Spectral asymptotics and bifurcation for
nonlinear multiparameter elliptic eigenvalue
problems

Tetsutaro Shibata

Abstract

This paper is concerned with the nonlinear multiparameter elliptic eigen-
value problem

r) + pu(r Z)\fz N=0, 0<r<1,

where N > 1,k € N and u,\; > 0 (1 < i < k) are parameters. The aim
of this paper is to study the asymptotic properties of eigencurve p(A, o) =
(A1, Az, -+, Ak, @) with emphasis on the phenomenon of bifurcation from the
first eigenvalue p1 of —A|p and on gaining a clearer picture of the bifurcation
diagram. Here, o > 0 is a normalizing parameter of eigenfunction associated
with p(A, ). To this end, we shall establish asymptotic formulas of p(A, «)
as |A\| — o0, 0.
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1 Introduction.
We consider the following nonlinear multiparameter eigenvalue problem

N -1

u”(r) + u'(r) + pu(r) — ;)\Zfz(u(r)) =0, 0<r<1l,

u(r) >0, 0<r <1,
u'(0) =0,u(l) =0,

(1.1)

We assume the following conditions (A.1)-(A.2) on f;:
(A1) fi: Ry — Ris CY, £(0) = 0, f1(0) = 0.

(A.2) The mapping u +— iy (prolonged by 0 at u = 0) is strictly increasing
u
for u > 0. Furthermore, lim,,_. fi(w) =00

U
This problem arises from the investigation of a positive radially symmetric solu-
tion of the following elliptic eigenvalue problems:

k
—Au+ Y Nfi(u) =pu in B={xeR":|z] <1},
i=1

u>0 in B,
u=0 on 0B,

In fact, it is known by Gidas, Ni and Nirenberg [7] that a positive solution of the
above equation is radially symmetric.

The aim of this paper is to study the asymptotic properties of eigencurve pu(\, «)
with emphasis on the phenomenon of bifurcation from p; and on gaining a clearer
picture of the bifurcation diagram. Here p; is the first eigenvalue of —A with
Dirichlet 0 boundary condition. To this end, we shall establish asymptotic formulas
of eigenvalue u = p(A, ) = pw(A, A1, , Mg, @) as |A] — 00,0. It is known by
Berestycki [3] that for given A = (A1, Ao, -+, Ax) (A > 0),a > 0, there uniquely
exists an eigenvalue u = (A, ) > p; associated with eigenfunction uy(a,z) > 0
satisfying ||uxll2 = a.

In order to motivate our problem, let us briefly recall some known facts con-
cerning multiparameter eigenvalue problems. Multiparameter linear spectral theory
began with the oscillation theory and there are many works. We refer to Binding
[4] and Binding and Browne [5], for example. We also refer to Faierman [6] and
the references cited therein for further information in this direction. However, few
results have been given for nonlinear multiparameter problems.

As the first step to treat nonlinear multiparameter eigenvalue problems, we re-
strict our attention here to the equation (1.1) in the unit ball of RY. As for the local
properties of (), o), we shall show that z(), @) is continuous in A € R\ {0} (R, :=
[0,00)) and bifurcation from p; occurs, that is, |u(\ ) — p1| — 0 as |[A| — 0 (as
expected) (Theorem 2.6). Furthermore, in order to understand the bifurcation dia-
gram globally, we shall investigate the asymptotic behavior of u(\, «) as |A| — oo;
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we begin with the simple case k = 1 and study the asymptotic behavior of u) and
w(A, @) as |\ — oo (Theorem 2.1, Theorem 2.2). By using these results, we shall
establish an asymptotic formula of p(\, «) as |A| — oo for the general case k > 2
(Theorem 2.3). In particular, the typical case fi(u) = u? (p; > 1) is dealt with and
more precise asymptotic formula of (A, ) as |A| — oo will be established (Theorem
2.4).

2 Main Results.

We explain notations before stating our results. Let

1 1

lullf = [ ¥t ull; = [ ¥ u)Fdr for s>1, (2)
0 0

Jufloo = sup fu(r)] (2.2
0<r<1

We fix @ > 0. For a given A\ = (A, Ao, , \) € RY \ {0}, let (u(\, @), ur(r))
be the unique solution of (1.1) with ||u,||2 = a. Now we state our results.

