
Protocol Conformance through

Refinement Mappings in Cadence SMV∗

Sara Van Langenhove

Abstract

This paper addresses the verification of protocol conformance between
two types of state machines in model-driven software design: protocol state
machines that enable specifying allowed sequences of signals and behavioral
state machines that are intended for implementation specification. The
contribution of the present paper, is to provide a methodology, which is based
on refinement mappings, to automatically verify on protocol conformance. It
helps to turn UML into a powerful and interesting tool for the development
of business critical software systems.

1 Introduction

If you are familiar with object-oriented methods, you will be aware of the concept of
a class and an interface. A class represents an entity of a given system and provides
a piece of system functionality, whereas an interface is a variation of a class in the
sense that it only provides a definition of system functionality. Interface classes are
used by classes that claim to implement them.

Nowadays, it is becoming a trend to use the Unified Modeling Language
(UML) [9] for modeling a multitude of software systems, even in the early design
phases of the software development process. The UML allows that classes use
behavioral state machines to describe their piece of system functionality. Basically,
state charts show the events and the conditions that trigger a transition from one
state to another, together with the resulting behavior. The new version of the
standard, UML 2.0, allows that interfaces use protocol state machines to focus only
on allowable sequences of behavior invocation on a class, but, without having to
show its behavior.

∗Funded by Ghent University (BOF/GOA project B/03367/01 IV1) and the Prof. Dr. Wuytack
Fund.

Bull. Belg. Math. Soc. 13 (2006), 905–915

906 S. Van Langenhove

A problem, then, arises: given a protocol state machine and a behavioral
statechart, that should be an implementation of it, how to verify that the
implementation meets the specification? This problem is called protocol conformance
verification.

Experience has shown that, even in the design phase, state machines are more
and more used for the increasingly successful automatic verification through model
checking [5]. In [10] we have introduced a UML based verification method to identify
and to remove behavioral faults during the design phase and before entering the code
phase. The proposed method makes way for an automatic translation of the state
charts to the language of the model checker Cadence SMV (CaSMV) [2] and helps
to turn UML into a powerful and interesting tool for the development of business
critical systems. The challenge is now to augment the verification method of [10]
with a method that automatically decides on protocol conformance in the design
phase.

In this survey we first formalize both types of state machines. Thereafter, we
explain what protocol conformance really means and we use refinement mappings
(or simulations) to formalize the concept. Finally, a methodology to prove the
conformance relation is set up, using the existing model checker Cadence SMV [2].

2 Two kinds of State Machines

Behavior in UML 2.0 is defined as a specification of how its context classifier changes
state over time [9]. In addition to expressing the behavior of a part of a system, state
machines can also be used to express usage protocols of a part of a system. Based on
this, UML 2.0 differentiates between two kinds of state machines: behavioral state
machines and protocol state machines.

2.1 Behavioral State Machines (BSMs)

Behavioral state machines extend traditional finite automata by adding hierarchy,
concurrency and communication. They are hierarchical automata associated to
UML objects (a class instance) to model their behavior (Definition 1). Each BSM
gives an abstract view of all the desired behaviors of an object in its lifecycle; a view
that is concerned with what an object must do.

Definition 1. A UML behavioral state machine is a 6-tuple BSM = 〈 σ, δ, E, C,

AC, s0 〉 where σ is a finite set of states, E is a finite set of events, C is a finite set
of conditions, AC is a finite set of actions, δ ⊆ σ × E × C × 2AC × σ is a finite
set of transitions where 2AC denotes the power set of AC, and where s0 is the initial
state.

2.2 Protocol State Machines (PSMs)

A protocol state machine is always defined in the context of a classifier (mostly
an interface). In its simplest form, a PSM (Definition 2) is a state diagram in
standard UML notation whose transitions are labeled by events (call event, signal

Protocol Conformance through Refinement Mappings in Cadence SMV 907

Empty

Loaded

p1: evPush
 p3: evPop

Full

p6: evPush
 p7: evPop

p4: evPush

p5: evPop

Exception

p2: evPop

p8: evPush

Root

Figure 1: BSM of a Stack

Empty

Loaded

p1: evPush
 p3: evPop

Full

p6: evPush
 p7: evPop

p4: evPush

p5: evPop

Exception

p2: evPop

p8: evPush

Root

Figure 2: BSM of a Stack

event, time event, completion event) and do not have actions; i.e. refusing any
behavioral implementation.

