Spectral semi-norm of a *p*-adic Banach algebra

Alain Escassut

Nicolas Mainetti

Abstract

Let K be a complete ultrametric algebraically closed field, with respect to a non trivial absolute value, and let A be a commutative K-Banach algebra with identity. Let $Mult(A, \| . \|)$ be the set of continuous multiplicative semi-norms of K-algebra (with respect to the norm $\| . \|$ of A) and let $Mult_m(A, \| . \|)$ the set of the $\varphi \in Mult(A, \| . \|)$ whose kernel is a maximal ideal of A. If the norm of A is equal to its spectral semi-norm $\| . \|_{si}$ defined as $\|x\|_{si} = \lim_{n \to +\infty} \| x^n \|^{\frac{1}{n}}$, we prove that $\|t\|_{si} = \sup\{\psi(t)| \ \psi \in Mult_m(A, \| . \|)\}$, without any additional condition on K. Moreover, if A has no divisors of zero, denoting by s(x) the spectrum of any $x \in A$, we have $\|t\|_{si} = \sup\{|\lambda| \mid \lambda \in s(x)\}$. If $\sup\{|\lambda| \mid \lambda \in s(t)\} = \|t\|_{si}$ for every $t \in A$, then s(t) is infraconnected for all $t \in A$ if and only if A has no non trivial idempotents. In particular, this applies when A has no divisors of zero. In $Mult(A, \| . \|)$ we define pseudo-dense sets, and show that a subset Σ of $Mult(A, \| . \|)$ containing $Mult_m(A, \| . \|)$ is pseudo-dense if and only if for all $t \in A$ we have $\|t\|_{si} = \sup\{\psi(t)| \ \psi \in \Sigma\}$.

1 Introduction and results

Let L be a complete ultrametric field, and let K be a complete ultrametric algebraically closed field with respect to a non trivial absolute value. L is said to be strongly valued if its residue class field, or if its valuation group, is not countable. As usual, given $a \in K$, r > 0, we put $d(a, r) = \{x \in K \mid |x - a| \le r\}$, $d(a, r^{-}) = \{x \in K \mid |x - a| < r\}$, $C(a, r) = \{x \in K \mid |x - a| = r\}$. Besides, given s > r, we put $\Gamma(a, r, s) = d(a, s^{-}) \setminus d(a, r)$.

Received by the editors October 1996.

Communicated by R. Delanghe.

1991 Mathematics Subject Classification: 46S10, 12J25.

Key words and phrases : p-adic analysis, spectral norm, ultrametric Banach algebra.

Bull. Belg. Math. Soc. 5 (1998), 79-91

A set D in K is said to be *infraconnected* if for every $a \in D$, the mapping I_a from D to \mathbb{R}_+ defined by $I_a(x) = |x - a|$ has an image whose closure in \mathbb{R}_+ is an interval. (In other words, a set D is not infraconnected if and only if there exist a and $b \in D$ and an annulus $\Gamma(a, r_1, r_2)$ with $0 < r_1 < r_2 < |a - b|$ such that $\Gamma(a, r_1, r_2) \cap D = \emptyset$).

Given a closed bounded set D in K, we denote by R(D) the K-algebra of rational functions with no pole in D, by $\| \cdot \|_D$ the norm of uniform convergence on D, and by H(D) the completion of R(D) for this norm, which is called the K-Banach algebra of analytic elements in D.

Given a ring R, Max(R) denotes the set of maximal ideals of R. Let F be an algebraically closed field and let B be F-algebra with identity. Given $t \in B$, s(t) will denote the spectrum of t, (i.e. the set of the $\lambda \in F$ such that $t - \lambda$ is not invertible).

Let A be a commutative L-normed algebra with identity, whose norm is denoted by $\| \cdot \|$. A norm of L-algebra φ on a L-algebra B will be said to be *semi*multiplicative if it satisfies $\varphi(t^n) = \varphi(t)^n$ for all $t \in B$.

The map $\| \cdot \|_{si}$ defined in A as $\|x\|_{si} = \lim_{n \to +\infty} \|x^n\|_{\frac{1}{n}}$ is an ultrametric semi-norm of L-algebra called *spectral semi-norm of* A that obviously satisfies $\|x^n\|_{si} = \|x\|_{si}^n$.

Following Guennebaud's notations [6], we denote by $Mult(A, \| . \|)$ the set of continuous multiplicative semi-norms of K-algebra (with respect to the norm $\| . \|$ of A). So, given $\varphi \in Mult(A, \| . \|)$, the set of $t \in A$ such that $\varphi(t) = 0$ is a closed prime ideal of A called *kernel of* φ , and denoted by $Ker(\varphi)$. Then, we denote by $Mult_m(A, \| . \|)$ the set of $\varphi \in Mult(A, \| . \|)$ such that $Ker(\varphi)$ is a maximal ideal of A.

Given a subset Σ of $Mult(A, \|.\|)$, the mapping $\|.\|_{\Sigma}$ defined as $\|t\|_{\Sigma} = \sup\{\psi(t)| \ \psi \in \Sigma\}$ is obviously seen to be a semi-multiplicative semi-norm of A. In particular, when $\Sigma = Mult_m(A, \|.\|)$, we denote by $\|.\|_m$ this semi-norm.