Theorem 2.1. Assume (A.1)-(A.2). Furthermore, assume that k = 1. Then
ux(r) — v Na and v} (r) — 0 uniformly on any compact subsets in [0,1) as A\; — oo.

Theorem 2.2. Assume (A.1)-(A.2). Furthermore, assume that k = 1. Then the
following asymptotic formula holds as Ay — oo:

p(A, @) = filyNo)
’ VNa
In order to consider the general case k > 2, we assume (A.3):

(A.3) Assume that there exist j (1 < j < k) and constants K; > 0 such that for
)\j >1

)\1 + 0()\1). (23)

- \
0< .- 2 _ K 0. 2.4

D VD VIR (24)

Theorem 2.3. Assume (A.1)-(A.3). Then the following asymptotic formula holds

as \j — 00:
Z K f'l \ O[)
=1 \ Na
In the following special situation, more precise remainder estimate can be ob-
tained:

Theorem 2.4. Let f;(u) = uPi(p; > 1). Furthermore, assume (A.3) with K; = 0
for all i # j. Then there exist constants C1,Cy > 0 such that for \j > 1:

Sl

< p(ha) S N aP I+ Coa"T A2 + G 30N (2.6)
i#]

Np?;lOép_l)\j + ClOép?;l)\
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For the case N = 1 in Theorem 2.4, we can obtain more general result: let
tn (A, @) (n € N) denote the eigenvalue of (1.1) associated with eigenfunction uy ,(r)
with n — 1 exact interior zeros satisfying ||uy »||2 = @. We know from Heinz [8] that
for a given A\; > 0 and a > 0, there uniquely exists p = u, (A, «) for n € N.

Corollary 2.5. Let N = 1. Assume the conditions imposed in Theorem 2.4. Then
forn € N, the formula (2.6) holds for pn = p, (A, ).

Theorem 2.6. Assume (A.1)-(A.2). Then p(\, @) is continuous in A € R\ {0}.

Furthermore, the following asymptotic formula holds as || — 0:

k
0< ,u()\, Oé) - < ng A (27)
=1

The remainder of this paper is organized as follows. In Section 3 we shall prove
Theorem 2.1 and Theorem 2.2. Section 4 is devoted to the proof of Theorem 2.3.
The proofs of Theorem 2.4 and Corollary 2.5 will be given in Section 5. Finally, we
shall prove Theorem 2.6 in Section 6.

3 Proof of Theorem 2.1 and Theorem 2.2.

In what follows, we denote p(A) = p(A, «) for simplicity. At first, we shall recall
some fundamental properties of uy. Let o) := maxg<,<1 ux(r). Since u)(r) < 0 for

ke
1 Aifi
r € [0,1] by [7], ox = ux(0). Furthermore, let gy(u) := Z“l—f(u) By (A.2),
u
there exists g5 (u) for u > 0. Then we know from Berestycki [3, Remarque 2.1] that
gx (B(N) =)o (r) < ua(r) < gyt (u(N), (3.1)

where ¢ is the positive first eigenfunction associated with p; satisfying ||¢||c = 1.
In particular, we have by putting 7 =0 in (3.1)

gx - ((AN) = 1) < on < g3t (w(N); (3.2)
this is equivalent to
5L filon)
P = <3 A o S HO. (3-3)

Since k = 1 in this section, we denote A\ = Ay, f(u) = fi(u), and consider the
following equation:

(3.4)
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Lemma 3.1. There exists a constant Cy > 0 such that for A > 1
CriN < (X)) < Oy (3.5)

Proof. Let s1 = ||¢]]2 and aq = 2 Then we obtain by (3.1) that
S1

() —p1)s < a < u\/’%)‘));

this implies that

1(A) = < galon) = Af(aoil),Af(\/_‘/NN;) < u(N);

this implies (3.5) for A > 1. n

The following lemma is a direct consequence of (A.2), (3.3) and Lemma 3.1.

Lemma 3.2. There exists a constant Cs > 0 such that 05_1 <oy <5 for A > 1.
1
Let F(t) := [J f(s)ds and G(t) := i,u()\)tZ — AF(t) for t > 0.

Lemma 3.3. The following equality holds for r € [0, 1].

TN 6)2ds + Ga(ua(r)

1, 1N -1
= Galow) = FuA(1* + [ =

) (s)*ds.

