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1 Introduction

Pappus of Alexandria (fl. c. 300-c. 350), who is regarded as one of the last great
mathematicians of the Hellenistic Age, formulated, in the introduction to book VII
of his mathematical collections, a rule to determine the volume (resp. area) of a
domain in R3 (resp. surface) generated by rotation of a plane domain D0 around an
axis in its plane: multiply the area (resp. perimeter) of D0 by the length of the circle
generated by the center of mass of D0 (resp. the center of mass of the boundary of
D0). This rule was rediscovered in 1641 by P. Guldin and was also proved by several
mathematicians of the 17th century, such as Kepler and Cavalieri. For that reason,
the rule is mainly known as the Pappus-Guldin theorem. In [2] and [16] one can find
two reasons which explain why the mathematicians of the early 17th century did
not know the Pappus rule. In any case, both articles of the History of Mathematics
conclude that P. Guldin did not plagiarize Pappus.

In 1969 A. W. Goodman and G. Goodman [8] developed a generalization of
the Pappus-Guldin theorem for domains D generated by moving a plane region D0

around an arbitrary space curve c. When the center of mass of D0 is on c, they
obtained a Pappus type formula

V olume(D) = Area(D0)× Length(c). (1.1)

Formulas for the area of the surface C generated by moving a plane curve C0 around
c are also considered in [8] but the authors obtain a generalization of the Pappus-
Guldin theorem only for plane curves c and ‘natural motions’ of a plane curve C0

along c. One year later, L. E. Pursell [15] and H. Flanders [7] supplement the results
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in [8] by showing that there exists a unique spin function such that the area of the
surface C generated as C0 moves with this spin (and with the center of mass on c)
obeys a Pappus type formula

Area(C) = Length(C0)× Length(c). (1.2)

L. E. Pursell obtains these results using elementary, classical methods of differential
geometry and shows that the ‘natural motion’ in [8] means a motion with C0 fixed
to a Frenet frame. On the other hand, H. Flanders obtain the results in [15] more
efficiently using moving frames and differential forms.

The above results on curves in R3 where generalized, by A. Gray, and the second
author, to curves in n-dimensional spaces of constant sectional curvature in [12],
where, also, was stressed the importance of the momenta of D0 in the formula for
V olume(D) and the influence of the motion on the vector normal to C, giving,
with this last remark, a first explanation of the difference between the behaviors of
V olume(D) and V olume(C). A further detailed study of V olume(C) was done in
[3], where Domingo-Juan and ourselves introduced a limited use of motions as curves
in the Lie algebra of the orthogonal group in order to obtain a better comprehension
of the relation between the motion and V olume(C).

For motions along submanifolds new phenomena appear, many of which have
been studied in [4] and [5].

As is revealed, for instance in [15] and [3], there is an obvious connection between
the Pappus-Guldin formula and a different line of research that was initiated by
H. Hotelling ([14]) around 1939. Motivated by a problem of statistical inference,
he computed the first terms of the asymptotic expansion of the volume of a tube
around a curve in a Euclidean or Spherical n-dimensional space. In the same year
and journal ([18]), H. Weyl published a formula for the volume of a tube Pr and
of the corresponding tubular hypersurface ∂Pr around a q-dimensional submanifold
P in a Euclidean or Spherical space. The tube of radius r around P is defined as
the set of points at distance from P lower or equal to r, and the corresponding
tubular hypersurface ∂Pr is the set of points at distance from P equal to r. Apart
from the interest (at least in statistical inference) of having a precise formula for
V olume(Pr) and V olume(∂Pr), a remarkable and striking fact of these formulae is
that both volumes depend only on the radius r and the intrinsic geometry of P . This
formula was used later in the first proof of the generalized Gauss-Bonnet Theorem
by Allendoerfer and Fenchel ([1, 6]). A lot of work related to Weyl’s formulae has
been done after, and it is possible to find many references in the book [10] and the
survey [17].

Other approaches for a better understanding of Weyl’s formula are: the study
of subtubes by A. Gorin ([9]) and the consideration of tubes of non constant radius
by the first author ([13]). The importance of this last work in relation with Weyl’s
formulae is that, although these tubes also have spherical section, the different
behavior between V olume(D) and Area(∂D) appears again, showing that ‘having
a spherical section’ is not a sufficient condition to have a Pappus or Weyl’s type
formula.