During the sixties, T.A. Springer proved that given a normed commutative *L*-Algebra *A*, for all $x \in A$, we have $||x||_{si} = \sup\{\psi(x) | \psi \in Mult(A, ||.||)\}$ ([9], Corollary 6.25).

We will denote by (q) and (s) these properties:

- (q) $\sup\{|x| \mid x \in s(t)\} = ||t||_{si}$ for every $t \in A$.
- (s) $\| . \|_{si} = \| . \|_m$

Remark: This is an opportunity to correct an inadvertance mistake in [3], Theorem 1.18. Even assuming that A is complete for $\| \cdot \|_{si}$, one can't claim that there exists $\varphi \in Mult_m(A, \| \cdot \|)$ such that $\varphi(x) = \|x\|_{si}$. Indeed, let D be the disk $d(0, 1^-)$ in K, and just consider the K-algebra H(D). This norm obviously is the spectral norm of H(D), and then the identical function x satisfies $\|x\|_D = 1$. But every maximal ideal \mathcal{M} of H(D) has codimension 1, and is characterized by a point $a \in D$. So, the unique φ such that $Ker(\varphi) = \mathcal{M}$ is defined as $\varphi(f) = |f(a)|$ for all $f \in H(D)$, hence of course we have $\varphi(x) < 1$. The mistakes comes from the fact that in the proof of Theorem 1.18 of [3], in general, φ does not belong to $Mult_m(A, \| \cdot \|)$, because, (following the notations of the proof), the homomorphism θ is not necessarily surjective onto E. Now, let A be a commutative K-Banach algebra with identity. In 1976, Escassut showed that if every maximal ideal of A has codimension 1, then Property (s) holds in A ([2], Corollary 4.4). (In particular, this applies to Tate's algebras, whose maximal ideals are of dimension 1, on an algebraically closed field [10]). Next, using the holomorphic functional calculus, in [2] Theorem 7.5, he showed that if K is strongly valued, the equality holds in any commutative K-Banach algebra with identity. But if K is not strongly valued, by Theorem 7.5 in [2], counter examples show that (s) does not hold in the general case. In particular, there exists local commutative K-Banach algebra whose spectral semi-norm is a norm.

When K is strongly valued, property (q) was proven in [2] (Theorem 7.9), in assuming another additional hypothesis, like the integrity of A, but without assuming the norm to be the spectral norm. But counter examples given in [2] show this last equality does not hold when K is not strongly valued.

However, here we will obtain such equalities, without assuming K to be strongly valued, provided the spectral semi-norm $\| \cdot \|_{si}$ of A is a norm equivalent to its K-Banach algebra norm. This has been made possible thanks to a recent basic result concerning a partition of any annulus by a family of disks.

In Lemma 0, we recall previous results given in [9].

Lemma 0: Let A be a commutative normed L-algebra with identity, and let $x \in A$. Then $\|.\|_{si}$ is an ultrametric semi-multiplicative semi-norm satisfying $\|x\|_{si} = \sup\{\varphi(x)|\varphi \in Mult(A, \|.\|)\}$ and there exists $\varphi \in Mult(A, \|.\|)$ such that $\varphi(x) = \|x\|_{si}$. Further, if A is complete, for every $\mathcal{M} \in Max(A)$ there exists $\psi \in Mult_m(A, \|.\|)$ such that $Ker(\psi) = \mathcal{M}$, and if \mathcal{M} has finite codimension, such a ψ is unique.

Then we have Theorem 1:

Theorem 1: Let A be a commutative K-Banach algebra with identity whose norm of K-Banach algebra is $\| \cdot \|_{si}$. Then Property (s) is satisfied. Furthermore, if A has no divisors of zero, then Property (q) is satisfied.

Corollary a: Let A be a commutative K-Banach algebra with identity whose norm of K-Banach algebra is $\| \cdot \|_{si}$. Then the Jacobson radical of A is null.

However Theorem 2 shows that, even assuming the norm to be the spectral norm, Properties (s) and (q) are not equivalent.

Theorem 2: There exists a commutative K-Banach algebra with identity whose norm is $\| \cdot \|_{si}$ which satisfies Property (s) but not Property (q).

Theorem 3: Let A be a K-Banach algebra with identity, satisfying Property (q). Then A has no non trivial idempotents, if and only if for every $x \in A$, s(x) is infraconnected.

Corollary b: Let A be a commutative K-Banach algebra with identity, with no divisors of zero, whose norm of K-Banach algebra is $\| \cdot \|_{si}$. Then for every $x \in A$, s(x) is infraconnected.

Theorem 4 shows that Theorem 3 couldn't be much generalized.

Theorem 4: There exists a commutative K-Banach algebra with identity whose norm is $\| \cdot \|_{si}$ but does not satisfy Property (q), which has no non trivial idempotent, but has an element x such that s(x) is not infraconnected.

Now, as the set $Mult(A, \|.\|)$ is provided with the topology of simple convergence, and is compact for it, given a subset Σ in $Mult(A, \|.\|)$, one can try to compare the properties:

" Σ is dense in $Mult(A, \|.\|)$ ", and

" $||x||_{si} = \sup\{\varphi(x) \mid \varphi \in \Sigma\}$ for every $x \in A$ ".

In fact, in the general case, this seems far from easy, due to the various forms of the neighborhoods of any point, with respect to the topology of simple convergence. So we define a notion of pseudo-density.

