
Euclidean Geometric Objects in the Clifford

Geometric Algebra of {Origin, 3-Space, Infinity}

Eckhard M.S. Hitzer

Abstract

This paper concentrates on the homogeneous (conformal) model of Eu-
clidean space (Horosphere) with subspaces that intuitively correspond to Eu-
clidean geometric objects in three dimensions. Mathematical details of the
construction and (useful) parametrizations of the 3D Euclidean object mod-
els are explicitly demonstrated in order to show how 3D Euclidean information
on positions, orientations and radii can be extracted.

1 Introduction

The Clifford geometric algebra of three dimensional (3D) Euclidean space with vec-
tors

p = p1e1 + p2e2 + p3e3. (1)

given in terms of an orthonormal basis {e1, e2, e3}, nicely encodes the algebra of 3D
subspaces with algebraic basis

{1, e1, e2, e3, i1 = e2e3, i2 = e3e1, i3 = e1e2, i = e1e2e3}, (2)

providing geometric multivector product expressions of rotations and set theoretic
operations[1]. But in this framework line and plane subspaces always contain the
origin.
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The homogeneous (conformal) model of 3D Euclidean space in the Clifford geo-
metric algebra R4,1 provides a way out.[5, 7] Here positions of points, lines and
planes, etc. off the origin can be naturally encoded. Other advantages are the
unified treatment of rotations and translations and ways to encode point pairs, cir-
cles and spheres. The creation of such elementary geometric objects simply occurs
by algebraically joining a minimal number of points in the object subspace. The
resulting multivector expressions completely encode in their components positions,
orientations and radii.

The geometric algebra R4,1 can be intuitively pictured as the algebra of origin
n̄, Euclidean 3D space and infinity n, where origin and infinity are represented by
additional linearly independent null-vectors.

{n̄, e1, e2, e3,n}, n2 = n̄2 = 0. (3)

This algebra seems most suitable for applications in computer graphics, robotics
and other fields.[2, 3]

This paper concentrates on giving explicit details for the construction of funda-
mental geometric objects in this model, detailing how the 3D geometric information
can be extracted. How the simple multivector representations of these objects can
be manipulated in order to move them in three dimensions and to express set the-
oretic operations of union (join), intersection (meet), projections and rejections is
described in [8, 7, 2].

This algebraic encoding of geometric objects and their manipulations strongly
suggests an object oriented software implementation. This does allow computers
to calculate with this algebra and provides programmers with the means to most
suitably represent fundamental geometric objects, their 3D properties and ways
(methods) to manipulate these objects. This happens on a higher algebraic level,
so that the programmer actually is freed of the need to first investigate suitable less
intuitive matrix representations.[8, 9, 10, 11, 12]

The mathematical notation used in this paper for multivectors, geometric prod-
ucts and products derived from the geometric product is fairly standard: Italic
capital letters are used for conformal vectors and multivectors, bold lower case vec-
tors represent Euclidean vectors (except the origin and infinity null vectors), the
wedge ∧ signifies the outer product, the asterisk ∗ the scalar product, the angles
and left and right contractions and mere juxtaposition the full geometric product
of multivectors. Other notations are explicitly defined where they are used.[6, 13]

2 3D Information in Homogeneous Objects

We will see how homogenous multivectors completely encode positions, directions,
moments and radii of the corresponding three dimensional (3D) objects in Euclidean
space. An overview of this is give in Table 1. In the rest of this section we will look
at the details of extracting the encoded 3D information from each homogeneous mul-
tivector object. Where suitable, we will also give useful alternative parametrizations
of homogeneous multivector objects.1

1Dorst and Fontijne[14] give similar parametrizations, but with the rather strong simplification,
that objects are centered at the origin n̄ or contain the origin n̄, e.g. C = n̄ in eq. (15), etc.



Euclidean Geometric Objects in Clifford Geometric Algebra 655

homogeneous object 3D information

point X position x
point pair P1 ∧ P2 positions p1,p2

line direction vector, moment bivector
circle plane bivector, center, radius
plane plane bivector, location vector
sphere center, radius

Table 1: 3D geometric information in homogeneous objects. The left column lists
the homogeneous multivectors, that represent the geometric objects.