In this paper we go back to R3, and we will try to understand the light that, on
Weyl’s formula, can shed the union of the approaches “motions along curves” and
“tubes of non-constant radius” (which will lead to the notion of weighted motion),
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and also the systematic consideration, from the beginning, of motions along a curve
as curves in a Lie group or its corresponding Lie algebra. Then, our results will
be on volumes of domains and areas of surfaces obtained by weighted motions, and
they will be given by formulae where the expression of the motion as a curve in a
Lie group/algebra will appear in a fairly explicit form.

Given a domain D0 or a plane curve C0 in the plane P0 orthogonal to a curve
c in R3 at c(0), a weighted motion of D0 (or C0) along c from c(0) to c(t), with
weight function g(t), gives a domain Dt homothetic to D0 (or a curve Ct homothetic
to C0). So the area (resp. the length) of the section of the body obtained by such
a motion will be that of D0 (resp. C0) multiplied by the factor g(t)2 (resp. g(t)),
then, we would expect a Pappus or Weyl’s type formula (like (1.1) and (1.2)) for the
volume of the domain (resp. area of the surface) generated by a weighted motion of
D0 (resp. C0) along c of the form

V = Area(D0)
∫ L

0
g2(t)dt,

(
resp. A = Length(C0)

∫ L

0
g(t)dt,

)
(1.3)

where L is the length of the arc-length parametrized curve c(t).
Then we will study under which conditions imposed on D0 or C0 and the weighted

motion, formulae (1.3) hold.
On the other hand, the consideration of motions as curves in a Lie group or in

its corresponding Lie algebra will allow to distinguish better between the influence
of the curve c and of the motion on the volume of a domain and the area of a surface
obtained by a motion. In particular, this will allow us to clarify some remarks made
in [3].

2 Weighted motions

In this section we will give the definition of weighted motion, which mixes the notions
of “motions along a curve” ([8]) and “tubes of non-constant radius” ([13]).

Let c : I = [0, L] −→ R3 be a C∞ curve parametrized by arc-length t. Let
g : I = [0, L] −→ R+ be a positive and differentiable function with g(0) = 1. We
shall denote by Pt the plane through c(t) orthogonal to c(t).

Definition 1. A weighted motion of weight g(t) along c (or g(t)−weighted
motion for short) associated to a positively oriented smooth orthonormal frame
{E1(t) = c′(t), E2(t), E3(t)} along c(t) is a map φ : [0, L] × P0 −→ R3 defined
by

φ

(
t,

(
c(0) +

3∑
i=2

xiEi(0)

))
= c(t) + g(t)

3∑
i=2

xiEi(t). (2.1)

Let us denote by P t the vectorial plane defined by P t = Pt−c(t). A motion φ defines
a family Φ := {ϕt : P 0 −→ P t}t∈[0,L] of conformal isomorphisms with conformal
factor g(t) given by

ϕt(x− c(0)) = φ(x, t)− c(t), (2.2)

and a family of conformal maps

φt : P0 −→ Pt defined by φt(x) := φ(t, x) = c(t) + ϕt(x− c(0)) (2.3)
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Fig. 1: 1 + sin(t/(2
√

2))-weighted motion of an ellipse and three points along a helix, for
t ∈ [0,

√
2 π]

A particular case of weighted motions are those called ‘motions’ (and we shall
use the same name in this paper) in [8], [15], [12] and [3]. They are 1-weighted
motions. Then, in a natural way, every g(t)-weighted motion φ, has an associated
motion φ defined by

ϕt =
1

g(t)
ϕt and φ(t, x) = c(t) + ϕt(x− c(0)).

This associated motion will play an important role in the formulae for the volume
and the area.

From now on, we shall suppose that all the curves that we consider have a Frenet
frame {f1(t) = c′(t), f2(t), f3(t)}. Then, every curve c(t) has two special kinds of
frames: Frenet frames and parallel frames. Parallel frames are defined as follows.
The normal derivative of a vector field X(t) along c(t) in the direction of c′(t) is
defined as the component of the usual derivative X ′(t) orthogonal to c(t), that is

DX(t)

dt
= X ′(t)− 〈X ′(t), c′(t)〉 c′(t). (2.4)

We say that an orthonormal frame {e1(t) := c′(t), e2(t), e3(t)} is parallel along

c(t) if De2(t)
dt

= 0 = De3(t)
dt

.
As special cases, we will consider Frenet motions φF and parallel motions φP ,

which are the 1-weighted motions associated to Frenet frames and parallel frames,
respectively. Frenet motions are called motions in a natural manner in [8] and parallel
motions are called motions without spin in [15].