Notation: Given $\psi \in Mult(A, \|.\|), f \in A, \epsilon > 0$, we denote by $V(\psi, f, \epsilon)$ the set of the $\varphi \in Mult(A, \|.\|)$ such that $|\varphi(f) - \psi(f)| \leq \epsilon$.

Remark: So, we have a basis of neighborhoods of any $\psi \in Mult(A, \|.\|)$ by taking the sets of the form $\bigcap_{j=1}^{q} V(\psi, f_j, \epsilon_j), q \in \mathbb{N}^*$.

Definition: A subset Σ of $Mult(A, \|.\|)$ will be said to be *pseudo-dense in* $Mult(A, \|.\|)$ if for every $\psi \in Mult(A, \|.\|)$, for every $f \in A$, for every $\epsilon > 0$, we have $V(\psi, f, \epsilon) \cap \Sigma \neq \emptyset$.

Remark: By definition, if Σ is dense in $Mult(A, \|.\|)$, it is pseudo-dense in $Mult(A, \|.\|)$. The converse seems unlikely, though we don't know any counter examples.

Theorem 5: Let A be a commutative K-Banach algebra with identity, and let Σ be a subset of $Mult(A, \|.\|)$ that contains $Mult_m(A, \|.\|)$. Then Σ is pseudo-dense in $Mult(A, \|.\|)$ if and only if it satisfies $\|x\|_{si} = \sup\{\varphi(x)|\varphi \in \Sigma\}$ for every $x \in A$.

Corollary c: Let A be a commutative K-Banach algebra with identity. Then A satisfies Property (s) if and only if $Mult_m(A, \|.\|)$ is pseudo-dense in $Mult(A, \|.\|)$.

Corollary d: Let A be a commutative K-Banach algebra with identity whose Banach algebra norm is $\|.\|_{si}$. Then $Mult_m(A, \|.\|_{si})$ is pseudo-dense in $Mult(A, \|.\|_{si})$.

2 Proofs of the theorems

Definitions and notations: Let *D* be set in *K*. An annulus $\Gamma(a, r, l)$ is called an *empty annulus of D* if it satisfies $\Gamma(a, r, l) \cap D = \emptyset$, $r = \sup\{|\lambda| \mid \lambda \in D \cap d(a, r)\}$, and $l = \inf\{|\lambda| \mid \lambda \in D \setminus d(a, l^{-})\}$.

Circular filters are defined in [1], [3], [4]. A circular filter is said to be *large* if its diameter is different from zero. Large circular filters are known to characterize the absolute values on K(x) in this way:

For each large circular filter \mathcal{F} on K, for each $h \in K(x)$, |h(x)| admits a limit along \mathcal{F} denoted by $\varphi_{\mathcal{F}}(h)$, and then, $\varphi_{\mathcal{F}}$ defines an absolute value on K(x), extending this of K, i.e. a multiplicative norm of K(x) [1], [3], [4]. Then, the mapping that associates a multiplicative norm of K(x) to a large circular filter \mathcal{F} on K, in this way, is a bijection from the set of large circular filter \mathcal{F} on K.

Given such a multiplicative norm ψ of K(x), we will denote by \mathcal{G}_{ψ} the large circular filter that defines ψ . Then, each multiplicative semi-norm ψ of R(D),

either it is a norm, and then it has continuation to K(x), and is defined by a large circular filter on K that we will denote again by \mathcal{G}_{ψ} ,

or it is not a norm, and then, there exists $a \in D$ such that $\psi(h) = |h(a)|$ for every $h \in R(D)$ [1], [3], [4] and we will denote by \mathcal{G}_{ψ} the filter of neighborhoods of the point a.

Given $a \in K$ and r > 0, we call a classic partition of d(a, r) a partition of the form $\left(d(b_j, r_j^-)\right)_{i \in I}$. The disks $d(b_j, r_j^-)$ are called the holes of the partition.

Let $\mathcal{P} = \left(d(b_j, r_j^-)\right)_{j \in I}$ be a classic partition of d(a, r). An annulus $\Gamma(b, r', r'')$ included in d(a, r) will be said to be \mathcal{P} -minorated if there exists $\delta > 0$ such that $r_j \geq \delta$ for every $j \in I$ such that $d(b_j, r_j^-) \subset \Gamma(b, r', r'')$.

Given a closed bounded set E in K, we denote by \tilde{E} the smallest disk of the form $d(\alpha, \rho)$ that contains E (i.e. ρ is the diameter of E, and α may be taken in E). Besides, $\tilde{E} \setminus E$ admits a unique partition of the form $(d(\alpha_j, \rho_j^-))_{j \in J}$, such that for each $j \in J$, ρ_j is the distance from α_j to E. Then each disk $d(\alpha_j, \rho_j^-)$ is called a hole of E. A closed infraconnected set E included in d(a, r), will be said to be a \mathcal{P} -set if $\tilde{E} = d(a, r)$, and if every hole of E is a hole of \mathcal{P} .

For each $j \in I$, we denote by \mathcal{F}_j the circular filter of center b_j and diameter r_j , and for every $h \in K(x)$ we put $||h||_{\mathcal{P}} = \sup_{j \in I} \varphi_{\mathcal{F}_j}(h)$. Then, by [8] we know that $||.||_{\mathcal{P}}$ is a semi-multiplicative norm of K-algebra on K(x).