Definition 2. A UML protocol state machine is a 6-tuple PSM = 〈 σ, δ, E, PREC,

POSTC, s0 〉 where σ is a finite set of states, E is a finite set of events, PREC is a
finite set of preconditions, POSTC is a finite set of postconditions, δ ⊆ σ × PREC

× E × POSTC × σ is a finite set of transitions, and where s0 is the initial state.

This way, a PSM captures the triggering view of an objects behavior. It presents
the possible and the permitted transitions on the instances of its context classifier,
by specifying the consummation order of the events and the states through which an
object progresses during its life. A PSM defines what the instances of its context
classifier can do.

3 Motivating Example: A Bounded Stack

An abstract data type (ADT), or interface, specifies a set of operations (or methods)
and the semantics of the operations (what they do), but it does not specify the
implementation of the operations. The stack as ADT is defined by specifying the
operations (modelled as events push, pop, isfull, isempty) that can be performed on
it. Using UML 2.0, the stack interface is represented by the protocol state machine
given in Figure 1, showing the way how the stack is used in practice.

There are many uses for stacks: providing support for recursive procedure calls,
searching structures, computation, and so on. Depending on the use, the methods
of the stack can be implemented in many different ways, each leading to different
stack classes (array based, list based, ...). A possible overall behavior of such a
stack class is given by Figure 2. Note that the behavior of the stack is defined in a
reactive manner. The transitions also contain some guards – a predicate expression
associated with an event – which might change depending on how the stack is
implemented. Note that the specified behavior considers the stack when it is almost
empty or almost full.

Obviously, a protocol machine specifies what a behavioral machine is allowed
to do at any given moment. At this point, the designer only has to worry about
whether the implementation – the behavioral state machine – is correct in accord
with the interface – the protocol state machine. This problem is known as protocol

908 S. Van Langenhove

conformance verification. It is the purpose of this paper to show how this can
automatically be done during the early phases of system design.

4 Protocol Conformance

The UML Superstructure 2.0 Specification [9] explains that there are relationships
between the classifier being the context of the specific BSM and the classifier being
the context of the PSM. Generally the former specializes or realizes the latter. In
UML 2.0, protocol conformance means that every rule and constraint specified for
the general PSM applies to the specific BSM. This is augmented by specifying
that the PSM can be redefined into the BSM. Clearly, the behavioral view of an
object is not independent of its triggering view. Intuitively, the ordered collection
of stimuli received by an object’s statechart must exist as a sequence of events in
its corresponding protocol state machine. That is, every behavior of an object’s
statechart is also a behavior of its protocol statechart. If not, then obviously, the
interface class is wrongly implemented. In order to verify the consistency between
both state machines, we need a more formal definition of protocol conformance
between a PSM and a BSM and adapt a method presented in [1]. This is where
refinement mappings, as considered by Abadi and Lamport [4], will show their use.

4.1 Refinement Mappings (or Simulations)

The existence of a refinement mapping proves that a machine implements a given
specification. You may know that refinement mappings are the functional cousin of
Milner’s simulation relations. Milner introduced them for the purpose of comparing
programs [8]. The simulation guarantees that every behavior of a structure is also a
behavior of its abstraction. However the abstraction might have behaviors that are
not possible in the original structure. Technically, a simulation (or a refinement) is
a function (or a mapping) R between the states of a low-level specification S1 and
a high-level specification S2 that satisfies conditions [5] as

(s, v) ∈ R ∧ s →S1
s′ ⇒ ∃v′ : v →S2

v′ ∧ (s′, v′) ∈ R

(If a low-level state s and a high-level state v are related, and S1 can make a
transition from s to s′, then there exists a matching transition in S2 from v to a
state v′ that is related to s′.) The existence of such a mapping implies that any
behavior exhibited by S1 can also be exhibited by S2.

It can be of no suprise that a refinement mapping is useful to automatically
decide on protocol conformance. Each PSM is equivalent to an abstract
specification PSMa while each BSM defines a concrete specification BSMc of some
classifier. Verifying on protocol conformance is now equal to proving that a low-
level specification (i.e. BSMc) correctly implements a high-level specification (i.e.
PSMa), using a refinement mapping between a BSM and a PSM. A refinement
mapping, denoted as Rf , from a BSM to a PSM is a function f : σBSM → σPSM

Protocol Conformance through Refinement Mappings in Cadence SMV 909

that provides the following mappings:

1. state mapping: ∀s ∈ σBSM : f(s) ∈ σPSM

2. steps mapping: ∀(si, sj)e[g]/a ∈ δBSM : (f(si), f(sj))[pre]e[post] ∈ δPSM

3. behav. mapping: xs ∈ Beh(BSM) ⇒ fw(xs) ∈ Beh(PSM)

4.1.1 State Mapping

There can be no refinement mapping between both state machines unless the
designer has specified a correspondence relation between the states of both state
charts. We assume that a PSM presents the possible and permitted states through
which an object progresses during its life i.e. a BSM cannot reside in states not
present in its corresponding usage protocol. Summarized, the state mapping is given
by a state transformer (Definition 3) that assumes a 1-to-1 correspondence between
the states of BSM and the states of PSM. Obviously, the initial state s0

BSM

corresponds to the initial state s0
PSM .