Since we are going to look at the motions as curves in a Lie group or its asso-
ciated Lie algebra, we shall recall that the group of conformal maps of R2 ≡ P 0

is ]0,∞[×SO(2) with the inner law (a, A)(b, B) = (ab, AB), with the action on
P 0 given by (a, A)v = a Av, and its Lie algebra is R × o(2) with the inner laws
(α,A) + (β,B) = (α + β,A+ B) and [(α,A), (β,B)] = (0,AB − BA), and the ac-
tion on P 0 given by (α,A)v = αv+Av. Moreover SO(2) ∼= S1 with the isomorphism

given by Aθ ≡
(

cosθ −sinθ
sinθ cosθ

)
7→ eiθ, and o(2) ∼= R with the isomorphism given by

Aθ ≡
(

0 −θ
θ 0

)
7→ θ.



Pappus-Guldin theorems for weighted motions 127

Using these isomorphisms, the group of conformal maps of R2 can be identified
with the group ]0,∞[×S1 with the inner law (a, eiθ)(b, eiϕ) = (ab, ei(θ+ϕ)), and its
Lie algebra can be identified with the commutative Lie algebra R⊕R with the inner
law (α, θ) + (β, ϕ) = (α + β, θ + ϕ). The exponential map between the Lie algebra
and the group is given by

exp(α, θ) = (eα, eiθ), (2.5)

which is a covering map.

Now, if we choose an auxiliary model weighted motion φM with weight gM , given
any g(t)-weighted motion φ, for each t ∈ I, we consider the maps

AM(t) := (ϕM
t )−1 ◦ ϕt : P 0 −→ P 0, t ∈ I, (2.6)

which are conformal isomorphisms with conformal factor g(t)/gM(t).

Therefore, once φM is fixed, we can identify a weighted motion φ along c(t) with
a curve AM : I −→]0,∞[×S1 such that AM(0) = (1, 1).

Moreover, since exp : R ⊕ R −→]0,∞[×S1 is a covering map, there is a unique
lifting lnAM : I → R⊕R of AM satisfying lnAM(0) = (0, 0), and a weighted motion
can be considered as a curve lnAM : I → R⊕ R satisfying lnAM(0) = (0, 0).

When we restrict our attention to motions, the above representation has a simpler
form. If φ is any motion (then g(t) = 1) and the model φM that we choose is also a
motion, then the maps AM(t) are isometries of P 0, and a motion can be considered
as a curve AM : I −→ S1 satisfying AM(0) = 1, and it has a unique lifting to a
curve ln AM : I −→ R satisfying ln AM(0) = 0, which can also be considered as a
representation of the motion as a curve in the Lie algebra R ∼= o(2).

If φ is a generic g(t)-weighted motion and we choose as model a motion φM (that
is, φM is a 1-weighted motion), we have the curves AM and lnAM , in R × S1 and
R ⊕ R respectively, representing the weighted motion φ. Moreover, there are the
associated motion φ of φ and the curves RM and lnRM , in S1 and R respectively,
representing the motion φ. In this situation we have the following relation between
the curves representing the weighted motion and its associated motion:

AM(t) = (g(t), RM(t)) and lnAM = (lng(t), lnRM(t)). (2.7)

In the next sections, we shall use, as models φM , the Frenet motion φF (which
will appear in a natural way when we consider volumes of domains) and the parallel
motion φP (which will appear in the formulae for the area of a surface), then the
associated curve AM will be denoted by AF and AP respectively, and RM will be
denoted by RF and RP respectively.

