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Denis BOSQ

Abstract

We show that a large class of continuous time processes admits a Banach
autoregressive representation. This fact allows us to obtain various limit the-
orems for continuous time processes. In particular we prove the law of iterated
logarithm for processes which satisfy a stochastic differential equation.

Résumé
Nous montrons qu’une vaste classe de processus à temps continu possède

une représentation autorégressive Banachique. Ceci nous permet d’obtenir des
théorèmes limites pour les processus réels à temps continu. Par exemple nous
établissons la loi du logarithme itéré pour des processus vérifiant une équation
différentielle stochastique.

1 Introduction

The well known interpretation of a continuous time process as a random variable
which takes values in a functional space is scarcely used in statistical inference
except, for example, as an auxiliary tool in statistics for diffusion processes (see, e.g.,
LIPTSER and SHIRYAYEV (1977), KHASMINSKII and SKOROKHOD (1996)).
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An outstanding exception is the book by GRENANDER (1981) where that tech-
nique is systematically used. However the statistical application of GRENANDER’s
results requires that independent copies of the observed process sample paths should
be available. Other typical examples are ANTONIADIS-BEDER (1989), KUKUSH
(1990), LECOUTRE (1990), DIPPON (1993),. . .

In the current paper we consider a model which allows us to use dependent copies
of a process : a more realistic situation. An interesting example should be electri-
city consumption during n days in succession, which defines n dependent random
variables X1, . . . , Xn with values in the Banach space C [0, `] where ` is the length
of one day associated with some unit of measure.
These variables are clearly dependent (in particular Xi(`) = Xi+1(0)).

Our Banach autoregressive model takes the simple form

(1) Xn = ρ(Xn−1) + εn , n ∈ Z ,

we obtain various limit theorems for this model and apply them to the asymptotic
behaviour of functionals of real continuous time processes. As far as we know these
Banach type results are new as are most of the applications. Some results about stat-
istical prediction of these processes can be found in BOSQ (1991,a) and MOURID
(1994).

For simulations and some applications see BOSQ (1991,b) and PUMO (1992).
An application to prediction of electricity consumption appears in AIELLO et al.
(1994). For an application to road traffic we refer to BESSE and CARDOT (1996).

Asymptotic results concerning dependent Banach valued random variables ap-
pear in DEHLING (1983), DENISEVSKII (1986), ZHURBENKO and ZUPAROV
(1986) and PUMO (1992).

The rest of the paper is organized as follows : generalities on Banach autore-
gressive processes are given in section 2. In section 3 we provide some examples
of continuous time processes which admit a Banach autoregressive representation.
Section 4 is devoted to weak and strong laws of large numbers. We show that the
strong law is satisfied at an exponential rate under suitable conditions. In section
5 we give necessary and sufficient conditions for the validity of the central limit
theorem and of the law of iterated logarithm. Applications to real continuous time
processes are considered in section 6. Proofs are postponed until section 7.

We wish to thank S. UTEV who provided us a technical lemma (see section 7)
which allowed us to improve the statement of Theorem 4 and to simplify the proofs.
We also thank an anonymous referee for useful comments and suggestions.

2 Banach valued autoregressive processes

Let us consider a separable Banach space (B, ‖ · ‖) equipped with its Borel σ-Algebra
B. A B-white noise is a sequence of B-valued independent random variables,
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defined on the same probability space (Ω,A, P ), having the same distribution and
such that

0 < σ2 = E ‖ εn ‖2<∞ , Eεn = 0, n ∈ Z .

Let ρ be a bounded linear map from B to B such that
∑
n≥0

‖ ρn ‖< ∞ (with clear

notations) and let m ∈ B. We set

(2) Xn = m +
∞∑
j=0

ρj(εn−j) , n ∈ Z .

Then it is easy to prove that the series converges in L2
B(Ω,A, P ) and almost surely.

Thus εi and (Xj, j < i) are independent, (Xn) is strictly stationary and

(3) Xn −m = ρ(Xn−1 −m) + εn , n ∈ Z .

We will say that (Xn, n ∈ Z) is a B-valued autoregressive process of order 1
(ARB (1)). ρ is the correlation operator, (εn) the innovation, m the mean.