Definition 3. The set of states that an object may have during its life is fully defined
in its PSM:

∀s ∈ σBSM : ∃!s ∈ σPSM : f(s) = s′

4.1.2 Steps Mapping

Analogously, Definition 4 specifies the mapping of the steps. And each step is equal
to a transition.

Definition 4. A behavioral transition, with label event[guard]/actions, from
state si to state sj is legal iff the corresponding PSM defines a protocol transition
from state si to state sj with the label [pre]event/[post].

∀(si, sj)e[g]/a ∈ δBSM : (f(si), f(sj))[pre]e[post] ∈ δPSM

This means that a behavior transition may exist iff there exists a protocol transition
with the same source, target and triggering event.

Still, it is not required that every PSM’s state/transition has a counterpart
state/transition in its redefined BSM because a PSM specifies all the capabilities
of a classifier, not all of which may be used in a particular system. That is, σBSM ⊆
σPSM and δBSM ⊆ δPSM.

4.1.3 Behavioral Mapping

Protocol conformance means that every behavior of an object’s statechart is also
a behavior of its protocol statechart. Thus, Definition 5 implicitely defines the
requested mapping of behaviors (= sets of all sequences of transitions) i.e. xs ∈
Beh(BSM) ⇒ fw(xs) ∈ Beh(PSM).

910 S. Van Langenhove

Definition 5. Let P be a PSM and B defined for a class c. B conforms to P with
respect to the initial state s0 if and only if whenever

s0 →∗ s′
event[guard]/actions

→ s′′

(that is, a transition is triggered from some state s’ in B that is reachable from the
initial state of B) we have a corresponding counterpart transition in P

s0 →∗ s′
[pre]event/[post]

→ s′′

where both the pre and the post condition evaluate to true.

The refinement mapping Rf can now be used to prove whether the low-level
specification correctly simulates the high-level one. If so, every execution trace
of the BSMc is allowed by the PSMa meaning that the BSMc implements
(conforms) the PSMa. Obviously, there must exist some verification technique
(and corresponding tool) that uses Rf to prove the protocol conformance during
system design. Additionally, it is useful if the technique finds some interesting
counter examples, helping the modeler to develop the design of her/his system.

5 Methodology

The refinement methodology enforces the verification process of the protocol
conformance to proceed through phases:

Phase 1 The first phase automatically decides whether the set of states of the
BSMc is indeed a subset of the one of the corresponding PSMa. If not, the low-
level specification contains states that are not present in the high-level one i.e. it is
impossible to have protocol conformance between both machines. At this point, the
developer is informed about her/his mistake(s). As an example, the set of states used
to define the behavioral stack machine (Figure 2) is fully defined in its corresponding
usage protocol (Figure 1).

Phase 2 The second phase verifies whether each behavioral transition has a
corresponding counter protocol transition. If not, then the mapping of the
transitions is not correctly followed, and the designer is again informed about her/his
mistake(s). For example, it is easy to see that each behavioral transition in Figure 2
has a corresponding counter protocol transition in Figure 1.

Phase 3 The last phase proves the satisfaction of the behavioral mapping. This
phase shows that every implementation behavior is allowed by its definition, specified
in the PSMa. Of course, this shall be done by an exhaustive search respecting the
run-to-completion step semantics of state charts. At this stage, in order to efficiently
perform this proof, a sophisticated tool is needed. We propose the Cadence SMV
model checker.

Protocol Conformance through Refinement Mappings in Cadence SMV 911

5.1 Behavioral Mapping Auxiliary

The behavioral model checker Cadence SMV (CaSMV) system [2] provides an
approach that is geared to proving that an abstract model is implemented by
some more detailed system model. The notion of correctness is defined in
terms of refinement maps that relate signaling behavior at suitable points in the
implementation with events occurring in the abstract model. The verification is
based on a circular compositional rule that allows us to assume that one map (as
a temporal property) holds true while verifying another map, and vice versa. The
construct layer is used to provide the refinement maps. A layer is defined as a
collection of abstract signal definitions. These are expressed as assignments in the
same way the implementation is defined. Inside a layer transition relations are
specified as well.