Let us remark that the action of ]0,∞[×S1 (resp. R⊕R) on P 0 defines an action
of the same group (resp. the same algebra) on P0 by (a, A)(c(0)+v) = c(0)+(a, A)v
(resp. (α,A)(c(0) + v) = c(0) + (α,A)v). Then every curve AF , AP , RF , RP can
also be considered as acting on P0.
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Fig 2: The curves AF (t) and AP (t) of the motion in Fig.1.
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Fig 3: The curves lnAF (t) and ln AP (t) of the motion in Fig.1.

We finish this section recalling the definitions of moment and center of mass.

Let Γ be an oriented line in R2, o ∈ Γ and ξ the unit vector normal to Γ in o
which defines the orientation of Γ. Given a set (domain or curve) B of R2, we define
the moment MΓ(B) of B with respect to Γ by the integral

MΓ(B) =
∫

B
〈ξ, x− o〉 dx, (2.8)

where dx is the area or line element of B. It can be checked by using elementary
trigonometry that it does not depend on the choice of o in Γ.

A point o ∈ R2 is the center of mass of B if and only if MΓ(B) = 0 for every
line Γ through o.

3 Volume of domains obtained by weighted motions

Let D0 be a domain in P0, Dt = φ({t} ×D0), and D = φ([0, L]×D0) (the domain
obtained by the g(t)−weighted motion φ of D0 along c). We suppose that c(t), D0

and g(t) are such that D has no selfintersections.
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Theorem 1. Let Γ be the line of P0 through c(0) orthogonal to f2(0) and oriented
by f2(0); then

V olume(D) = Area(D0)
∫ L

0
g2(t)dt−

∫ L

0
g3(t)κ(t)MRF (t)−1Γ(D0)dt (3.1)

where κ(t) is the curvature of c(t).
Proof. Let x =

∑3
i=2 xiEi(0), x(t) =

∑3
i=2 xiEi(t) = φ(t, x) − c(t) = ϕt(x) (then

|x(t)| = |x|), N(t) = x(t)
|x| . Let dx be the area element of D0. By the rule of change

of variable in multiple integrals, we have

V olume(D) =
∫ L

0

∫
D0

|detJac(φ)| dt dx. (3.2)

Further, it holds

|detJac(φ)| =
∣∣∣∣∣
〈

∂φ

∂t
,

∂φ

∂x2
∧ ∂φ

∂x3

〉∣∣∣∣∣ , (3.3)

∂φ

∂t
(t, x) = c′(t) + g′(t)x(t) + g(t)|x|N ′(t), (3.4)

∂φ

∂x2
∧ ∂φ

∂x3
(t, x) = g2(t)E2 ∧ E3 = g2(t)c′(t) (3.5)

〈N ′(t), c′(t)〉 = −〈N(t), c′′(t)〉 = −κ(t) 〈N, f2(t)〉 (3.6)

First we substitute (3.4), (3.5) and (3.6) in (3.3), then the result of this substitution
in (3.2), and we obtain

V olume(D) =
∫ L

0
g2(t) Area(D0)dt−

∫ L

0

∫
D0

|x|g3(t)κ(t) 〈N(t), f2(t)〉 dxdt. (3.7)

But

〈N(t), f2(t)〉 =
〈
ϕF

t ◦RF (t)N(0), ϕF
t f2(0)

〉
=
〈
N(0), RF (t)−1f2(0)

〉
, (3.8)

and ∫
D0

|x| 〈N(t), f2(t)〉 dx =
∫

D0

〈
x, RF (t)−1f2(0)

〉
dx = MRF (t)−1Γ(D0). (3.9)

Then (3.1) follows from (3.7) and (3.9).

Formula (3.1) for V olume(D) has two summands. The extrinsic geometry of c(t)
is present only in the second one (through κ(t)). As a consequence,

Corollary 1. V olume(D) does not depend on κ(t) if and only if one of the
following conditions hold:

a) The motion φ associated to φ is a Frenet motion and MΓ(D0) = 0,
b) c(0) is the center of mass of D0.
Proof. V olume(D) does not depend on κ(t) if and only if∫ L

0
g3(t)κ(t)MRF (t)−1Γ(D0)dt
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is constant for every function κ(t), and this condition holds if and only if MRF (t)−1Γ(D0) =
0 for every t. For this, there are two possibilities:

a) RF (t)−1Γ = Γ for every t (then RF (t) = Id), and MΓ(D0) = 0, which is the
first condition in the corollary, or

b) Γt := RF (t)−1Γ 6= Γ at some t. If ξt is the oriented unit vector orthogonal
to Γt used to define MΓt(D0) (see (2.8)), then {f2(0), ξt} is a basis of P0. Since the
integral expression 2.8 is linear in ξ, it follows that the vanishing of the moments
respect to Γt and Γ is equivalent to the vanishing of the moment with respect to
any line through c(0), that is, to c(0) being the center of mass of D0.