Proof. Multiply (1.1) by u to obtain

N2 L) 4 s ua(m)dy(r) — A (ua(r))dy(r) = 0

ux(r)uy(r) +

this implies that

ey [ ers + G | =0

Hence, for r € [0, 1], by putting 7 = 0 and r = 1 we obtain

1 "N —1
—u)(r)? + / uh (5)%ds + Gy(ux(r)) = constant = Gy (o))
2 0 S (38)

1 LN -1
= 5u&(1)2 —i—/o . ) (s)*ds.

Thus the proof is complete. [
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Lemma 3.4. G,\(t) is increasing for 0 <t < o,.

Proof. Since G)\(t) = p(\)t — A\f(t), we obtain by (A.2) that there uniquely exists
tx > 0 such that G4(¢) > 0 for 0 < t < ¢, and G (t) < 0 for ¢ty < ¢t. Then since
G\ (o)) > 0 by (3.3), we find that o) < t). Hence, we obtain our conclusion. ]

Lemma 3.5. Let J := [ro,m1] (0 <19 <11 < 1) be an arbitrary compact interval.
Then there exists a constant Cy > 0 such that |u)\(r)| < Cy forr € J and X > 1.

Proof. We know from (3.4) that for r € (0, 1)
(P () = Y A (ua(r) = p(Vua(r)) < 0; (3.9)

this implies that for ro < r <r;

N-1

(™) )l < b)) < () gl (3.10)

We fix r9 > 0 such that r; < r5 < 1. Then by the same argument just above, we
obtain for r; < r <7y

(%) gt < ol < ()" el @)

T2 ™

If |\ (r1)] — 0o as A — oo, then by (3.11) and Lemma 3.2 we obtain

205 > 20, > up(r1) — ux(re) = / |u\(r)|dr
. " (3.12)
1

> (=) (2) 7 )] = o

This is a contradiction. Hence, |u)(r1)| is bounded for A > 1. Now our assertion
follows from (3.10). ]

Lemma 3.6. Let [0,ro] C [0,1) be an arbitrary compact interval. Then |uy(r) —
ox| — 0 as A — oo uniformly for r € [0,ro).

Proof. Assume that there exist 7o € (0,1),0 < § < 1 and a subsequence (\g)zen
such that A\, — 0o as ¢ — oo and

up = uy,(10) < o (1 —=9) (3.13)

and derive a contradiction. We denote A\ = A, for simplicity. We define z, by
ux(r) = ox(1 — 2x(r)). Then by (3.13) we have § < z)(rp). Furthermore, by (3.1)
and (3.3)

(@)

%D
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Therefore, by (A.2) we obtain that 1 — z)(rg) > ¢(r0)(1 — J), that is, zx(r9) <
1 — ¢(ro)(1 — 9). Hence, by choosing a subsequence if necessary, we may assume
that z)(r¢g) — 20 as A — oo, where 0 < zp < 1 — ¢(r9)(1 — ). Hence, for fixed
O<e<<lwehavel —zp—e <1—2)\(rg) <1—2zy+e€for A > 1. Let rp satisfy
uy = up(r1n) = oa(l — 29 + 2¢). We shall show that 7y — 0 as A — co. We obtain
by mean value theorem

G(ux(r1)) — G(ua(ro)) = G'(uo + 0(ur — up))
Gl ( ))or(l — 20+ 26 — 1 + 2x(r0))

G (ug + 0(uy — up))oa(2e — |20 — 2a(r0)]) (3.15)
G'( ( )

where 0 < 6 < 1. Since G'(t) = pu(A\)t — Af(t), we see from Lemma 3.4 that there
uniquely exists ¢y > o, > 0 such that G'(t,) = 0 and G'(t) > 0 for 0 < ¢t < ¢, and
G'(t) < 0 for t > ty. Furthermore, by (A.2) and Lemma 3.1, we see that there exists
constant Cg, C; > 0 such that Cg < t), < C7. Let 0 < n < 1 be fixed. Furthermore,
let t, € [n,tx — n] satisty G'(t,) = min,<;<;,—, G'(t). Since u(A)/\ = f(tx)/tr, we
obtain by (A.2) and Lemma 3.1 that

Gﬁmzm«ﬁy—i@»zM%MM fm—m>

b A e (3.16)
fty) — flEx—n) (@) f=n) '
2>\77< h o7 )2)‘7706%1507( P )20877)\.