Next, $H(\mathcal{P})$ will denote the completion of K(x) for this norm. Hence $H(\mathcal{P})$ is a K-Banach algebra provided with a semi-multiplicative norm.

Let F be an algebraically closed field, let A be a F-algebra, let $t \in A$, and let \mathcal{I} be the ideal of the $G(X) \in F[X]$ such that G(t) = 0. If $\mathcal{I} = \{0\}$, we call 0 the minimal polynomial of t. If $\mathcal{I} \neq \{0\}$, we call minimal polynomial of t the unique monic polynomial that generates \mathcal{I} . Lemma 1 is given in [8]:

Lemma 1: Let \mathcal{P} be a classic partition of a disk d(a,r), and let E be a \mathcal{P} -set. Then we have $||h||_E = ||h||_{\mathcal{P}}$ for every $h \in R(E)$.

Corollary: Let \mathcal{P} be a classic partition of a disk d(a, r), and let E be a \mathcal{P} -set. Then H(E) is isometrically isomorphic to a K-subalgebra of $H(\mathcal{P})$.

Henceforth, given a classic partition \mathcal{P} of a disk d(a, r), and a \mathcal{P} -set E, we will consider H(E) as a K-subalgebra of $H(\mathcal{P})$.

Lemma 2: Let A be a K-algebra with identity and let $t \in A$. There exists a homomorphism Θ from R(s(t)) into A such that $\Theta(P) = P(t)$ for all $P \in K[x]$. Moreover, Θ is injective if and only if t has a null minimal polynomial. Besides, for every $h \in R(s(t))$, we have s(h(t)) = h(s(t)).

Proof: Let D = s(t). We may obviously define Θ from K[x] to A as $\Theta(P) = P(t)$. Now let $Q \in K[x]$ have its zeros in $K \setminus D$. Then Q(t) is invertible in A, so we may extend to R(D) the definition of Θ , as $\Theta(\frac{P}{Q}) = P(t) Q(t)^{-1}$, for all rational function $\frac{P}{Q} \in R(D)$ (with (P,Q) = 1). Next, $Ker(\Theta)$ is an ideal of R(D) which is obviously generated by a polynomial G. Then G = 0 if and only if t has a null minimal polynomial.

Now, let $h = \frac{P}{Q} \in R(s(t))$, (with (P,Q) = 1). Let $\lambda \in s(t)$), and let χ be a homomorphism from A onto a field extension of K such that $\chi(t) = \lambda$. It is easily seen that $h(s(t)) \subset s(h(t))$, because $\chi(h(t)) = h(\lambda)$. Now, let $\mu \in s(h(t))$, let τ a homomorphism from A onto a field extension of K such that $\tau(h(t)) = \mu$, and let $\sigma = \tau(t)$. Then, we have $\tau(P(t)) - \mu\tau(Q(t)) = 0$, hence σ is a zero of the polynomial $P(X) - \sigma Q(X)$, and therefore, σ lies in K (because K is algebraically closed). But then, as $t - \sigma$ belongs to the kernel of τ , σ does lie in s(t). Hence we have s(h(t)) = h(s(t)).

Remark: When the homomorphism Θ in Lemma 2 is injective, the K-subalgebra $B = \Theta(R(D))$ is isomorphic to R(D), and in fact is the full subalgebra generated by t in A. So, in such a case, we may consider R(D) as a K-subalgebra of A.

By results of [1], [4], also given in [3], we have Lemma 3.

Lemma 3: Let A be a commutative K-Banach algebra with identity and let $t \in A$ have a null minimal polynomial. Let $a \in K$, let $\psi \in Mult(A, ||.||)$, let $\tilde{\psi}$ be the restriction of ψ to R(s(t)), and let $r = \psi(t-a)$. Then $\mathcal{G}_{\tilde{\psi}}$ is secant with C(a, r).

Proposition A: Let A be a commutative K-Banach algebra with identity. Let $t \in A$ be such that the mapping Θ from K[x] into A defined as $\Theta(P) = P(t)$ is injective. Let $a \in K \setminus s(t)$, and let $r = \|(t-a)^{-1}\|_{si}^{-1}$. There exists $\theta \in Mult(A, \|.\|)$ whose restriction to R(s(t)) has a circular filter secant with C(a, r).

Proof: We consider R(s(t)) as a K-subalgebra of A. For all $\phi \in Mult(A, \|.\|)$ we denote by $\tilde{\phi}$ the restriction of ϕ to R(s(t)). Let $\psi \in Mult(A, \|.\|)$. If $\mathcal{G}_{\tilde{\psi}}$ is secant with a disk $d(a, \rho)$ for some $\rho \in]0, r[$, then clearly we have $\psi(t-a) \leq \rho$ hence $\psi((t-a)^{-1}) > \frac{1}{r}$ and therefore $\|(t-a)^{-1}\|_{si} > \frac{1}{r}$ which contradicts the hypothesis. So $\mathcal{G}_{\tilde{\psi}}$ is secant with $K \setminus d(a, r^{-})$.