2.1 Point and Pair of Points

The Euclidean position p of a conformal point

P = p +
1

2
p2n + n̄ (4)

is obtained with the help of the (additive[7]) conformal split, which is an example
of a rejection[4]: The conformal point vector P is rejected off the Minkowski plane
represented by the bivector N = n ∧ n̄

p = (P ∧N)N. (5)

Equation (4) shows how to achieve the opposite, i.e. how to get back to the conformal
point P from just knowing the Euclidean position p.

The Euclidean positions p1,p2 of a pair of points represented by the conformal
bivector

V2 = P1 ∧ P2

= p1 ∧ p2 +
1

2
(p2

2p1 − p2
1p2)n− (p2 − p1)n̄ +

1

2
(p2

1 − p2
2)N

= b +
1

2
vn− un̄− 1

2
γN (6)

can be fully reconstructed from the components of V2. We assume without restricting

the generality, that p1 =
√

p2
1 ≥ p2 =

√
p2

2. Given any conformal bivector V2 with

components b (a Euclidean bivector), u and v (Euclidean vectors of length u =
√

u2

and v =
√

v2), and γ (a real scalar), the calculation works as follows

σ =
1

2
γ2 − u ∗ v, ρ =

√
σ2 − u2v2, (7)

p1 =

√
σ + ρ

u
, p2 =

√
σ − ρ

u
, (8)

p1 = p1
p2

1u + v

|p2
1u + v|

, p2 = p2
p2

2u + v

|p2
2u + v|

. (9)

The general and explicit formulas presented in the following, seem to appear nowhere else in the
published literature so far.
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This calculation is the full solution (of two conformal points X = P1, P2) to the
equation

V2 ∧X = 0, X2 = 0. (10)

We can further view conformal point pairs as one-dimensional circles and arrive
thereby at another highly useful characterization2:

P1 ∧ P2 = 2r{p̂ ∧ c +
1

2
[(c2 + r2)p̂− 2c ∗ p̂ c]n + p̂n̄ + c ∗ p̂N}, (11)

with the ”radius” r defined as half the Euclidean point pair distance, p̂ a unit vector
pointing from p2 to p1, and c the Euclidean midpoint (center) of the point pair:

2r = | p1 − p2 |, p̂ =
p1 − p2

2r
, c =

p1 + p2

2
. (12)

In case that the straight line defined by the point pair contains the origin, i.e. for
p̂ ∧ c = 0 (p̂ ‖ c) we get the simplified form

P1 ∧ P2 = 2r{C − 1

2
r2n}p̂N. (13)

In case that the Euclidean midpoint vector c is perpendicular to p̂ (p̂ ⊥ c), i.e. if
p̂ ∗ c = 0 we get

P1 ∧ P2 = −2r{C +
1

2
r2n}p̂. (14)

In both cases we used the conformal representation of the midpoint as

C = c +
1

2
c2n + n̄. (15)

2.2 Lines

Given two conformal points P1 and P2 the conformal trivector

Vline = P1 ∧ P2 ∧ n = p1 ∧ p2 ∧ n + (p2 − p1)N = mn + dN (16)

conveniently consists of the defining entities of the Euclidean line through p1 and
p2. The Euclidean bivector m represents the moment and the Euclidean vector d
the direction of the line. Using m and d we can give the parametric form of the line
as

x = (m + α)d−1, α ∈ R. (17)

All points X = x+ 1
2
x2n+n̄ with the x as specified in (17) represent the full solution

to the problem
Vline ∧X = 0, X2 = 0. (18)

The one-dimensional circle representation of point pairs (11) immediately leads
to a second often useful parametrization of lines as

P1 ∧ P2 ∧ n = 2rp̂ ∧ C ∧ n = 2r{p̂ ∧ c n− p̂N}. (19)

It is important to note that the conformal point C in eq. (19) does not need to be
the midpoint of the point pair. Any conformal point on the straight line P1∧P2∧n
can take the place of C in eq. (19). p̂ and r are defined as in eq. (12).