Note that if x∗ ∈ B∗ (the topological dual of B) is an eigenvector of ρ∗ (the
adjoint of ρ), associated with an eigenvalue λ ∈]− 1, +1[ then (x∗(Xn −m), n ∈ Z)
is a real autoregressive process of order 1 (possibly degenerated).

Moreover EX0 = m and D = ρC where C is the covariance operator of X0 and
D the cross covariance operator of (X0, X1) defined by

C(x∗) = E(x∗(X0)X1) , x∗ ∈ B∗ ,

and
D(x∗) = E(x∗(X0)X1) , x∗ ∈ B∗ .

Finally (Xn) is a Markov process and

E(Xn | Xj , j ≤ n− 1) = ρ(Xn−1) .

3 ARB representation of a real contin uous time pro cess

3.1 Representation of the ORNSTEIN-UHLENBECK process

Let us consider the real stationary Gaussian process

ξt =
∫ t

−∞
e−λ(t−u)dw(u) , t ∈ R

where w is a bilateral standard Wiener process and λ a positive constant. We choose
a version of (ξt) such that every sample path is continuous and, in order to obtain
an ARB representation we take B = C [0, 1] and set

Xn(t) = ξn+t , t ∈ [0, 1] , n ∈ Z .
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Now, taking into account that

E(ξn+t | ξs, s ≤ n) = e−λtξn , t ∈ [0, 1]

we may set

(4) ρ(x)(t) = e−λtx(1), t ∈ [0, 1], x ∈ C [0, 1] .

Then we have ∑
n≥0

‖ ρn ‖=
∑
n≥0

e−(n−1)λ = (1− e−λ)−1

and
Xn = ρ(Xn−1) + εn , n ∈ Z

where

εn(t) =
∫ t

0
e−λ(t−v)dw(n + v), t ∈ [0, 1], n ∈ Z .

Hence, (ξt) has an ARB representation.

Now the adjoint ρ∗ of ρ is defined by

ρ∗(µ)(x) = x(1)
∫ 1

0
e−λtdµ(t), µ ∈ C∗[0, 1] .

Thus the Dirac measure δ(1) is the only eigenvector of ρ∗ and the corresponding
eigenvalue is e−λ. Consequently (Xn(1), n ∈ Z) is an AR(1) which satisfies

Xn(1) = e−λXn−1(1) + e−λ
∫ 1

0
eλvdw(n + v), n ∈ Z .

By stationarity (Xn(t), n ∈ Z) is also an AR(1) for every t ∈ [0, 1].

The above facts remain valid with a slight adaptation if we choose B = C [a, b],
a < b.

3.2 Representation of a stationary Gaussian process solution of a stochastic

differential equation

Consider the stochastic differential equation of order k (k ≥ 2) :

(5)
k∑
`=0

a`dξ(`)(t) = dw(t)

where a0, . . . , ak are constant, ak 6= 0, and where w(t) is a bilateral Wiener process.
In (5) differentiation up to the order k − 1 is ordinary when the order k derivative
is defined in the ITO sense (cf. ASH and GARDNER (1975)).

We suppose that the roots −λ1, . . . ,−λk of the equations
k∑
`=0

a`λ
` = 0 are real

and such that −λk < . . . < −λ1 < 0.



Limit theorems for Banach-valued autoregressive processes 541

Then by using theorem 2.8.2 in ASH and GARDNER (1975) we may assert that
the only stationary solution of (5), is the Gaussian process

(6) ξt =
∫ t

−∞
g(t− u)dw(u) , t ∈ R

where g is the GREEN’s function of (5), that is, g(t) = 0 for t < 0 and, for t ≥ 0,
g(t) is the unique solution of the problem

k∑
`=0

a`x
(`)(t) = 0 , (7)

x(0) = . . . = x(k−2)(0) = 0 , x(k−1)(0) = a−1
k . (8)

We choose a version of (ξt) such that every sample path of (ξt) has k− 1 continuous
derivatives.

Now by using again ASH and GARDNER (1975, pp. 110-111) we obtain

(9) E(ξn+t | ξs ≤ n) =
k−1∑
j=0

ξ(j)(n)ϕj(t), n ∈ Z, t ∈ [0, 1] ,

where ϕj is the unique solution of (5) which satisfies

ϕ
(`)
j (0) = δj` ; ` = 0, . . . , k − 1 .