By definition of uy and u; and by using (3.1), we can choose 0 < 7 < 1 such that
ug + O(uy — ug) € [n,tx —n]. We obtain by (3.15) and (3.16) that

G(uy) — Glug) > C5 ' Cgen\ — oc. (3.17)

On the other hand, if there exists a compact interval J C (0, 1) such that [ry x, 7] C
J for A > 1, then we have by (3.7) and Lemma 3.5 that

N -1

1
uh (s)%ds — =uh(r10)? < Cy (3.18)

1, 0
Glur) = Glug) = ui(r)* + | >
T,

This contradicts (3.17). Hence, 71y — 0 as A — 0.
Finally, let r. € (0, 1) satisfy ¢(r.) = (1 +¢)~!. Since r;\ < r. for A > 1, we
obtain by (3.1) and (A.2) that

flox) u(re) ux(ripn)\ _ \ J((A +e)oa(l — 20 + 2¢))
A TS <¢(r5)> Sgk( () ) M i on—wnt2)

However, we find from (A.2) that this is impossible, since we obtain by Lemma 3.1
and Lemma 3.2 that for 0 < e <1

ox — (14 €)(1 — 20 + 2€) = 0x(20 — 3¢ + €29 — 2€°)

3.20
Z 05_1(20 — 3e + €20 — 262) 2 CQZQ 2 095 ( )
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Hence, (3.13) is impossible and we obtain that for r € [0, ], as A — oo
[ur(r) — oa] < |ua(ro) — o] — 0. (3.21)

Thus the proof is complete. [

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let K C [0,1) be an arbitrary compact set. Let 0 < § < 1
satisfying K C J = [0,1 — §]. Then by Lemma 3.6 |ux(r) — oy < 9 for A > 1 and
r € J. Then

1-5 1-5
o = sl = [ o [ () = o+ [ )
0
(3.22)
this along with Lemma 3.6 implies that for A > 1
1
la? — Na§| < C40. (3.23)

Then for r € K and X\ > 1, we obtain by Lemma 3.6 and (3.23) that
INa? — uy(r)?] < Cpid. (3.24)
Furthermore, by (3.7) we obtain
r¥ Tl (r)? < 20V (Ga(0n) — Ga(ua(r))
= V(0% — ua(r)?) = 2A(F (o) — F(uy)) } (3.25)
< V0% — up(r)?).
Now, Theorem 2.1 follows from Lemma 3.6, (3.24) and (3.25). ]

Proof of Theorem 2.2. Since 0 — vV Na as A — oo by Theorem 2.1, we obtain
Theorem 2.2 by (3.3). ]

4 Proof of Theorem 2.3.

In this section, we shall prove Theorem 2.3 by using Theorem 2.1. We use the same

notations as those of Section 3. Without loss of generality, we may assume that
(A.3) holds for j = 1. Since \; = K;\; + 7;, we obtain by (3.4) that

N -1

/(1) + =/ (r) + pu(r) (ZKfZ >>+Zl%fi(u(r>>>

,
=0, 0<r<1, (4.1)

u(r) >0, 0<r<l1,

u'(0) = 0,u(1) = 0.
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Lemma 4.1. There exists a constant Ci2 > 0 such that
01_21)\1 S ,u()\) S 012)\1. (42)

Proof. We know from (3.2) that for
K3 TZ K3
R

gx (p(N) =)o < un < gyt (p(N). (4.3)
Then we obtain by (4.3) that

y L (e)
L\ = st < a < M’ 4.4
5 (H) — p)sr < o < DU (4.4
where s; = ||¢1|]2. Then for oy = /sy

1) = < M (ZKifz‘LOﬂ) +Z;’_z‘1fi(oz1)> :

i=1 ' “ (4.5)
fZ(\/_a> Ti fz(\/_a>
i (i )
By using (A.3) and (4.5), we obtain (4.2). n

Proof of Theorem 2.3. satisfying (A.3), by repeating the same arguments as those
in Section 3, we can show that the properties of Lemma 3.2 and Lemma 3.6 also
hold in our situation. Consequently, by (3.3) we obtain

= < (LD 5 L HOT) ) (4.6)

%D %D

Since oy, — VNa as Ay — oo, we obtain our conclusion by using (A.3). Thus the
proof is complete. n