2This characterization is e.g. very useful for investigating the full (real and virtual) meet of two
circles, or of a straight line and a circle.[15]
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2.3 Circles

General conformal trivectors of the form

V3 = P1 ∧ P2 ∧ P3, (20)

with conformal points P1, P2 and P3 represent Euclidean circles through the corre-
sponding Euclidean points p1,p2 and p3. The equation for all points X on such a
circle is again given as

V3 ∧X = 0, X2 = 0. (21)

In order to clearly interpret and apply V3 and its various components we will explic-
itly insert the three points

P1 = p1 +
1

2
p2

1n + n̄, P2 = p2 +
1

2
p2

2n + n̄, P3 = p3 +
1

2
p2

3n + n̄. (22)

The conformal circle trivector becomes

V3 = p1 ∧ p2 ∧ p3

+
1

2
(p2

1p2 ∧ p3 + p2
2p3 ∧ p1 + p2

3p1 ∧ p2)n

+(p2 ∧ p3 + p3 ∧ p1 + p1 ∧ p2)n̄

+
1

2
{p1(p

2
2 − p3

3) + p2(p
2
3 − p3

1) + p3(p
2
1 − p3

2)}N (23)

The Euclidean bivector component factor of n̄

Ic = −{[V3 + (V3 ∗ i)i] ∧ n}N
= p2 ∧ p3 + p3 ∧ p1 + p1 ∧ p2

= (p1 − p2) ∧ (p2 − p3) (24)

is obviously parallel to the plane (of the Euclidean circle) through p1,p2 and p3.
Assuming the Euclidean center vector of the circle to be c and the radius r, we can
rewrite (22) as

Pk = c + rrk +
1

2
(c2 + r2 + 2rc ∗ rk)n + n̄, r2

k = 1, k = 1, 2, 3. (25)

The three vectors rk are unit length vectors pointing from the circle center c to the
three points p1,p2 and p3, respectively. Replacing the Pk in (23) accordingly we get
after doing some algebra the simplified form

V3 = c ∧ Ic + [
1

2
(r2 + c2)Ic − c(c Ic)]n + Icn̄− (c Ic)N. (26)

We see that the three vectors rk, k = 1, 2, 3 do no longer occur explicitly. They enter
equation (26) only by defining the orientation of the circle plane Ic in (24).

If we assume only to know V3 as outer product (20) of three general conformal
points we can now extract the radius r by calculating

r2 = −V 2
3

I2
c

. (27)
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We can decompose the center vector c by way of projection and rejection into
components parallel and perpendicular to the circle plane

c = c‖ + c⊥, (28)

c‖ = (c I−1
c )Ic = (c Ic)I

−1
c

(26)
= −[(V3 n) n̄]I−1

c , (29)

c⊥ = (c ∧ I−1
c )Ic = (c ∧ Ic)I

−1
c

(26)
= −(V3 ∗ i)iI−1

c . (30)

The Euclidean circle center vector can hence be extracted from any V3 as

c = c‖ + c⊥
(29),(30),(24)

= −[(V3 n) n̄ + (V3 ∗ i)i]I−1
c (31)

Inserting the decomposition c = c‖ + c⊥ we get the following expression for the
circle trivector

V3 = c⊥Ic + [
1

2
(r2 − c2)Ic + cc⊥Ic]n + Icn̄− c‖IcN

= {c⊥N + [
1

2
(r2 − c2) + cc⊥]n− n̄− c‖}IcN

= {−c‖ −
1

2
c2
‖n− n̄ +

1

2
r2n + c⊥N + [−1

2
c2
⊥ + cc⊥]n}IcN (32)

In the case that the circle plane includes the origin (c⊥ = 0) we are left with

V3 = −[C − 1

2
r2n]IcN, (33)

and can extract the conformal center

C = c +
1

2
c2n + n̄ (34)

simply as

C = −V3NI−1
c +

1

2
r2n. (35)

2.4 Planes

Given three conformal points P1, P2 and P3 as in (22) the conformal 4-vector

Vplane = P1 ∧ P2 ∧ P3 ∧ n

= p1 ∧ p2 ∧ p3 ∧ n

−(p2 ∧ p3 + p3 ∧ p1 + p1 ∧ p2)N (36)

represents the plane through the Euclidean points p1,p2 and p3. The Euclidean
bivector component factor of N

Ip = −(Vplanen) n̄ = p2 ∧ p3 + p3 ∧ p1 + p1 ∧ p2 = (p1 − p2) ∧ (p2 − p3) (37)

gives the orientation of the plane in the Euclidean space. This allows us to rewrite
Vplane as