Then we define ρ on B = Ck−1[0, 1] by

(10) ρ(x)(t) =
k−1∑
j=0

x(j)(1)ϕj(t), t ∈ [0, 1], x ∈ Ck−1[0, 1] .

It is easy to prove that the only eigenelements of ρ are
(
e−λrt, e−λr

)
, r = 1, . . . , k

and that
‖ ρp ‖= O

(
e−(p−1)λ1

)
.

Finally
Xn = ρ(Xn−1) + εn

where
Xn(t) = ξn+t , t ∈ [0, 1], n ∈ Z

and

εn(t) =
∫ n+t

n
g(n + t− u)dw(u), t ∈ [0, 1], n ∈ Z .

Note that (ξt) is not Markovian whereas (Xn) is a Markov process.

3.3 Process with seasonality

Let (ηt, t ∈ R) be a real process such that

ηt = m(t) + ξt , t ∈ R
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where (ξt) is a zero mean process admitting an ARB representation in B, a separable
Banach space of real functions defined over [0, τ ] and where m(·) is a non constant
deterministic function with period τ and such that t 7→ m(t), 0 ≤ t ≤ 1 belongs to
B. Then (ηt) has clearly an ARB representation.

Note that (ηt) is not stationary when (Xn) is strictly stationary.

3.4 Hilbert-valued autoregressive processes

Let (Zt, t ∈ R) be a locally square integrable real zero mean process with independ-
ent increments. Then

εn(t) = Zn+t − Zn , t ∈ [0, 1], n ∈ Z

defines an B-white noise, where B = L2[0, 1].

Now let ρ be a linear operator defined by

(ρx)(t) =
∫ 1

0
K(s, t)x(s)ds, t ∈ [0, 1], x ∈ H

where
∫

[0,1]2
K2(s, t)dsdt < 1. Then ‖ ρ ‖< 1 and Xn(t) =

∑
j≥0

ρj(εn−j)(t), 0 ≤ t ≤ 1,

n ∈ Z is an ARB process.

4 Laws of large numbers

In the sequel we set Sn =
n∑
i=1

Xi , εn =
1

n

n∑
i=1

εi, R =
∑
n≥0

‖ ρn ‖.

Theorem 1 (Strong law)
Let (Xn) be an ARB with mean m, then

(11) Xn → m a.s. .

Furthermore if B is of type 2 and if (εn) satisfies

(12) E ‖ εn ‖k≤
k!

2
ck−2σ2 , k ≥ 2

where c is constant, then, for each η > 0

(13) P (‖ Xn −m ‖> η) ≤ α exp(−βn)

where α and β are positive constants.

In order to state a weak law of large numbers we recall that a linear operator
` : B 7→ B is said to be coercive with constant r if

‖ `(x) ‖≥ r ‖ x ‖ , x ∈ B .

Now we have the following



Limit theorems for Banach-valued autoregressive processes 543

Theorem 2 (Weak law)
Let (Xn) be an ARB with mean m

a) If B is of type p where 1 < p ≤ 2 with type constant c1 then

(14) E ‖ Xn −m ‖p≤ (2c1R)p

np−1
E(‖ ε0 ‖p + ‖ ρ(X0 −m) ‖p) .

b) If B is of cotype q where 2 ≤ q <∞ with cotype constant c2 and if the operators
n∑
j=0

ρj , n ≥ 0 are coercive with the same constant r, then

(15) E ‖ Xn −m ‖q≥
(

r

2c2

)q 1

nq−1
E(‖ ε0 ‖q) .

c) In particular if B is an Hilbert space and if ρ is symmetric compact then
‖ ρ ‖< 1 and

(16)

1− ‖ ρ ‖
1+ ‖ ρ ‖

1

n
E ‖ ε0 ‖2 ≤ E ‖ Xn −m ‖2

≤ 1

(1− ‖ ρ ‖)2

1

n
E ‖ X0 −m ‖2 ,

furthermore the inequalities in (16) are equalities if and only if ρ vanishes.

For the definition of types and cotypes of a Banach space we refer to HOFFMAN
and JORGENSEN (1973), MAUREY (1973) and LEDOUX and TALAGRAND
(1991).

5 Central limit theorem and law of iterated logarithm

The central limit theorem for an ARB process has the following form :

Theorem 3 (CLT)
An ARB process (Xn) with mean m satisfies the CLT if and only if the innovation
(εn) satisfies it and in that case

(17)
√

n
(
Xn −m

)
−→L N ∼ N (0, (I − ρ)−1Cε(I − ρ)∗−1

where Cε denotes the covariance operator of ε0.