The motion is present in both terms in (3.1), in the first only through its weight
g(t), whereas in the second, both the weight and the rotation part RF (t) are present,
but the contribution of the last is only through
the moment MRF (t)−1Γ(D0). As a consequence:

Corollary 2. V olume(D) does not de-
pend on the motion φ associated to φ if and
only if c(0) is the center of mass of D0 or
κ(t) = 0.

Proof. From (3.1), it is clear that V olume(D)
does not depend on φ if and only if κ(t) = 0
or ML(D0) is constant as a function of the
unit vector ξ orthogonal to the line L ∈ P0

through c(0). Since ML(D0) is linear in ξ
(as we remarked before), it is constant if and
only if it is zero.

Fig. 4: A consequence of Corollary
2 is that the domain enclosed by this
surface has the same volume as that of
Figure 1

Arguments like those used in the above corollaries give the following answer to
the question arisen in the introduction:

Corollary 3. Given D0, the formula (1.3) holds for a straight line (κ(t) = 0)
and it holds for every curve (or, fixed a curve with κ(t) 6= 0, for every weight g) if
and only if c(0) is the center of mass of D0.

4 Area of surfaces obtained by weighted motions

Let C0 be a plane curve in P0. For any weighted motion φ, we write Ct = φt(C0),
and C = φ([0, L] × C0) = ∪t∈[0,L]Ct will be called the surface obtained by the
g(t)−weighted motion φ of C0 along c.

c(0) + u(s) will be a parametrization of the curve C0 by its arclength. Then
u : [0, `] −→ P 0 is a curve in P 0 with image C0 − c(0), |u̇(s)| = 1 and u(s) =∑3

i=2 ui(s)Ei(0).
We shall write

φ(t, s) := φ(t, c(0) + u(s)) = c(t) + g(t)ut(s), (4.1)

where ut(s) = ϕt(u(s)) =
∑3

i=2 ui(s)Ei(t). As a consequence, |ut(s)| = |u(s)|.
Moreover, N(t) will denote the unit vector in the direction of ut(s), that is, N(t) =
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ut(s)
|u| . Of course, N(t) is not well defined at the points s where u(s) = 0, but this may

happen for only a finite number of s at most (only one if C0 has no self-intersections),
and it has no influence in our computations.

For every t ∈ [0, L], we shall denote by J the isometry of P t satisfying that, if
e ∈ P t is a unit vector, then {c′(t), e, Je} is a positively oriented orthonormal basis
of R3.

Theorem 2. With the notation as above, it holds

Area(C) =
∫ L

0

∫ `

0

[〈
g(t)(lnAP )′(t)(u(s)), Ju̇(s)

〉2
(4.2)

+
(
1− g(t)

〈
u(s), RF (t)−1f2(0)

〉
κ(t)

)2
]1/2

g(t)ds dt

Proof. Using the parametrization φ(s, t) of the surface C given by (4.1), we have

Area(C) =
∫ L

0

∫ `

0
|∂φ

∂t
∧ ∂φ

∂s
| ds dt (4.3)

where
∂φ

∂t
= c′(t) + |u| (g(t)N(t))′,

∂φ

∂s
= g(t)u̇t(s), (4.4)

(g(t)N(t))′ ∧ u̇t(s) = 〈(gN)′(t), c′(t)〉 c′(t) ∧ u̇t(s) +
D(gN)

dt
∧ u̇t(s), (4.5)

〈(gN)′(t), c′(t)〉 = −〈(gN)(t), c′′(t)〉 = −κ(t) 〈(gN)(t), f2(t)〉 . (4.6)

From the definition of J and the cross vector product,

c′(t) ∧ u̇t(s) = Ju̇t(s), (4.7)

D(gN)

dt
∧ u̇t(s) =

〈
D(gN)

dt
, Ju̇t(s)

〉
Ju̇t(s) ∧ u̇t(s) = −

〈
D(gN)

dt
, Ju̇t(s)

〉
c′(t).