5 Proof of Theorem 2.4 and Corollary 2.5.

We begin with the definition of subsolution and supersolution. For the equation

—Au=h(u) in B,

5.1
u=0 on OB (5.1)
@ is called subsolution of (5.1) if @ satisfies

—Au < h(a) in B, (5.2)

<0 on 0B.
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Furthermore, @ is called supersolution of (5.1) if u satisfies

—Au>h(u) in B,

5.3
>0 on 0B. (5-3)

We know from Amann [1] that if @ in B, then there exists a solution u of (5.1)
such that « <u <@ in B.
In this section, we may assume without loss of generality that (A.3) holds for

j=1. We put p =p1,v\ = )\1 uy. Then it follows from (3.4) that vy satisfies

vy (1) + pw(AN)oa(r) — Hx(va(r)) =0, 0 <r <1,

uA(r) >0, 0<r <1,
vy (0) = 0,v5(1) =0,

(5.4)

pi—1 —1

where Hy(v) := v + XK, M\, 7 s

Lemma 5.1. Let 7, = ¥ 2)\012 . Then pa(r) = ((A) — p1 — T,\)Pquﬁ s a
subsolution of (5.4) for Ay > 1.

Proof. We see from Lemma 4.1 that p(\) — g — 75 > 0 for Ay > 1. Since ¢(r)? <
¢(r), we obtain
" N-1 /
Pa(r) + ——— @A (1) + u(A)a(r) = Ha(pa(r)
> —(u(A) = = )7 T+ p(A) ((A) — o — 1) 7T

p;—1

—((,u()\) MI_T/\IHQH‘Z)‘)HPI(()\) Ml—T/\)"_Iy‘ifqﬁ)

—1

= (u(A) — g1 — )7 ( Zz:&(“ “lTA)%)as (5.5)
> () - mn)l( S (“Y)#)
> (1) = =) (m = 2N ) 6=

Thus the proof is complete. .

The following lemma is obvious:

1

Lemma 5.2. @,(r) := pu(\) 71 is a supersolution of (5.4).
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Since pa(r) < @(r) and wvy(r) is the unique solution of (5.4), we obtain by
Lemma 5.1 and Lemma 5.2 that for 0 <r <1

oa(r) < wor(r) < (). (5.6)

Especially, by putting » = 0 in (5.6), we obtain

1 1

(1(A) = p1 = )P T < ox < p(A) 7T (5.7)
Lemma 5.3. vy is a supersolution of

() + L () () — () — ) =0, 0 <r < 1

wy(r) >0, 0<r<1, (5.8)
wh (0) = 0,wx(1) = 0,
Proof. By (5.4), (5.7) and Lemma 4.1 we obtain
" N -1 / P
() + s () + (B(A) = )ualr) — oa(r)
k _pi=l k pi=l
z(Z&M”WWW*—Z&Q?>w@ 59)
i=2 =2
k _pi—l pi—1 k pi—l1
= (Z AT () P = NG ) ua(r) <0.
=2 =2
Thus the proof is complete. [ |

Lemma 5.4. p,(r) is a subsolution of (5.8).

Proof.
() + SR () + (5) — T)ear) — oa(r)?
> —(u(N) = = )P + (V) = ) () — pr — )T (310)
— (u(N) = — )PP = 0.
Thus the proof is complete. [

Let wy be the unique positive solution of (5.8). Then we derive from (5.6) and
Lemma 5.4 that

oa(r) < wa(r) < woa(r). (5.11)

We note here that by Lemma 4.1 and (A.3), p(A) — 7y — 00 as Ay — 0.
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Lemma 5.5. 9, Theorem Let n > py. Furthermore, let z, be the unique positive
solution of the following equation:

N -1
2"(r) + 2(r)+nz(r) —2(r)P =0, 0<r <1,
r
2(r)>0, 0<r<1, (5.12)
2'(0) =0,2(1) =0,
Then there exist constants C3, C14 > 0 such that for n > 1
lzall57" + Cusllzglla® <1 < 215" + Cuallzyllo® - (5.13)

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Since ||vy|l2 = A" «, we obtain by (5.11) and (5.13) that for
A > 1

1

p—1 _ p—1
pA) =71 < walls™ + Cuaflwallza® < Jloall5™ + Cualloalls?
1 _
S )\10ép_1 + 014)\120[%;
this implies that

1
p—1 Pi

) k
p(A) < MaP 4+ Cidia T + Z NiCH (5.15)
i—2

Next, let y) be the unique positive solution of

y//(')“) -+ Ey/('r) + ,u()\)y(r) _ y(T>P =0, 0<r<1,
y(r) >0, 0<r<1, (5.16)
y'(0) = 0,y(1) = 0.