Note that each of the following conditions implies the CLT for (εn) and thus for
(Xn) :

a) B is of type 2, in particular B is a Hilbert space.

b) B is of cotype 2 and ε0 is pregaussian.

c) B = C [0, 1] and ε0 is subgaussian.
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d) B = C [0, 1] and there exists a square integrable r.v. M such that

|ε0(t, ω)− ε0(s, ω)| ≤ M(ω)|t− s| , ω ∈ Ω; s, t ∈ [0, 1] .

Details about these results may be found in LEDOUX and TALAGRAND (1991).

In order to state the law of iterated logarithm we set

Log n = max(1, `n n),

d(x, A) = inf{‖ x− y ‖, y ∈ A} , x ∈ B , A ⊂ B ,

and we denote by C(xn) the set of limit points of the sequence (xn).

Theorem 4 (LIL)
Let (Xn) be a zero mean ARB. Then (Xn) satisfies the compact LIL if and only if
(εn) satisfies it. In this case we have

(18) lim
n→∞

d

(
Sn√

2n log log n
, (I − ρ)−1K

)
= 0 a.s.

and

(19) C

(
Sn√

2n log log n

)
= (I − ρ)−1K a.s.

where K is the closed unit ball of the reproducing Hilbert space associated with Cε :

(20) K = {x ∈ B , x = E(ξε0), ξ ∈ L2(Ω,A, P ), Eξ = 0, Eξ2 ≤ 1}

The compact LIL for Banach valued i.i.d. r.v.’s is due to KUELBS (1977). Note
also that each condition (a), (b), (c), (d) above implies the LIL for (εn). Details and
other references appear in LEDOUX and TALAGRAND (1991).

6 Some applications to real continuous time pro cesses

The above results allow us to obtain limit theorems for continuous time process. In
this section we provide some examples.

Let (ξt, t ∈ R) be a measurable process with admit an ARB representation with
B = C [0, 1]. For every signed bounded measure µ on [0, 1[ we define

µn(A) =
n−1∑
j=0

µ(A(j)), A ∈ B[0,1[

with A(j) = {x : x + j ∈ A ∩ [j, j + 1[}.

Then we have strong laws for (ξt) :
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Corollary 1 For every signed bounded measure µ on ]0, 1]

(21) lim
T→∞

1

T

∫ T

0
ξtdµ[T ](t) =

∫ T

0
Eξtdµ[T ](t) a.s.

In order to state a CLT we consider the eigenelements (ej, λj), j ≥ 1 of the kernel
E(ξsξt) defined by

λjej(t) =
∫ 1

0
E(ξsξt)ej(s)ds, t ∈ [0, 1], j ≥ 1

with
∫ 1

0
e2
j(t)dt = 1, j ≥ 1.

Corollary 2 If (ξt) is zero mean, if λ1, . . . , λk are distinct and if there exists a
square integrable r.v. L such that

(22) |ξ(t, ω)− ξ(s, ω)| ≤ L(ω)|t− s| ; s, t ∈ [0, 1], ω ∈ Ω

then

(23)
1√
n

∫ 1

0

n−1∑
j=0

ξj+t

 ej(t)dt, 1 ≤ j ≤ k

 −→L Nk

where Nk is a zero mean k dimensional Gaussian vector with covariance matrix
λ1 O

O λk.


Note that condition (22) could be replaced by any assumption which ensures that
(Xn) satisfies the CLT.

Corollary 3 If (ξt) is Gaussian then

(24) lim
T→∞

d

(
1√

2T log log T

∫ T

0
ξtdµ[T ](t), K

′
)

= 0 a.s.

and

(25) C

(
1√

2T log log T

∫ T

0
ξtdµ[T ](t)

)
= K ′ a.s.

where

(26) K ′ =
{∫ 1

0
y(t)dµ(t), y ∈ (I − ρ)−1K

}
.

In particular if (ξt) is the ORNSTEIN-UHLENBECK process and if µ is the Lebesgue
measure on [0, 1] then

K ′ =
[
−1

c
, +

1

c

]
.

For related results concerning the ORNSTEIN-UHLENBECK process we refer to
STOICA (1992).

