 + · · · + 2s−2 αn+1 + 2s−1] = 2s−1 [2 πn, s +

∑s−1
k=s−v πn, k −

ε0
∑s−v−1

k=0 πn, k], which is positive by (5).
This gives (10) and the lack of the dominating norm in the space E(K(αs)).
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4 Characterization in potential-theoretic terms

By Cap (K) we denote the logarithmic capacity of a compact set K ⊂ C. We are
interested in the minimal value of the logarithmic energy log(Cap (K)−1), which is
also called the Robin constant of K and is denoted by Rob (K). Here and subse-
quently, log denotes the natural logarithm. The Cantor set K(αs) is polar if and
only if

∑∞
k=0 π1, k = ∞ (see e.g.[3]). What is more, Totik in [15] found the bound (in

our terms):

1/4 log l−1
1

∞
∑

k=0

π1, k ≤ Rob (K(αs)) ≤ 2 log l−1
1

∞
∑

k=0

π1, k.

Repeating arguments from [15] for the corresponding part of the set, we obtain for
n ∈ N, j = 1, · · · , 2n

1/4 log l−1
n

∞
∑

k=0

πn, k ≤ Rob (K(αs) ∩ Ij, n) ≤ 2 log l−1
n

∞
∑

k=0

πn, k.

Therefore the condition (3) means a kind of uniform with respect to n regularity
of approximation of the sum of the (possibly divergent) series, corresponding to the
Robin constant of the set K(αs) ∩ Ij, n, by its partial sums. Proposition 1 now shows
that if the set K(αs) has the extension property, then the sequences of partial sums,
corresponding to the Robin constants of the sets K(αs) ∩ Ij, n, have uniform with
respect to n subexponential growth.

We see that the extension property of the set K(αs) is not related to the polarity
or to the ”local” polarity of the set. Neither it is related to the regularity of the
Green function g(C \K(αs), z,∞), since by Pleśniak [11], in the case of the Cantor
type set, the corresponding Green function is regular if and only if the set is not
polar.

Example 1. The set K(2) is polar, but it has the extension property, since here
πn, k = 1 for all n and k. See also [6] for this case.

Example 2. Let us fix an increasing sequence (km)∞m=1 of natural numbers
and a ∈ (1/2, 1). We define α2 = · · · = αk1+1 = 2 a and then for m ∈ N let
αk1+k2+···+km+m+1 = a−km , αk1+k2+···+km+j = 2 a for j = m + 2, m + 3, · · · , km+1 +
m + 1. Then π1, k = ak, k = 0, · · · , k1 and for m ∈ N we get π1, k1+k2+···+km+m =
2−m, π1, k1+k2+···+km+j = 2−m aj−m for j = m + 1, m + 2, · · · , km+1 + m. Therefore,
∑∞

k=0 π1, k =
∑∞

m=0 2−m(1+a+· · ·+akm+1). Since the series converges, the set K(αs) is
not polar. But it does not have the extension property. For n = k1 + · · ·+km +m+1
and s = km+1 + 1 we get πn, k = ak for k = 0, · · · , km+1, πn, s = 1/2, contrary to
(3). As well the condition (2) can not be fulfilled because the sequence (αk) is not
bounded.

We now turn to the problem of a geometric characterization of the extension
property. It is known (see e.g [9]) that there is no general geometric characterization
of polarity of compact sets in terms of (Hausdorff) measures. Our condition (2) is
more subtle than the statement about the convergence of the series

∑∞
k=0 π1, k. One

can conclude that the possibility to find a geometric characterization of the extension
property in the general case is rather doubtful.
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