(4.8)
From (4.5), (4.6), (4,7), and (4.8),

∂φ

∂t
∧ ∂φ

∂s
(s, t) =

(
g(t)− κ(t)|u|g2(t) 〈N(t), f2(t)〉

)
Ju̇t(s)

− g(t)

〈
D(gN)

dt
, Ju̇t(s)

〉
c′(t) (4.9)

but, with the notation AP (t)N(0) =
∑3

i=2 Aj
i (t)N

iEj(0),

D(gN)

dt
=

D

dt
(ϕt(N(0))) =

D

dt
(ϕP

t ◦ (ϕP
t )−1 ◦ ϕt(N(0)))

=
D

dt
(ϕP

t ◦ AP (t)(N(0))) =
3∑

i=2

D

dt
(Aj

i (t)N
iϕP

t (Ej(0)))

=
3∑

i=2

Aj
i

′
(t)N i ◦ ϕP

t (Ej(0)) = ϕP
t

(
3∑

i=2

Aj
i

′
(t)N iEj(0)

)
= ϕP

t ◦ AP ′(t)(N(0)). (4.10)
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Then, 〈
D(gN)

dt
(s, t), Ju̇t(s)

〉
= g2(t)

〈
ϕ−1

t

D(gN)

dt
, ϕ−1

t Ju̇t(s)

〉

= g2(t)

〈
AP−1 ◦ AP ′(t)(u),

1

g(t)
Ju̇t(0)

〉
= g(t)

〈
(lnAP )′(t)(N(0)), Ju̇t(0)

〉
. (4.11)

Finally, by substitution of (4.9) and (4.11) in (4.3) we obtain (4.2).

Remark For motions (g(t) = 1), we assured in [3] that, in general, Area(C)
depends on the torsion τ of the curve c, and that this dependence was encoded in
a part of the formula carrying the normal covariant derivative. As a proof of this
statement, we gave some examples showing that a Frenet motion of the same curve
C0 along two curves with the same curvature and different torsion give two surfaces
with different area. However, formula (4.2) shows that Area(C) depends on the
motion, but not on τ . This is one of the advantages of formula (4.2) to express the
area. But, then, what about the examples in [3]? The reason for the dependence
of the area of these two surfaces on τ is that Frenet motion is a motion defined
using a Frenet frame, and this Frenet frame has encoded information on τ . So,
the dependence on τ of Area(C) is due to the motion, not to the curve. In fact,
although Frenet motions on curves with different torsion have the same name, the
motions as curves AP in S1 are different.

With more detail, formula (4.2) shows that, for a g(t)-motion φ(t), two associated
curves AP (t) and AF (t) in ]0,∞[×S1 are relevant for Area(C), and it is the interplay
of these two curves which makes the torsion appear. In fact, if these two associated
curves have the form AF (t) =

(
g(t), eiθF (t)

)
, and AP (t) =

(
g(t), eiθP (t)

)
, then

AF (t) ◦ (AP )−1(t) =
(
1, ei(θF−θP )(t)

)
and

AF (t) ◦ (AP )−1(t) = (ϕF
t )−1 ◦ ϕt ◦ ϕ−1

t ◦ ϕP
t = (ϕF

t )−1 ◦ ϕP
t

which is the curve RP
F (t) in S1 defined by a parallel motion when we take the Frenet

motion as the model. Then

θP (t)− θF (t) = θF
P (t),

where θF
P (t) is the angle of the rotation RP

F (t). But, if {c′(t), E2(t), E3(t)} is a parallel
frame along c(t), with Ei(0) = fi(0),

f2(t) = cos θF
P (t) E2(t)− sin θF

P (t)E3(t),

f3(t) = sin θF
P (t) E2(t) + cos θF

P (t)E3(t),

and, taking normal derivatives in both equalities and applying Frenet equations, we
obtain

τ(t) = −(θF
P )′(t) = θF

′(t)− θP
′(t),

which shows how the torsion of c(t) is determined by the two curves AF (t) and AP (t)
defined by the motion φ.
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If we compare the expression (4.2) with (3.1), we see that Area(C) has a part
similar to V olume(D) which depends on the motion through its representation as
a curve in ]0,∞[×S1 (using φF as the model motion); and a particular part (4.9)
which depends on the derivatives of the motion considered as a curve in the Lie
algebra R⊕ R (using φP as a model motion).