Vplane = (d ∧ Ip)n− IpN = dIpn− IpN, (38)
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where d represents the Euclidean distance vector from the origin to the plane, itself
perpendicular to the plane. The Euclidean distance vector can be extracted from
Vplane by

d = (Vplane ∧ n̄)I−1
p N. (39)

The equation for all points X on the plane is again given as

Vplane ∧X = 0, X2 = 0. (40)

Somewhat in analogy of the relation of point pairs as one-dimensional circles (11)
and the resulting alternative parametrization of lines (19), an alternative parametriza-
tion of planes by means of a general conformal point C on the plane is possible

P1 ∧ P2 ∧ P3 ∧ n = C ∧ Ic ∧ n = c ∧ Icn− IcN (41)

For c ∧ Ic = 0 (origin n̄ in plane) we get

P1 ∧ P2 ∧ P3 ∧ n = −IcN. (42)

2.5 Spheres

General conformal 4-vectors of the form

V4 = P1 ∧ P2 ∧ P3 ∧ P4 (43)

with conformal points

Pk = pk +
1

2
p2

kn + n̄, k = 1, 2, 3, 4 (44)

represent Euclidean spheres through the corresponding Euclidean points pk, k =
1, 2, 3, 4. The equation for all points X on the sphere is again given as

V4 ∧X = 0, X2 = 0. (45)

Inserting (44) explicitly in V4 yields

V4 = −1

2
(p2

1p234 + p2
2p314 + p2

3p124 + p2
4p132)n

−(p234 + p314 + p124 + p132)n̄

+
1

2
{(p2

2 − p2
3)p14 + (p2

3 − p2
1)p24 + (p2

1 − p2
2)p34

+(p2
1 − p2

4)p23 + (p2
2 − p2

4)p31 + (p2
3 − p2

4)p12}N, (46)

with the abbreviations

pkl = pk ∧ pl, pklm = pk ∧ pl ∧ pm, k, l,m ∈ {1, 2, 3, 4}. (47)

The n̄ factor component

is = −(V4 ∧ n)N

= −(p234 + p314 + p124 + p132)

= (p1 − p2) ∧ (p2 − p3) ∧ (p3 − p4) (48)



660 E.M.S. Hitzer

is a Euclidean pseudoscalar, i.e. proportional to i. Similar to the discussion of the
circle, assuming the Euclidean center vector of the sphere to be c and the radius r,
we can rewrite (44) as

Pk = c + rrk +
1

2
(c2 + r2 + 2rc ∗ rk)n + n̄, r2

k = 1, k = 1, 2, 3, 4. (49)

Replacing the Pk, k = 1, 2, 3, 4 in (46) accordingly we get after doing lots of algebra

V4 =
1

2
(r2 − c2)isn + isn̄ + cisN

= (c +
1

2
c2n + n̄− 1

2
r2n)isN

= (C − 1

2
r2n)isN, (50)

where C represents the conformal center of the sphere. An important relationship
used in the derivation of (50) is

is = (p1 − p2) ∧ (p2 − p3) ∧ (p3 − p4) = r3(r1 − r2) ∧ (r2 − r3) ∧ (r3 − r4). (51)

The elegant form (50) of V4 makes it easy to extract the radius and the center
from any general conformal (sphere) 4-vector:

r2 =
V 2

4

(V4 ∧ n)2
, C =

1

2
r2n +

V4

−V4 ∧ n
. (52)

3 Conclusions

We explained how to algebraically construct conformal (homogeneous) subspaces
with very intuitive Euclidean interpretations.3

We then analyzed in detail how the joining of conformal points yields explicit
expressions for points, pairs of points, lines, circles, planes and spheres. After that
we showed how the Euclidean 3D information of positions, orientations and radii,
etc. can be extracted.4 In some cases useful alternative parametrizations were given.
Applications of these alternative parametrizations can e.g. be found in [15].
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3They are e.g. implemented, together with algebraic expressions for arbitrary translations and
rotations, and for subspace operations of union (join), intersection (meet), projection and rejection
as methods in the GeometricAlgebra Java package.[8, 9, 16]

4These formulas precisely yield the optimal mathematical structure of the related Java methods
each geometric object is to have e.g. in the GeometricAlgebra Java package implementation. [9]
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