Suppose that there exists $\rho > r$ such that, for every $\phi \in Mult(A, \|.\|)$, \mathcal{G}_{ϕ} is not secant with $d(a, \rho)$. Clearly we have $\phi(t - a) \geq \rho$ for all $\phi \in Mult(A, \|.\|)$ and therefore $\|(t - a)^{-1}\|_{si} < \frac{1}{r}$. As a consequence, for each $n \in \mathbb{N}^*$ we can find $\psi_n \in Mult(A, \|.\|)$ such that $\mathcal{G}_{\widetilde{\psi}_n}$ is secant with $d(a, r + \frac{1}{n})$, and since it is also secant with $K \setminus d(a, r^-)$, finally, it is secant with $\Gamma(a, r, r + \frac{1}{n})$. Since $Mult(A, \|.\|)$ is compact [6], we can extract from the sequence $(\psi_n)_{n \in \mathbb{N}}$ a subsequence $(\psi_{n_q})_{q \in \mathbb{N}}$ which converges in $Mult(A, \|.\|)$. So, without loss of generality, we may directly assume that the sequence is convergent. Let θ be its limit. For each $n \in \mathbb{N}^*$, $\mathcal{G}_{\widetilde{\psi}_n}$ is secant with a circle $C(a, r_n)$ with $r \leq r_n \leq r + \frac{1}{n}$. But putting $s_n = \widetilde{\psi}_n(t - a)$, by lemma 3, it is secant with $C(a, s_n)$. Suppose $s_n \neq r_n$. Clearly $\mathcal{G}_{\widetilde{\psi}_n}$ may not be secant with both $C(a, r_n)$ and $C(a, s_n)$. Hence we have $\tilde{\psi}_n(t-a) = r_n$. Since $\lim_{n \to \infty} r_n = r$, we have $\tilde{\theta}(t-a) = r$, hence by Lemma 3, $\mathcal{G}_{\tilde{\theta}}$ is secant with C(a, r). This completes the proof.

Notations and definitions: Let A be a K- normed algebra, and suppose that an element $x \in A$ has a null minimimal polynomial and is such that s(x) admits an empty annulus $\Gamma(a, r, l)$. Such an empty annulus is said to be *x*-cleaved if for every $r', r'' \in]r, l[$, with r' < r'', there exists $\psi \in Mult(A, \| \cdot \|)$, such that the circular filter of the restriction of ψ to R(s(x)) is secant with $\Gamma(a, r', r'')$.

Let A be a commutative K-Banach algebra with identity. Let $t \in A$ be such that the mapping Θ from K[x] into A defined as $\Theta(P) = P(t)$ is injective. Let $a \in s(t)$, and let $r = ||(t-a)||_{si}$. For each $b \in d(a, r) \setminus s(t)$ we put $r_b = \frac{1}{||\frac{1}{x-b}||}$, $\Lambda_b = d(b, r_b^-)$. By Lemma 3.1 of [2], we know that if $c \in \Lambda_b$, then $\Lambda_c = \Lambda_b$. For every $b \in d(a, r) \setminus s(t)$,

we denote by ψ_b the element of Mult(R(D)) whose circular filter has center b and diameter r_b , so ψ_b satisfies $\psi_b(h) = \lim_{|x-b| \to r_b, |x-b| \neq r_b} |h(x)| \ \forall h \in R(D).$

For every $h \in R(D)$, we put $||h||_t = \max(||h||_D, \sup\{\psi_b(h)| b \in d(a, r) \setminus s(t)\})$.

As the Λ_b form a partition of $d(a, r) \setminus s(t)$, by [8], and Proposition 3.3 of [2], we have Proposition B:

Proposition B: Let A be a commutative K-Banach algebra with identity. Let $t \in A$ be such that the mapping Θ from K[x] into A defined as $\Theta(P) = P(t)$ is injective. Let $a \in K$, and let $r = ||(t-a)||_{si}$. Then $|| \cdot ||_t$ defines on R(s(t)) a semi-multiplicative norm satisfying $||h||_t \ge ||h(t)||_{si}$ for every $h \in R(s(t))$.

Proposition C: Let \mathcal{P} be a classic partition of a disk d(a, r), let $\Gamma(b, r', r'')$ be a \mathcal{P} -minorated annulus included in d(a, r), let $l \in]r', r''[$. There exist a \mathcal{P} -set Econtaining $d(b, r'^-) \cup K \setminus d(b, r''^-)$ together with elements $f, g \in H(E)$ such that |f(x)| = 1 for all $x \in K \setminus d(b, r'^-)$ and f(x) = 0 for all $x \in d(b, l) \cap E$, and g(x) = 0for all $x \in E \setminus d(b, l)$, and |g(x)| = 1 for all $x \in d(b, r')$.