Then by (5.4), it is clear that v is a subsolution of (5.16). Furthermore, @(r) =
1(A)7=T is a supersolution of (5.16). Then by (5.6) we see that

uA(r) <yalr) < p(A)r=. (5.17)

Then by Lemma 5.5 and (5.17) we obtain

_ p=1 _ p—1
p) 2 llyalls™ + Cusllyalla® = foalls™ + Cuslloall,

N (5.18)
2 )\10ép_1 + 013)\15047.

Now Theorem 2.4 follows from (5.15) and (5.18). Thus the proof is complete. =
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In order to prove Corollary 2.5, we apply the following Lemma 5.6 instead of
Lemma 5.5:

Lemma 5.6. 8 Theorem Let n > (nm)>. Furthermore, let w,, be the unique
solution of

—w"(r) + |w(r) P w(r) = nu(r), 0<r <1,
1
’LU('I“) > 0, O<T<E’ (519)

J .
LY 0(i=0.1.---.n).
w <n> (j Y ) 7n>
Then forn > 1, (5.13) holds.

By using Lemma 5.6 instead of Lemma 5.5, we can prove Corollary 2.5 by the
same arguments as those used in the proof of Theorem 2.4. [

6 Proof of Theorem 2.6.

In order to prove Theorem 2.6, we apply the following lemma:

Lemma 6.1. 2, Theorem 2 Let ug € C?(B) be any function on B such that ug > 0
almost everywhere in B,uy =0 on OB and ||ugl|2 = . Then

(—Auo(:c) +3r )\z‘fz‘(UO(l"))> .

()

p(A) < sup (6.1)

r€EB
Proof of Theorem 2.6. At first, we shall prove the continuity of p(A). We fix an
arbitrary Ao = (o1, M2, 5 Aok) € RE \ {0}. We may assume without loss of

generality that \g; > 0. We fix ug which satisfies the conditions imposed in Lemma
6.1. Then for [N —X\| <d < 1

—Aug(z)

uo(z)

) + Ekj Ai sup (M> < Ci5+ cmi A < Ch. (6.2)

i=1 xEB Uo (l‘) i=1

p(A) < sup (

xEB

We derive from (3.3) and (6.2) that for |A — X\g| <J < 1

(Ao,1 — )

filoa) i A <) < o
A A

o = o

this implies that o) < Cj7 for |A — A\o| < § < 1. Multiply (1.1) by 7¥~! we have

(r () T (p(Nua(r) — ; Aifi(un(r))) = 0; (6.3)
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this implies that for 0 <r < 1

P = [T N (s)) — HOua(9))ds (6.4)

Then by (6.2) and (6.4)

A0 < o [ MR ()~ H(lds < Cuor.(65)

Furthermore, by (2.1), (6.2) and (6.5) we obtain that for 0 < r < 1

) < B0 o S o) <Co 69

=1

Therefore, we find from (6.5) and (6.6) that we can apply Ascoli-Arzela’s theorem,
and we can choose a subsequence of (A), which we write (\) again, such that as
A — )\0

Uy — ul,u’/\ — u’l (67)

uniformly on any compact subsets in [0, 1]. Furthermore, by (6.2), we can choose a
subsequence of (u(A)), which we write (u())) again, such that u(A) — po as A — Ao.
Then we easily see from (1.1), (6.7) that (ug, Ao, po) is a weak solution of (1.1) and
by a standard regularity argument, u; € C*(B). Furthermore, by (6.7) we obtain
|u1]|2 = . Hence, by Berestycki [2, Théoréeme 4] we find that g = u(A). Now our
assertion follows from a standard compactness argument.

Finally, we shall prove (2.7). Let ¢; be the first eigenfunction associated with
w1 satisfying ||¢1]|2 = a. Then by Lemma 6.1

—A<Z51(~’U)> 5 fi(¢1(2)) :

v <oup (S2) + Do B i rew a9
Thus the proof is complete. [
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