Corollary 4. If C0 is a piecewise C1-curve, Area(C) does not depend on the
derivative of the motion φ considered as a curve lnAP (t) in the Lie algebra R⊕R if
and only if one of the following conditions hold:

a) C0 is a logarithmic spiral with polar equation r(ϕ) = b eaϕ and lnAP (t) is a
straight line in R ⊕ R with slope a. When a = 0, C0 is a circle and g(t) = 1 (that
is, φ is a motion).

b) C0 is a segment of a straight line through c(0) and the motion φ associated to
φ is parallel.

c) C0 is any curve and φ is the parallel motion.
Proof. From (4.2), Area(C) does not depend on (lnAP )′(t) if and only if〈
(lnAP )′(t)(u(s)), Ju̇(s)

〉
= 0 for every t ∈ I and every s ∈ [0, L]. If lnAP (t) =

(lng(t), θ(t)), using the identification between R⊕R and R× o(2) indicated in Sec-
tion 2, we have

(lnAP )′(t)(u) =
g′(t)

g(t)
u +

(
0 −θ′(t)

θ′(t) 0

)(
u2

u3

)

=
g′(t)

g(t)
u + θ′(t)

(
−u3

u2

)
=

g′(t)

g(t)
u + θ′(t) Ju, (4.12)

Now, let us suppose that C0 is of class C1. Let us consider the case when there is a
s0 ∈ [0, `] such that u̇(s0) 6= u(s0)

|u(s0)| . Since C0 is C1, the set {s ∈ [0, `]; u̇(s) 6= u(s)
|u(s)|}

is open and contains a maximal open subinterval J of [0, `] containing s0. On this
interval J we can write u(s) = r(s)(cos β(s), sin β(s)), where β(s) is a C1 function
which gives, modulo 2π, the angle between u(s) and f2(0). Then, for every s ∈ J ,

u̇(s) = ṙ(s)
u(s)

|u(s)|
+ r(s)β̇(s)J

u(s)

|u(s)|
, (4.13)

1 = |u̇(s)| = ṙ(s)2 + r(s)2β̇(s)2,

Ju̇(s) = −r(s)β̇(s)u(s) + ṙ(s)Ju(s),

〈u(s), Ju̇(s)〉 = −r(s) β̇(s) = −
√

1− ṙ(s)2 (4.14)

and

〈Ju(s), Ju̇(s)〉 = ṙ(s). (4.15)

then 〈
(lnAP )′(t)(u), Ju̇

〉
=

〈
g′(t)

g(t)
u + θ′(t) Ju, Ju̇

〉

= −g′(t)

g(t)

√
1− ṙ(s)2 + θ′(t)ṙ(s) = 0. (4.16)
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Since the variables s and t appear separated, the equation (4.16) holds if and only
if θ(t) = 0 and g(t) = 1 (parallel motion) or

g′(t)

g(t)

1

θ′(t)
= a =

ṙ(s)√
1− ṙ(s)2

, (4.17)

where a is some constant. If α = a/
√

1 + a2, the general solution of the right
equation in (4.17) is r(s) = α s + δ, where δ is an arbitrary constant. This is a
logarithmic spiral with polar equation r(β) = b eaβ (we have implicitly used the
relation 1 = ṙ(s)2 + r2β̇). The left equation in (4.17) is satisfied if and only if
(lng)′(t) = aθ′(t).

Since u is C1, β and β̇ are also well defined at the boundaries s0, s1 of the
interval J , and (4.13) is still true on them, and also r = b eaβ, from which we have

ṙ = a b eaββ̇. Then, using (4.11), for i = 0, 1, u̇(si) = u(si)
|u(si)| if and only if β̇(si) = 0

if and only if ṙ(si) = 0 if and only if u̇(si) = 0, which is in contradiction with the
fact that we have chosen s as the arc-length parameter. Then J is closed and open
in [0, `], so J = [0, `]. Then we have proved that if there is some s0 ∈ [0, `] with

u̇(s0) 6= u(s0)
|u(s0)| , then the conditions a) in this corollary are satisfied.

