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Introduction

In spite of its elegance, extreme point theory plays a modest role in complex func-
tion theory. In a series of papers Brickman, Hallenbeck, Mac Gregor and Wilken
determined the extreme points of some classical families of analytic functions. An
excellent overview of their results is contained in [4]. Of fundamental importance is
the availability of the extreme points of the set P of functions f analytic on the unit
disc, with positive real part, normalized by f(0) = 1. These extreme points can be
obtained from an integral representation formula given by Herglotz in 1911 [5]. A
truly beautiful derivation of ExtP was given by Holland [6]. In this note we present
yet another method, based on elementary functional analysis. As an application
we determine the extreme points of the set F' of functions f analytic on the unit
disc, with imaginary part bounded by 7 and normalized by f(0) = 0. They were
originally determined by Milcetich [7] but our derivation is simpler. Finally we de-
termine the extreme points of the set P, of functions f € P for which |arg f| < oF
for some constant av < 1. These were earlier described by Abu-Muhanna and Mac
Gregor [1].

Preliminaries

Let H(A) be the set of analytic functions on the unit disc A in C. It is wellknown
9, page 1] that H(A) provided with the metric
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is a locally convex space. Convergence with respect to d is the same as locally
uniform convergence. There is an explicit description of the dual space H(A)*.

Theorem: (Toeplitz [11]). There is a 1-1 correspondence between continuous linear
functionals L on H(A) and sequences b,, with lim sup /1b,1 < 1. If f : z — § p 2"

n=0
belongs to H(A) then

L(f) = i anby,.
n=0

The theorem can also be expressed as follows: There is a 1-1 correspondence be-
tween continuous linear functionals on H(A) and analytic functions b on some open
neighbourhood A, of A. If f € H(A) then

1 1.dz 1
L(f) = — / 9 where - .
(f) =5 | fU(7)— where —<p<1
|z|=p
Proof: 1t is evident that each such function b defines an element of H(A)*. Con-
versely if L € H(A)* we put
b, = L(z").
If the sequence b, had a subsequence b, (with b,, # 0) for which lim "¢/|b,, | > 1,
nj— 00
then
Z"k

b,
would determine an element f of H(A). Continuity of L would imply that
bn
L) =Y P = o
ng

Nk

Nk

which is impossible. Therefore we conclude that lim sup {lﬂ by| < 1.

Our main subject of interest is the set P C H(A) of functions

f:z—>1+Zanz”

n=1
for which Re f > 0. Evidently P is convex. P is also a compact subset of H(A) [9,
page 2]. We have the following result.

Lemma: (Schur [10]) Let p: 2 — 1+ 2 § pnz”and q:z — 1 +2 § qnz" belong
n=1 n=1
to P. Then p x g € P where
p*q(z) =1+2% pugn2".
n=1

Proof: For z € A we have
0<s5 J Rep(Z)Req(w)f=7Re %ml lf p(Ea(w) +q(w)} 5 =
wl=p

lwl=p>2|

3 Re {1+4 % pugnz" +1} = Repxq(2).
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Extreme points of P

In order to determine the extreme points of P we shall apply the following result
which is sometimes called the theorem of Milman and Rutman.

Lemma: Let X be a locally convex space, let () be a compact subset of X and
assume that its closed convex hull ¢o(Q) is also compact. Then @ contains all the
extreme points of ¢o(Q).

For a proof of this (elementary) lemma we refer to [2, page 440].
For 6 € [0, 27| we define

B 1+ ez
1 —eify

=1+2) 2"

n=1

ko (2)

Note that ky € P.
Theorem: The set of extreme points of P is

E={k:0<6<2r}.

Proof: 1t is easy to see that E is a compact subset of H(A).

We shall show that ¢o(E) = P. Assume that there exists a function p € P\co(E).
Then, from Hahn-Banach’s separation theorem [8, page 58] we deduce the existence
of an L € H(A)* and a number A such that for all f € ¢o(E)

Re L(f) > A > Re L(p).

Since Re L(f) = Re bp+ Re § bnfn and Re L(p) = Re by+ Re § bppn We may
n=1

n=1

assume that by € R and that

Re L(f) > 0> Re L(p).
In particular Re L(kg) = by + 2 Re § b,e™ > 0.
n=1

From the maximum principle we see that for all z € A

bo+ 2 Re anz”>0,

n=1

so in particular by > 0, hence
00 bn .
B:2z—1+2 Z —z
n=1 b()
belongs to P. From Schur’s Lemma we conclude that

9] bn
Brpiz— 1+ paten
n=1 b()
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is also an element of P and since lim sup {ﬂbn| < 1, B % p is continuous on A and
we even have Re @ *p(1) > 0, i.e.

L(p) = bo Re B p(1) >0,

a contradiction. Therefore we have ¢o(E) = P, and as a consequence of the theorem
of Milman and Rutman we see that Ext P C FE.