CaSMV gives us the opportunity to tie the verification of behavioral properties
together with the protocol conformance proof. Both proofs happen through the
model checking technique. Intuitively, to prove the protocol conformance, CaSMV
executes the BSMc following the execution semantics as close as possible and
checks it against the information covered in the refinement mapping defined inside
a layer. If no fault is found, we are allowed to say that the BSMc complies
with its corresponding PSMa. Otherwise, the model checker returns a useful
counterexample, helping the user to develop the design.

Following Definition 5, the layer must contain the transition relation of the
PSMa. The transition relation outside the layer is the one of the BSMc resulting
in the following structure:

-- high-level specification, triggering view

layer protocol : {
-- PSM’s transition relation

}
-- low-level specification, behavioral view

-- BSM’s transition relation

Doing so, the behavioral mapping is correctly defined and the model checker is
capable of proving the conformance all by itself, as wanted. The main obstacle to
face here is the construction of the transition relations. We will now show how to
solve this problem using the stack as an example (Section 3).

5.1.1 Behavioral Transition Relation outside a Layer

In [10] we have defined a template structure in the CaSMV language [2] in order to
be able to model check some behavioral properties of a system under development.
Instantiating the template structure on the behavioral stack machine (Figure 2)
results in the following CaSMV representation, which is simplified to the parts of
main interest. The relation between the code and the graphical representation of
the behavior is straightforward.

912 S. Van Langenhove

/* Specification of Behavioral View */

...;

t4:=in_Loaded & event_queue[0] = evPush & (size < (m-1));

t6:=in_Loaded & event_queue[0] = evPush & (size == (m-1));

...;

/* Initialization of Behavioral View */

init(st_root) := Empty;

/* Total Transition Relation of Behavioral View */

case {
...;

progress_trigger & ~error: { -- dispatch an event

next(st_root) :=

case {
t1: Loaded;

t2: Exception;

t4: Loaded;

t6: Full;

t3: Empty;

t5: Loaded;

t7: Loaded;

t8: Exception;

default : st_root;

};
...;

};
...;

};

The code clearly illustrates that init/next statements specify the lifecycle depicted
in the behavioral stack machine. The init statement defines the initial state of the
machine. The next statements define parts of the total transition relation. Each
transition is assigned a unique identifier and is used inside CaSMV to represent the
enabling of the transitions. The activation of transitions is illustrated in Example 1.

Example 1. Transition t5 is allowed to fire and re-enters state Loaded when (1)
the system is in the accepting state for this transition, i.e. Loaded, (2) the guarded
event occurs (event is first of the queue and is dispatched), i.e. evPush, and (3) the
guarded predicated evaluates to true, i.e. the stack is not yet almost full. However, if
the stack is almost full, transition t7 fires and the state machine reaches state Full.

5.1.2 Protocol Transition Relation inside a Layer

The transition relation for a PSM must be specified in such a way that Definition 5
is correctly used within the verification process i.e. the execution of a behavioral
transition should lead to the execution of some counter protocol transition. Let’s
examine the CaSMV representation of the protocol state machine (Figure 1)
immediately.

Protocol Conformance through Refinement Mappings in Cadence SMV 913

/* Specification of Triggering View */

layer protocol: {
...

p4 := in_Loaded & event_queue[0] = evPush;

p6 := in_Loaded & event_queue[0] = evPush;

...

/* Initialization of Triggering View */

init(st_root) := Empty;

/* Total Transition Relation of Triggering View */

case {
...;

progress_trigger & ~error: {
next(st_root) :=

case {
p1 & t1: Loaded;

p2 & t2: Exception;

p4 & t4: Loaded;

p6 & t6: Full;

p3 & t3: Empty;

p5 & t5: Loaded;

p7 & t7: Loaded;

p8 & t8: Exception;

default : st_root;

};
};
...;

};
};

Here, init/next statements specify the refinement mapping. The init statement
mentions the state, the behavioral state chart has to reside in at time t = 0. The
next statements represents the allowable state changes at time t + 1. Each protocol
transition also has a unique identifier, used again to define the condition under which
a transition is able to take the state change.

Example 2. It is allowed to reach state Full whenever t7 and p7 are enabled.
Indeed, a behavioral transition, t7, is only allowed to execute whenever its abstract
counter protocol transition, p7 is executed as well. It is forbidden to reach state
Full, if behavioral transition t7 is enabled to execute, but the conditions of its
abstract counter protocol transition are not fulfilled.