More generally corollary 3 is valid if (ξt) satisfies (5).
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7 PROOFS

We first state and prove UTEV’s technical lemma.

Lemma 1 (S. UTEV)
Let (Y, Yk) be an equidistributed sequence of nonnegative r.v.’s with finite second
moment and (ak) be a summable positive sequence.
Then

(27) In[(Yk)] :=
1√
n

n∑
j=1

an−jYj −→n→∞ 0 a.s.

Proof :
We observe that there exists a function 0 ≤ g(x) ↑ +∞ as x→∞ such that

E[Y 2g(Y )] <∞ ,

whence there exists a nonnegative sequence 0 ≤ tk ↓ 0 such that

∞∑
k=1

P (Y ≥ tk
√

k) <∞ .

Let Xk = Yk1(Yk<tk
√
k). By the Borel-Cantelli lemma P (Xk 6= Yk i.o.) = 0. Thus

it remains to prove (27) with (Yk) replaced by (Xk) i.e. for In[(Xk)]. By construction

In[(Xk)] ≤
1√
n

n∑
j=1

(an−jtj
√

j)

=
1√
n

[
√
n]∑

j=1

(an−jtj
√

j)

+
1√
n

 n∑
j=[
√
n]+1

(an−jtj
√

j)



≤ 1√
n

(1 + n1/4)

 ∞∑
j=0

aj

 t1 +
1√
n

(
√

n)

 ∞∑
j=0

aj

 t[
√
n]

→ 0 as n→∞. �

In the sequel we may and do suppose that m = 0.

Proof of theorem 1

1) First suppose that ‖ ρ ‖< 1. Then (1) and (I − ρ)−1 =
∑
j≥0

ρj yield

(28)
Xn = (I − ρ)−1εn − 1

n
(I − ρ)−1(ρnε1 + . . . + ρεn)

+ 1
n
(ρ + . . . + ρn)(X0).

We treat each term separately.

By using the strong law of large numbers for i.i.d. r.v.’s (cf. LEDOUX and
TALAGRAND 1991, p. 189) and the continuity of (I − ρ)−1 we obtain

(I − ρ)−1εn → 0 a.s.
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On the other hand, from UTEV’s lemma we infer that

‖ 1

n
(I − ρ)−1(ρnε1 + . . . + ρεn) ‖

≤‖ (I − ρ)−1 ‖ 1

n
(‖ ρn ‖‖ ε1 ‖ + . . .+ ‖ ρ ‖‖ εn ‖)→ 0 a.s as n→∞ .

Finally
1

n
‖ (ρ + . . . + ρn)X0 ‖≤

R ‖ X0 ‖
n

→ 0 .

Collecting the above results we get Xn → 0 a.s. .

1. If ‖ ρ ‖≥ 1 the condition
∑
‖ ρn ‖<∞ implies the existence of an integer n0

such that
‖ ρn ‖< 1 for n ≥ n0 .

Now we have

Xkn0+` =
n0−1∑
j=0

ρj(εkn0+`−j) + ρn0(X(k−1)n0+`) ,

k ∈ Z; ` = 0, 1, . . . , n0 − 1.

Thus to each ` we can associate an ARB process(
Y `
n , n ∈ Z

)
:= (Xnn0+`, n ∈ Z)

with autocorrelation operator ρn0 an innovation

n0−1∑
j=0

ρj (εnn0 + `− j) , n ∈ Z
.

These ARB processes are connected with (Xn) by the identity

Xn =
qn

n0qn + rn

n0−1∑
r=0

1

qn

q′n∑
j=0

Y r
j

 ,

where n = n0qn + rn, 0 ≤ rn ≤ n0 − 1 and q′n = qn or qn + 1.

As qn → ∞ the first part of the proof implies
1

qn

q′n∑
j=0

Y `
j → 0 a.s. so that

Xn → 0 a.s. and the strong law of large numbers is thus established.

3) We now turn to the proof of (13). For this purpose we again use decomposition
(28).