Since the group of rotations z — ez acts transitively on F we conclude that
Ext P=F.

Corollary: By Krein-Milman’s theorem [8, p.71 th.3.22 and p.78 th.3.28] we obtain:
For every f € P there exists a probability measure p on [0, 27] such that

2w

f: 0 k@d,u(e)

It is easy to see that there is a 1-1 correspondence between elements of P and
probability measures on [0,27]. The integral representation is called Herglotz’s
integral representation.

The next theorem also follows from Hahn-Banach.

Theorem: Let A be an infinite subset of A and let h € H(A) be a function for
which A(™(0) # 0(n = 0,1,2,...).
Then the closed linear span

M = [z — h(wz) :w € A]

is equal to H(A).
Proof: Again by Hahn-Banach’s theorem [8, page 59] if M did not contain an element

f of H(A) there would be an L € H(A)* such that L annihilates M, but L(f) = 1.
From

> h™(0)

h(wz) = > w"z"
we see that for w € A
> M)
L(h(wz)) = > b w" =
hence the analytic function z — § bn%z” which is defined on A, for some r > 1

n=0
has infinitely many zeros on A and is therefore identically zero, so b, = 0 for all n.
Then L(f) = 0, a contradiction.

Extreme points of F

Let F' be the subset of H(A) consisting of the functions

o
fiz— Zanz”
n=1
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for which —% < Im f(z) < 7. A function f belongs to F' if and only if expof € P.
The exponential function however doesn’t preserve linear relations. We shall employ
the following criterion
1+2feP
feF << (1)
—2ZfeP

Theorem: f € ' <= There is an integrable function ¢ on [0, 27| such that
—1<¢p<1
027r p(0)df =0

and such that

T2

Proof: From (1) and from Herglotz’s representation we deduce the existence of
probability measures p and v or [0, 27] such that

1+ 2 f = [57 kodp(0)

— 2 f = 27 kydu(0).

(2)

Addition leads to or

bod ((6) +1(0)) = 1

and from the uniqueness of Herglotz’s representation we conclude that 1(,u +v) is
equal to normalized Lebesgue measure . As a consequence, p and v are absolutely
continuous. Thus there exist integrable functlons wand v on [0, 27] such that 0 < u,
0<v,u+v=2 [ udd= [i"vd =2

db df
— v=v—.
2 2

Substitution into (2) and subtraction leads to

) df

f:zo%@@@—m@B;

This shows that ¢ = 1 (v — u) satisfies the requirements of the theorem. Conversely,

all functions
T 27 db

f= B} kop(0) 5=

evidently belong to F'.

Corollary: Im f = 7 27 Re kg - ¢(0)% and from well-known properties of the

Poisson integral representation [3, page 5, Cor 2] we derive that

lim Im f(re™) = Se(1)
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From the last theorem, we obtain Ext F' without any difficulty

Theorem: f € Ext F <= The corresponding function ¢ satisfies || = 1 a.e.

Proof: f € Ext F <= ¢ € Ext {¢p € L'[0,2n]: -1 <4 <1, [Z"¢ = 0}.

If |¢] # 1 on some set of positive measure, then there is also a set A of positive
measure such that 0 < ¢ < 1 (or such that —1 < ¢ <0).
Split A into two subsets A; and A, such that

Ja-e=[ 19

1 =@ Lae + 1141 + (290_ 1>1A2
2= - 1 4e —|—(2g0— 1>1A1 +1A2-

and define

Then ¢ = 3¢1 + 2¢o. Conversely if || = 1 a.e. then evidently

2
o € Ext{y € L'[0,27], -1 < <1, [ ¢ =0}
0

Corollary: f € F is an extreme point of F' if and only if
, ™
lim I ==
|[lim Im f(re®),| =3

for almost all ¢ € [0, 27].

Of course, the extreme points of the set of functions f € H(A) for which f(0) =0
and |Im f| < a are precisely those functions f for which

|li%1 Im f(re")| =a
for almost all ¢ € [0, 27].

Example: For ¢ = —1jg 7] + 1jz2r) the corresponding function

1
f:z—>log1+z

maps A conformally onto the strip {2 : [Im 2| < T}. This f is an extreme point of
F.

Remark: There is an analogue of Schur’s Lemma for F'. Let

f:zHanz”andg:zHZgnz”
n=1

n=1
belong to F'. Then
1 & n
z— — n§:1 frgnz

belongs to F'.
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Proof From (1) we see that 1+ 2f € P and 1+ 2g € P.
Thus, by Schur’s lemma

(1i%f)*(1i%g)eP

i.e.

fngn n

z— 1420 7% e P
T

Again from (1) we deduce that z — = > f.g,2" € F.
n=1
By similar arguments one can show that if f : 2 — > f,2" € Fandp: z —
n=1

142 § P2 € P, then
n=1

z — anfnz”EF.

n=1
Extreme points of P,
Let 0 < a < 1. We focus our attention on the set
P,={feP:|ag f| <ag}.
We have some characterizations of P,.
fer, — féeP — élogfeF,

but since neither exponentiation nor log preserve linearity we cannot derive Ext P,
directly from this correspondence. We start with two lemmas concerning the set

G:{zEC:|argz|<ag}.