Inside the layer, every protocol transition is connected to its behavioral counterpart.
Executing a low-level transition is only possible whenever a corresponding high-level
transition is executed as well, as specified by Definition 5. This explains the reason
for conjuctions inside the layer, as illustrated by Example 2. If we leave out the
conjunction and only use the abstract transitions to define the transition relation
inside the layer, strange things can happen, i.e. if behavioral transition t7 is enabled
to execute, the abstraction transition p5 shall be executed as well instead of abstract
transition p7. Indeed, transition p5 has the same activation condition as the one of

914 S. Van Langenhove

abstract transition p7 and is evaluated/taken first in the case statement. Leaving
out the behavioral transitions inside the layer leads to a bad implementation of
Definition 5.

5.1.3 The proof

The stack example shows a layer as a collection of a single abstract signal definition
st−root. Such an abstract definition entails a verification task to show that every
implementation behavior is allowed by this definition. Indeed, the model-checker
verifies whether the low-level implementation of a signal is simultaneously consistent
with its abstract definition for each possible behavior.

At time t = 0 the model checker verifies whether the behavior machine is in
the correct initial state. The stack machine clearly fulfills this requirement. Next,
at time t + 1, each behavioral state change is verified against the state changes
defined inside the layer. If at time t + 1 the behavioral stack reaches a state that
can never be reached by the layer, a counterexample is returned to the user. This
is not the case for the stack example; the behavioral stack is protocol conformant
with its protocol state chart.

6 Related Work

In the field of UML, the refinement concept for UML statecharts has been formalized
in [7]. Here, refinement maps are defined in terms of configurations and simulations,
which is slightly different from our refinement map definition. In [3] an extension
of the Temporal Logic of Actions (TLA) is defined in order to identify adequate
concepts of refinement for mobile UML state machines. Such an extension has the
advantage to work with more complex refinement maps; our refinement maps are
limited to the capabilities of CaSMV.

Important Usage Difference The verification of a system against a given
property is done in two phases when using refinements. In a first phase, the
coherence (=consistency) between the specification and the refinement is verified.
If both are consistent with each other, the property is verified on the high-level
model. Of course, the high-level model is usually much smaller than the low-level
one. This means that a two-phase approach proves to be more efficient than a direct
verification [6]. For our purposes, verifying a particular property does not benefit
from this two-phase approach. This follows directly from the definition and the use
of our refinement maps.

7 Conclusion

In this paper, we have used refinement mappings to define protocol conformance be-
tween two types of state machines during the design phase of software development.
Based on this definition, we have shown a verification technique (and corresponding
tool) to prove whether a BSM, as low-level specification, correctly implements its
PSM, as high-level specification. Additionally, the methodology returns interesting

Protocol Conformance through Refinement Mappings in Cadence SMV 915

counterexamples, helping the modeler to develop the design of her/his system. We
only carried out experiments on small examples, experiments on larger models must
be done.

References

[1] Tenzer J. and Stevens P. Modelling Recursive Calls with UML State Diagrams.
Proceedings of Fundamental Approaches to Software Engineering, LNCS, 2621,
2003.

[2] McMillan K. http://embedded.eecs.berkeley.edu/Alumni/kenmcmil/

smv/.

[3] Alexander Knapp, Stephan Merz, Martin Wirsing, and Júlia Zappe.
Specification and Refinement of Mobile Systems in MTLA and Mobile UML.
Theoretical Computer Science, 2005. Special Issue AMAST 2004.

[4] Abadi M. and Lamport L. The Existence of Refinement Mappings. Theor.
Comput. Sci., 82(2):253–284, 1991.

[5] Clarke E. M., Grumberg O., and Peled D. A. Model Checking. The MIT Press,
2002. 0-262-03270-8.

[6] Kenneth L. McMillan. A Compositional Rule for Hardware Design Refinement.
In CAV, pages 24–35, 1997.

[7] Sun Meng, Zhang Naixiao, and Lúıs Soares Barbosa. On Semantics and
Refinement of UML Statecharts: A Coalgebraic View. In SEFM, pages 164–173,
2004.

[8] Robin Milner. An Algebraic Definition of Simulation between Programs.
Technical report, Stanford, CA, USA, 1971.

[9] Object Management Group (OMG). Unified Modeling Language Specification.
Available from http://www.omg.org/uml/.

[10] Van Langenhove S. and Hoogewijs A. Integrating Cadence SMV in the
Verification of UML Software. In Proceedings of the 8th Dutch Proof Tools
Day, July 2004.

Department of Pure Mathematics and Computer Algebra
Galglaan 2, B-9000 Gent
Ghent University, Belgium
Sara.VanLangenhove@UGent.be