Under conditions (12) YURINSKI (1976)’s inequality applies to (εn) : if η =

η− an
bn

> 0 where an = E ‖ ε1 + . . .+ εn ‖ and bn =

 n∑
j=1

E ‖ εj ‖2

1/2

= σ
√

n

then

P

∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
j=1

εj

∣∣∣∣∣∣
∣∣∣∣∣∣ ≥ ησ

√
n

 ≤ exp

(
−η2

8

1

1 + ηc/2σ
√

n

)
.
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Since B is of type 2 (say, with constant c1) we have

an ≤

E

∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
j=1

εj

∣∣∣∣∣∣
∣∣∣∣∣∣
2


1/2

≤ 2c1σ
√

n ,

thus the inequality is valid if η > 2c1. Now for any γ > 0 we can choose

η =
γ

σ

√
n and for n large enough we obtain

P (‖ εn ‖≥ γ) ≤ exp(−β1n)

where β1 is a strictly positive constant. It follows that, for any γ > 0,

P (‖ (I − ρ)−1εn ‖≥ γ) ≤ exp(−β2n)

where β2 > 0.

Similarly it is easy to check that

P (‖ (I − ρ)−1εn ‖≥ γ) ≤ exp(−β3n) , β3 > 0 .

Now if there exists λ > 0 such that E(eλ‖X0‖) < ∞ we obtain by standard
manipulations

P
(∣∣∣∣∣∣∣∣1n(ρ + . . . + ρn)X0

∣∣∣∣∣∣∣∣ ≥ γ
)
≤ e−

λγ
R
nE

(
eλ‖X0‖

)
.

It remains to show the existence of λ. For this aim it suffices to write ‖
X0 ‖≤

∞∑
j=0

‖ ρj ‖‖ εj ‖ and to choose λ <
(
cmax
j≥0
‖ ρj ‖

)−1

, then using the

exponential power series we get

E
(
eλ‖ρ

j‖‖εj‖
)
≤ exp

(
λ ‖ ρj ‖ +

λ2 ‖ ρj ‖2 σ2

1− λcM

)

where M = max
j≥0
‖ ρj ‖. Therefore

E
(
eλ‖X0‖

)
≤ exp

λ
∑
j≥0

‖ ρj ‖ +
λ2σ2

1− λcM

∑
j≥0

‖ ρj ‖2


and the proof is complete. �

Proof of theorem 2

By iterating (1) we get

(29) Xk =
k−1∑
j=0

ρj(εk−j) + ρk(X0) , k ≥ 1

thus

Xn =
1

n

n−1∑
j=0

(I − ρ + . . . + ρj)εn−j +
1

n
(ρ + . . . + ρn)(X0) .
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Then if B is of type p with constant c1 the independence of X0, ε1, . . . , εn together
with proposition 9.11 in LEDOUX and TALAGRAND (1991, p. 248) imply

E ‖ Xn ‖p ≤
(2c1)

p

np

n−1∑
j=0

E ‖ (I + . . . + ρj)εn−j ‖p
+ E ‖ (ρ + . . . + ρn)X0 ‖p


≤ (2c1R)p

np
(nE ‖ ε0 ‖p +E ‖ ρX0 ‖p)

which proves (14).

If B is of cotype q with constant c2, we have similarly E ‖ Xn ‖q≥
(2c2)

−q

nq
[
n−1∑
j=0

E(‖

(I + . . . + ρj)εn−j ‖q)
+E ‖ (I + . . . + ρn−1)(ρX0) ‖q]

and by uniform coercivity

E ‖ Xn ‖q ≥ (2c2)−qrq

nq

n−1∑
j=0

E ‖ εn−j ‖q +E ‖ ρ(X0) ‖q


≥
(

r

2c2

)q 1

nq−1
E ‖ ε0 ‖q

which is (15).

Now assume that B is a Hilbert space equipped with its scalar product < · , · >.
If ρ is symmetric compact it has a spectral expansion (cf. AKHIEZER and GLAZ-
MAN (1981)) :

ρ(x) =
∞∑
j=0

αj < x, ψj > ψj , x ∈ B

with ρ(ψj) = αjψj , j ≥ 0 and where (ψj) is an orthonormal basis of B. Further-
more ‖ ρ ‖= |α0| ≥ |α1| ≥ . . .

Since
∑
n≥0

‖ ρn ‖=
∑
n≥0

|α0|n <∞ we get ‖ ρ ‖< 1.