Proof: Let $(r_n)_{n\in\mathbb{N}}$, $(s_n)_{n\in\mathbb{N}}$ be sequences in |K| satisfying $r'' > r_n > r_{n+1} > l$, for all $n \in \mathbb{N}$, $r' < s_n < s_{n+1} < l$, $\lim_{n\to\infty} r_n = \lim_{n\to\infty} s_n = l$ and (1) $\prod_{n=0}^{\infty} \frac{l}{r_n} = \prod_{n=0}^{\infty} \frac{s_n}{l} = 0$. For each $n \in \mathbb{N}$, let $b_n \in C(b, r_n)$, $c_n \in C(b, s_n)$, let T_n , be a hole of \mathcal{P} that contains b_n , and let V_n be a hole of \mathcal{P} that contains c_n . Then we set $E = d(a, r) \setminus$ $\left(\left(\bigcup_{n=0}^{\infty} T_n\right) \cup \left(\bigcup_{n=0}^{\infty} V_n\right)\right)$. Since $\Gamma(b, r', r'')$ is \mathcal{P} -minorated, there exists $\rho > 0$ such that $diam(T_n) \ge \rho$ and $diam(V_n) \ge \rho$ for all $n \in \mathbb{N}$. Therefore, thanks to (1) and Proposition 36.6 in [3], the sequence $(T_n, 1)_{n\in\mathbb{N}}$ is a decreasing idempotent Tsequence of E, of center b and diameter l, and the sequence $(V_n, 1)_{n\in\mathbb{N}}$ is an increasing idempotent T-sequence of E, of center b and diameter l. Hence by Proposition 45.3 in [3], there exists $f \in H(E)$, strictly vanishing along the decreasing T-filter of center b and diameter l, satisfying further |f(x)| = 1 for all $x \in D \setminus d(b, r''^-)$, and f(x) = 0 for all $x \in d(b, l)$. In the same way, exists $g \in H(E)$, strictly vanishing along the increasing T-filter of center b and diameter l, satisfying further |g(x)| = 1for all $x \in d(b, r''^-)$, and q(x) = 0 for all $x \in D \setminus d(b, l^-)$. Proof of Theorem 1: Suppose that there exists $t \in A$ such that $||t||_m < ||t||_{si}$, (resp. such that $\sup\{|x| \mid x \in s(t)\} < ||t||_{si}$).

By Lemma 2 there exists a K-algebra homomorphism Θ from R(D) into A such that $\Theta(P) = P(t)$ for all $P \in K[x]$. Let $B = \Theta(R(D))$.

First we suppose that $Ker(\Theta) \neq \{0\}$, and therefore is an ideal of R(D) generated by a monic polynomial $G(x) = \prod_{i=1}^{q} (x - a_i)$. Since G(t) = 0, for every $\psi \in Mult(A, \|.\|)$ we have $\psi(G(t)) = 0$, hence there exists $l(\psi) \in \{1, \ldots, q\}$ such that $\psi(t - a_{l(\psi)}) = 0$, hence $\psi(t) = |a_{l(\psi)}|$. Then $t - a_{l(\psi)}$ lies in $Ker(\psi)$ and therefore belongs to a maximal ideal \mathcal{M} of A. But there exists $\theta_{\psi} \in Mult_m(A, \|.\|)$ such that $Ker(\theta_{\psi}) = \mathcal{M}$ (Theorem 1.16 of [3]). Hence we have $\theta_{\psi}(t) = |a_{l(\psi)}| = \psi(t)$. Thus we have shown that $\psi(t) \leq \|t\|_m$. But this is true for all $\psi \in Mult(A, \|.\|)$. So, as the norm $\|.\|$ of A is $\|.\|_{si}$, we have $\|t\| \leq \|t\|_m$ and therefore $\|t\| = \|t\|_m$. Besides, we notice that $Ker(\Theta)$ admits a generator $G(x) \in K[x]$ whose zeros lie in s(t). If deg(G) = 1, then t lies in K (considered as a K-subalgebra of A), and obviously we have $\psi(t) = |t| \ \forall \psi \in Mult(A, \|.\|)$, and therefore, this contradicts the hypothesis that there exists $t \in A$ such that $\sup\{|x| \mid x \in s(t)\} < \|t\|_{si}$. Next, if deg(G) > 1, then $Ker(\Theta)$ is not prime, hence A contains divisors of zero, so this case does not concern the second statement.

Now we suppose $Ker(\Theta) = \{0\}$. Hence *B* is isomorphic to R(D). Furthermore, by Proposition B, once R(D) is provided with the norm $\| \cdot \|_t$, Θ is continuous. Therefore, denoting by $H(s(t), \| \cdot \|_t)$ the completion of R(D) with respect to $\| \cdot \|_t$, Θ has continuation to a continuous homomorphism Θ' from $H(s(t), \| \cdot \|_t)$ into the closure \overline{B} of *B* in *A*. For each $\psi \in Mult(A, \| \cdot \|)$ we denote by $\tilde{\psi}$ the restriction of ψ to *B*, and by \mathcal{G}_{ψ} the circular filter of $\tilde{\psi}$. We put $r = \|t\|_{si}$ and $r'' = \sup\{|x| \mid x \in s(t)\}$, and let $r' = \|t\|_m$. We will suppose r' < r, (resp. r'' < r).

Let W = d(0, r), and let $s' \in]r', r[$, (resp. and let $s'' \in]r', r[$). Let W' = d(0, s')(resp. let W'' = d(0, s'')). And for each $\alpha \in W \setminus W'$ (resp. $\alpha \in W \setminus W''$) we put $r_{\alpha} = \frac{1}{\|\frac{1}{x} - \alpha\|}$, and $\Lambda_{\alpha} = d(\alpha, r_{\alpha}^{-})$. So, $(\Lambda_{\alpha})_{\alpha \in W \setminus W'}$ (resp. $(\Lambda_{\alpha})_{\alpha \in W \setminus W''}$ is a partition \mathcal{T}' (resp. \mathcal{T}'') of $W \setminus W'$ (resp. $W \setminus W''$).