Lemma 1: Let z,w € C have positive real part and let 22, w? € G.
If A € R and if

a
|A| < cos %,

then
zZ—w

zw(l+ A ) €G.

Zt+w

Proof: We denote arg z = t, arg w = s; then —af < s, < af, hence
T
cos(t — s) > cos ag > |A|-

By an elementary computation we obtain

z—w 2M|z| Jw]|sin(t — s)
) = arctan 5 5 :
z 4w (14 X)|2)2+ (1 — N)|w|? + 2|2| |w]| cos(t — s)

arg(l+ A
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Since
212 ¢l [u] <
(T+N)|z]2+ (1 = N |w]? + 2|z| |w|cos(t — s)
2|z| |w|cosaf
< 5 5 — <1
(L4+N)]22+ (1 = N)|w]? + 2|2| |w|cos af
we have

Z—w
1+ 22| < arctan(sin [t — s|) < |t — 5],
|arg(1 + z+w)| < arctan(sin [t — s|) < |t — 5]
and therefore
) Z—w
2min(|arg z|, | argw|) < arg zw(1 + )\T) < 2max(| arg z|, | arg w|),
z+w

ie.
zw(l + Y

) €G.
Z+w

Lemma 2: Let z € G and let w € C. Suppose that z +w € G and z —w € G. If
A € R and if

3
|A] < 16 sin o

then
zZ -+ \w
z

Z — Aw

e q.

Proof. 1t is sufficient to show that

z+ w T
< a—.

Jarg 2| + | arg 0| < a2

z

Since z £ w € G we have w € (—z+ G) N (2 — G), i.e. w is an element of the
parallellogram with vertices

+2, and + (Im 2 cos? ag + i Re zsin? ag).

S T

Aw is an element of a homothetic parallellogram. Therefore

arg

zZ -+ \w
Z— A\w
is maximal if we choose

2

sin amr

w = (Im z cos® ag +i Re zsin” ag).

For this choice of w we have (since |A| < 1 sinam)

1
M|wl* < ={(Im 2)2(:05404% + (Re 2)? sin4ag} < Z|z|2.

A
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By an elementary computation we obtain

2w aretan 4)\(Re z)?sin* af — (Im.z)2 cos® aZ
z— Aw (|22 = A?|w|?) sinar

arg :

so we deduce that

a——(Im z)? cos® o
3|z|2 sin am

‘arg Z““" < arctan 4| )| (Re 2)?sin

< arctan W((Re z)?sin®* aZ — (Im 2)? cos® ag)
= arctansin(af — arg z) - sin(af + arg z)

= arctansin(af — |arg z|) - sin(af + | arg z|)

< arctansin(af — |arg z|) < af — |arg 2|,

w3

and the lemma is proved.

Now we are able to determine Ext P,.

Theorem: Let f € Fy; then f € Ext P, if and only if Llog f € Ext F.

Proof: 1If f € P,, then ilogf € F'. Assume that ilogf ¢ Ext F.

Then there are functions fi, fo € F, fi # f» such that f = 2(fi1 + f2), or
equivalently, there exist functions g, h € P,, ¢ # h such that f = \/gh. As a
consequence of lemma 1 we have for all |A| < cos %

Vi—Vh
\/71( +)\\/g—i—\/_) eP,.

For such A we have

Vi—vVh, 1 \f—\/_
S = R e =

hence f & Ext P,.
Conversely, if f € P,, f ¢ Ext P,, then there is a non- constant function g €
H(A) such that f + g € P,. Now lemma 2 implies that for |A\| < jzsinar

S+ Ag
ff_)\gePa.
For such A we have
B f+Ang—Ag
f—\/ff—kg Yy

1.e.

1 11 Fiag 1

“log f = ~{—log,/ L

Jlogf=5{~log ff_Angaog fJMg}
hence 1log f & Ext F.

Corollary: Let f € P,; then f € Ext P, if and only if

; ™
1' it —
[limarg f(re")| = o
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for almost all ¢ € [0, 27].
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There is an analogue of Schur’s lemma for P,. We make use of yet another

characterization of P,. The functions

7 - T

2= = e "2z — cosa—
2 smag( 2>
and ,
-t ial ™
D E— — e'*2z — cos a—
92 smag( 2)

map G into the right halfplane. Note that

febe = ¢)(f)eP (1=12).

Theorem: If f € P, and g € P, then fxg € P,.
Proof: ¢;(f *g) = ¢;(f)*g € P (j =1,2) by Schur’s lemma, hence

fxgeP,.
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