Moreover ∣∣∣∣∣∣
∣∣∣∣∣∣
 n∑
j=0

ρj

 (x)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
∞∑
j=0

(
1 + αj + . . . + αnj

)2
< x, ψj >2

≥
(

1− ‖ ρ ‖
1+ ‖ ρ ‖

)2

‖ x ‖2 , n ≥ 0

which means that the operators
n∑
j=0

ρj, n ≥ 0 are uniformly coercive with constant

r =
1− ‖ ρ ‖
1+ ‖ ρ ‖ .

Since a Hilbert space is of type and cotype 2 we may apply (14) and (15) with
2c1 = 2c2 = 1, and noting that E ‖ X0 ‖2= E ‖ ε0 ‖2 +E ‖ ρ(X0) ‖2 we obtain (16).
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Finally if ρ = 0 then X0 = ε0 and inequalities (16) are equalities. Conversely
equalities in (16) entail

1 ≥ (1− ‖ ρ ‖)3

1+ ‖ ρ ‖ =
E ‖ ρ(X0) ‖2 +E ‖ ε1 ‖2

E ‖ ε1 ‖2
≥ 1

which is possible only if ρ = 0. �

Proof of Theorem 3

Consider the decomposition

√
nXn = (I − ρ)−1

√
nεn + ∆n

where

(30) ∆n = (I − ρ)−1 ρnε1 + . . . + ρεn√
n

+
(ρ + . . . + ρn)(X0)√

n
.

Using UTEV’s lemma we obtain

∆n −→ 0 a.s.

Then, if √
nεn −→L N1 ∼ N (O, Cε)

the continuity of (I − ρ)−1 implies

(I − ρ)−1
√

nεn −→L (I − ρ)−1N1

hence √
nXn −→L (I − ρ)−1N1 .

(cf. BILLINGSLEY (1968), Theorem 4.4, p. 27).

Conversely if
√

nXn satisfies the CLT, the asymptotic normality of (I−ρ)−1
√

nεn
follows by using the same method. Since (I− ρ) is continuous we can conclude that√

nεn satisfies the CLT. �

Proof of Theorem 4

We set un =
√

2n log log n and consider the decomposition

Sn
un

= (I − ρ)−1

n∑
j=1

εj

un
+

√
n

un
∆n

where ∆n is defined by (30). Thus from the proof of Theorem 3 it follows that√
n

un
∆n → 0 a.s..

Now if (εn) satisfies the compact LIL (cf. LEDOUX and TALAGRAND (1991),
p. 210) we have (18) and (19) since (I − ρ)−1 is one-one.



Limit theorems for Banach-valued autoregressive processes 551

Conversely if there exists a compact set K1 such that d
(

Sn
un

, K1

)
−→ 0 a.s. and

C(
Sn
un

) = K1, then d
(∑n

j=1
εj

un
, (I − ρ)K1

)
→ 0 a.s. and C

(∑n

j=1
εj

un

)
= (I − ρ).

Furthermore K := (I − ρ)K1 is compact and, by LEDOUX and TALAGRAND
(1991)’s Theorem 8.5 (p. 210), K is the unit ball of the reproducing kernel Hilbert
space associated with Cε0. �

Proof of Corollary 1

First we have ∣∣∣ 1
T

∫ T
[T ] ξtdµ[T ](t)

∣∣∣ ≤ ‖ µ ‖ X[T ]

T

≤ ‖ µ ‖ [T ]
T

∣∣∣∣∣∣S[T ]−S[T−1]

[T ]

∣∣∣∣∣∣
which tends to zero a.s. by Theorem 1.

∣∣∣ 1
T

∫ [T ]
0 ξtdµ[T ](t)

∣∣∣ =

∣∣∣∣∣∣∫ 1
0

 1
T

[T−1]∑
j=0

ξj+t

 dµ(t)

∣∣∣∣∣∣
≤ ‖ µ ‖ [T ]

T

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
[T ]

[T−1]∑
j=0

X0

∣∣∣∣∣∣
∣∣∣∣∣∣

which tends to zero a.s. again by Theorem 2. �

Proof of Corollary 2

To begin we show that (Xn) satisfies the CLT. For this aim we write

εn+t − εn+s = (ξn+t − ξn+s)− E(ξn+t − ξn+s | ξu, u ≤ n)

Using (22) and the monotonicity of conditional expectation we obtain

(|ξn+t − ξn+s| | ξu, u ≤ n) ≤ |t− s|E(|L| | ξu, u ≤ n)

thus

|εn+t − εn+s| ≤ [|L|+ E(|L| | ξu, u ≤ n)]|t− s|

which means that (εn) satisfies condition d in section 5. Then, by Theorem 3, (Xn)
satisfies the CLT.