Let $a \in s(t)$. In particular, the annulus $\Gamma(a, s', r)$, (resp. $\Gamma(a, s'', r)$) admits a partition by a subfamily S of \mathcal{T}' (resp. of \mathcal{T}''). Hence by [8], $\Gamma(a, s', r)$, (resp. $\Gamma(a, s'', r)$) contains a \mathcal{P} -minorated annulus $\Gamma(b, \rho, \sigma)$. Of course, we may choose σ as close as we want to ρ . Then, if $|a - b| > \rho$, we take $\sigma \in]\rho, |a - b|$ [. Next, we take $\lambda \in]\rho, \sigma[$. Clearly b does not lie in s(t), hence we may apply Proposition A to b and to the circle $C(b, r_b)$. So, there exists $\varphi_1 \in Mult(A, \| \cdot \|)$ such that \mathcal{G}_{φ_1} is secant with $C(b, r_b)$. In fact, by definition, we have $r_b \leq \rho$, hence $C(b, r_b)$ is included in $d(b, \rho)$, hence \mathcal{G}_{φ_1} is secant with $d(b, \rho)$. On the other hand, there certainly exists $\varphi_2 \in Mult(A, \| \cdot \|)$ such that \mathcal{G}_{φ_2} is secant with C(a, r). Then by Proposition C there exists a \mathcal{P} -set E containing $(K \setminus d(b, \sigma)) \cup d(b, \rho)$, together with elements $f, g \in H(E)$ satisfying:

|f(x)| = 1 for all $x \in K \setminus d(b, \sigma)$, f(x) = 0 for all $x \in d(b, \lambda)$, and

|g(x)| = 1 for all $x \in d(b, \rho)$, |g(x)| = 0 for all $x \in K \setminus d(b, \lambda)$.

We put $\overline{f} = \Theta'(f)$, and $\overline{g} = \Theta'(g)$. Hence, in H(E) we have fg = 0, and therefore $\overline{fg} = 0$. But since $\varphi_1(\overline{f})\varphi_2(\overline{g}) \neq 0$, \overline{f} , \overline{g} are divizors of zero in A. Thus, if A has no divizors of zero, then we have r'' = r.

Now, suppose r' < r.

We first assume $|a-b| \leq \rho$, hence d(a, r') is included in $K \setminus d(b, \lambda)$. It is seen that for every $\phi \in Mult_m(A, \|.\|)$, we have $\phi(g) = 1$, because $\phi(t-a) \leq r'$ and therefore, gis invertible in A. But, as we saw, \mathcal{G}_{φ_2} is secant with C(a, r), and then, $\varphi_2(\overline{g}) = 0$, which contradicts the property \overline{g} invertible.

Finally, we assume $|a - b| > \rho$. Then we have $d(a, r') \subset K \setminus d(b, \lambda)$, and therefore, \overline{f} satisfies $\psi(\overline{f}) = 1$ for all $\psi \in Mult_m(A, \|.\|)$, and $\psi(\overline{f}) = 0$ for all ψ such that \mathcal{G}_{ψ} is secant with $d(b, \lambda)$. So, \overline{f} is invertible. But we have seen that the set of $\psi \in Mult(A, \|.\|)$ such that \mathcal{G}_{ψ} is secant with $d(b, \lambda)$ is not empty, and therefore, such a ψ satisfies $\psi(\overline{f}) = 0$, which contradicts the property \overline{f} invertible. This ends the proof of Theorem 1.

Notation: Let $h \in K(x)$. For every large circular filter on K, we put $\varphi_{\mathcal{F}}(h) = \lim_{\mathcal{F}} |h(x)|$. In particular, for each r > 0, we denote by \mathcal{F}_r the circular filter of center 0, and diameter r, and we put $|h|(r) = \varphi_{\mathcal{F}_r}(h) = \lim_{|x| \to r, |x| \neq r} |h(x)|$.

Proof of Theorem 2: Let $l \in]0, 1[$, let $D = d(0, l^-)$ and let \mathcal{P} be the partition of d(0, 1) that consists of the disks $d(a, |a|^-)$ for $a \in d(0, 1)$ and $l \leq |a| \leq 1$. By definition of circular filters, it is easily seen that, for every $h \in R(D)$, we have $\|h\|_{\mathcal{P}} = \sup\{|h|(r), |l \leq r \leq 1\}$. Let A be the completion of R(D) for the norm $\| \cdot \|_{\mathcal{P}}$. By construction, A is complete for its norm $\| \cdot \|_{si}$ and is isometrically isomorphic to a K-subalgebra of $H(\mathcal{P})$. Given any \mathcal{P} -set E containing D, it is seen that H(E) is isometrically isomorphic to a K-subalgebra of A. More, and by definition, the identical mapping from the normed K-algebra $(R(D), \| \cdot \|_{\mathcal{D}})$ onto the normed K-algebra of H(D). Each element of $Mult(R(D)), \| \cdot \|_D)$ has continuation to an element of $Mult(H(D), \| \cdot \|_D)$, and is of the form $\varphi_{\mathcal{F}}$, with \mathcal{F} a circular filter on K secant with D [3]. In particular such a $\varphi_{\mathcal{F}}$ has continuation to A, and belongs to $Mult(A, \| \cdot \|)$.