Now, let us suppose that u̇(s) = u(s)
|u(s)| for every s ∈ [0, `], then u(s)− r(s)u̇(s) =

0, which is equivalent to saying that u(s) = (s + k) u0, with u0 a constant unit

vector and k ∈ R. From this, J u(s)
|u(s)| = Ju̇(s) and

〈
(lnAP )′(t)(u), Ju̇

〉
= θ′(t), then〈

(lnAP )′(t)(u), Ju̇
〉

= 0 if and only if θ(t) = 0, that is, φ is a parallel motion. This

finishes the proof of the case C1.
If u is only piecewise C1, for each C1 piece of the curve u we must be in one of

the cases a), b) or c). If we are not in the case c), we must be in cases a), or b), or
we must have some pieces in the case a) and others in the case b). But in the last
situation, both conditions on the motion b) and a) must be satisfied. Then θ = 0
from the conditions of case b), and the proof of case a) shows that θ = 0 also implies
that φ is a motion (then, a parallel motion).

Let us remark that the statement “Area(C) does not depend on the derivative
of the motion considered as a curve in the Lie algebra R⊕R (using φP as the model
motion)” is equivalent to saying that

Area(C) = Length(C0)
∫ L

0
g(t)dt−

∫ L

0
g2(t) κ(t))MRF (t)−1Γ(C0)dt. (4.18)

This will help to answer the question in the introduction “When is 1.3 valid for
Area(C0)?”. Of course (1.3) is valid when c(t) is a straight line (κ(t) = 0) and one
of the conditions of Corollary 4 holds. Moreover, we have:

Corollary 5. The formula (1.3) holds for Area(C) on any curve c with κ(t) 6= 0
if and only if

i) φ is a parallel motion and c(0) is the center of mass of C0,
or

ii) the following conditions are satisfied:
(a) C0 is a logarithmic spiral r = b eaβ, where β denotes the angle with the axis

f2(0) and β ∈]β1, β2[ satisfying
∫ β2

β1
e2aβ cos β dβ = 0,
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(b) the associated motion φ is Frenet, and

(c) g(t) = exp(a
∫ t
0 τ(t)dt).

or

iii) C0 is a circle, and φ is a motion (g(t) = 1)

or

iv) C0 is a segment of a straight line with its middle point in c(0) and the motion
φ associated to φ is parallel.
Proof. The remark made before tells us that (1.3) holds if and only if the conditions
of Corollary 4 are satisfied and the second summand in (4.18) vanishes. But, arguing
as in the proof of Corollary 1, we have that this summand vanishes if and only if
one of the two conditions hold:

d) The motion φ associated to φ is a Frenet motion (which is equivalent to saying
that

θ(t) =
∫ t

0
τ(t)dt ) (4.19)

and MΓ(C0) = 0,

e) c(0) is the center of mass of C0.

The union of one of these conditions with the conditions of Corollary 4 gives the
following possibilities:

d) and 4.a): C0 is a logarithmic spiral and it can be parametrized by u(β) =
b eaβ(cos β, sin β). Then

0 = MΓ(C0) = b2
√

1 + a2

∫ β2

β1

e2aβ cos βdβ (4.20)

and the condition 4a) on the motion is given by the equation

(lng)′(t) = aθ′(t) = a τ(t) (4.21)

and all this is just the set of conditions ii).

d) and 4b) or d) and 4c) are only compatible if c(t) is a plane curve.

e) and 4a) together imply that C0 is a logarithmic spiral given by u(β) =
b eaβ(cos β, sin β) with the center of mass at c(0), which implies that both (4.18)
and

0 = MΓ⊥(C0) = b2
√

1 + a2

∫ β2

β1

e2aβ sin β dβ (4.22)

are satisfied, which is equivalent to a = 0 and β2 being congruent with β1 modulo
2π, that is, to C0 be a circle. This also implies that the slope of the motion lnAP (t)
is zero, so g(t) = 1. This gives case iii).

e) and 4b) is case iv).

e) and 4c) is case i).
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Fig. 5: An example of surface satisfying conditions of Corollary 5 ii) obtained for a motion
along the helix of Fig. 1, and the normal sections of this surface at the first, middle and end point
of the helix
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