We now consider the bounded signed measures on [0, 1[ defined by

dµi(t) := ei(t)dt ; i = 1, . . . , k ,

and we note that

∫ 1

0

n−1∑
j=0

ξj+t

 ej(t)dt = µi

n−1∑
j=0

Xj

 ; i = 1, . . . , k ;

hence the result by a classical continuity argument. �
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Proof of Corollary 3

First note that∣∣∣∣∣ 1√
2T log log T

∫ T

[T ]
ξtdµ[T ](t)

∣∣∣∣∣ ≤‖ µ ‖ ‖ X[T ] ‖√
2[T ] log log[T ]

then, by using UTEV’s lemma with a1 = 1, aj = 0, j > 1 and Yj =‖ Xj ‖, j ≥ 1,
we see that the bound tends to zero a.s.

Consequently we may and do suppose that T is an integer. Now we have

1

uT

∫ T

0
ξtdµT (t) =

∫ 1

0

 1

uT

T−1∑
j=1

Xj(t)

 dµ(t)

where uT = (2T log log T )−1/2. Then, since µ ∈ C∗[0, 1], (24) is a straightforward
consequence of (18) in Theorem 4. It remains to prove (25).

For that purpose we consider Ω0 ∈ A such that P (Ω0) = 1 and d(Zn(ω), K1)→ 0,

C(Zn(ω)) = K1, ω ∈ Ω0 where Zn =
1

un

n−1∑
i=0

Xi and K1 = (I − ρ)−1K.

First it is obvious that C(µ(Zn(ω)) ⊃ µ(K1), ω ∈ Ω0.

Conversely if y is a limit point of µ(Zn(ω)) where ω ∈ Ω0, then there exists a
subsequence Zn′(ω) such that µ(Zn′ (ω)) converges to y. Since (Zn′(ω)) is relatively
compact we may extract a new subsequence (Zn′′ (ω)) which converges to z ∈ K1.

Therefore µ(Zn′′ (ω)) converges to µ(z), thus y = µ(z) and finally y ∈ µ(K1) =
K ′, hence (25).
We now turn to the case of an ORNSTEIN-UHLENBECK process. Recall that here
ρ(x)(t) = e−λtx(1), 0 ≤ t ≤ 1, hence

[(I − ρ)−1(x)](t) =
∞∑
j=0

(ρj(x))(t)

= x(t) + e−λt

1−e−λx(1) .

Consequently

K ′ =

{∫ 1

0
x(t)dt +

x(1)

1− e−λ

∫ 1

0
e−λtdt , x ∈ K

}

where K is the unit closed ball of the reproducing kernel Hilbert space associated
with (ξt, 0 ≤ t ≤ 1). Now

ε0(t) = ξt − e−λtξ0

and
K = {x ∈ C [0, 1], x(t) = E(Zε0(t)), 0 ≤ t ≤ 1 ,

Z ∈ L2(Ω,A, P ), EZ = 0, EZ2 ≤ 1} .
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Then, K ′ may be written under the form

K ′ = {E
[
Z

(∫ 1

0
ξtdt +

ξ1 − ξ0

λ

)]
, Z ∈ L2(Ω,A, P ) ,

EZ = 0, EZ2 ≤ 1} .

Clearly the maximum is reached if
Z = α

(∫ 1
0 ξtdt +

ξ1 − ξ0

λ

)
EZ2 = 1

α > 0

hence sup K ′ =

E (∫ 1
0 ξtdt +

ξ1 − ξ0

λ

)2
1/2

and after elementary calculations we

get sup K ′ =
1

λ
. Obviously inf K ′ = − supK ′ = −1

λ
and the proof is complete since

K ′ is convex. �
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processus fonctionnel autorégressif d’ordre 1. Preprint.

[6] BILLINGSLEY, P. (1968). Convergence of probability measures. Wiley, New
York.

[7] BOSQ, D. (1991 a). Modelization, nonparametric estimation and prediction for
continuous time processes, in Nonparametric functional estimation and related
topics, G. ROUSSAS, Ed., Kluwer Acad., Dordrecht 509-529.
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