Now, we consider a circular filter \mathcal{G} on K that is not secant with D. First, we will show that \mathcal{G} is secant with a unique circle C(0, r). Indeed, suppose it is not secant with any circle C(0, r). There exists a sequence $(a_n)_{n \in \mathbb{N}}$ in K, thinner than \mathcal{G} , such that $|a_{n+1} - a_n|$ is a strictly decreasing sequence, of limit r. Let $|a_n| = r_n$. Since the sequence $|a_{n+1} - a_n|$ is a strictly decreasing, it is easily seen that for n great enough, the sequence r_n is decreasing. If $r_n = r_{n+1}$, clearly we have $|a_n - a_{n+1}| = r_n$, hence $|a_{m+1} - a_m| < r_n$ for every m > n, and therefore a_m belongs to $C(0, r_n)$ for every m > n, hence \mathcal{G} is secant with $C(0, r_n)$.

Else, the sequence $(r_n)_{n \in \mathbb{N}}$ is strictly decreasing, (for *n* big enough, of limit $r \geq \ell$), and finally, \mathcal{G} is the circular filter of center 0 and diameter *r*. So, we have proven that, anyway, \mathcal{G} is secant with a circle C(0, r). Then such a circle is unique, because a circular filter cannot be secant with two different circles of same center.

Now, we will show that $\varphi_{\mathcal{G}}$ belongs to $Mult(R(D), \| . \|)$ if and only if \mathcal{G} is of the form \mathcal{F}_{ρ} , with $\ell < \rho \leq 1$. Indeed, let \mathcal{G} be secant with C(0, r). If r > 1, it is seen that a non constant polynomial P having no zero in C(0, r) satisfies $\lim_{\mathcal{F}} |P(x)| = |P|(r) > \|P\|$, hence $\varphi_{\mathcal{G}}$ does not belong to $Mult(A, \| . \|)$. So, we have $\ell < r \leq 1$. Besides, if \mathcal{G} is not of the form \mathcal{F}_r , then it is secant with a disk d(b,s), included in C(0,r), with s < r, and then, putting $g(x) = \frac{1}{x-b}$, it is seen that $\varphi_{\mathcal{G}}(g) \geq \frac{1}{s} > \frac{1}{r} = ||g||$, so $\varphi_{\mathcal{G}}$ does not belong to Mult(A, || . ||). Finally, we see that the only elements Mult(A, || . ||) are the $\varphi_{\mathcal{F}}$ when \mathcal{F} is either a circular filter secant with D or a large circular filter of the form \mathcal{F}_r , with $\ell < r \leq 1$.

For every $a \in D$, we denote by \mathcal{M}_a the set of $f \in A$ such that f(a) = 0. It is obviously seen that the maximal ideals of codimension 1 of A are the \mathcal{M}_a , with $a \in D$. For all $a \in D$, we denote by φ_a the element of $Mult_m(A, \| \cdot \|)$ defined as $\varphi_a(f) = |f(a)|$.

Now, we will show that for each $r \in [\ell, 1]$, the ideal $\mathcal{J} = Ker(\varphi_{\mathcal{F}_r})$ is a maximal ideal of infinite codimension of A. By Proposition C, there exists a \mathcal{P} -set Econtaining D, and $f \in H(E)$ such that $\varphi_{\mathcal{F}_r}(f) = 0$, and

(1)
$$|f(x)| = 1$$
 for all $x \in D$.

Now, by (1) \mathcal{J} is included in a maximal ideal \mathcal{M} different from \mathcal{M}_a , whenever $a \in D$. Hence \mathcal{M} has infinite codimension. Further, it is the kernel of a certain $\psi \in Mult_m(A, \| . \|)$. Let \mathcal{G} be the circular filter such that $\psi = \varphi_{\mathcal{G}}$. Then, by (1) \mathcal{G} is not secant with D, and therefore is of the form \mathcal{F}_t , with $t \in]\ell, 1]$. Suppose t < r, (resp. t > r). By Proposition C, there exists a \mathcal{P} -set F containing d(0,t), (resp. $D \cup K \setminus d(0,t^-)$), and $f \in H(F)$ such that $\varphi_{\mathcal{F}_r}(f) = 0$, and |f(x)| = 1 for all $x \in F \cap (K \setminus d(0,t^-))$, (resp. for all $x \in d(0,t)$), hence in particular |f|(t) = 1, which contradicts the hypothesis $f \in \mathcal{M}$. So, we have t = r, and therefore $\mathcal{J} = \mathcal{M}$.

Now, it is clearly seen that $Mult_m(A, \| . \|)$ is dense in $Mult(A, \| . \|)$, because the only elements of $Mult(A, \| . \|) \setminus Mult_m(A, \| . \|)$ are the $\varphi_{\mathcal{F}}$, with \mathcal{F} a large circular filter on K secant with D. And such a $\varphi_{\mathcal{F}}$ is known to be the limit of a sequence φ_{a_n} , with $(a_n)_{n \in \mathbb{N}}$ a sequence thinner than \mathcal{F} ([3], Lemma 12.2). As a consequence, A satisfies Property (s).

Finally we shortly check that A does not satisfies Property (q) because for every $\lambda \in s(x)$, we have $|\lambda| < \ell$, whereas $||x||_m = |x|(1) = 1$.

In the proof of Theorem 3, we will need this basic lemma:

Lemma 4: Let F be an algebraically closed field, and let $P \in F[X]$ be a polynomial of degree strictly greater than 1. Let $B = \frac{F[X]}{P(X)F[X]}$, let θ be the canonical homomorphism from F[x] onto B, and let $x = \theta(X)$. If the spectrum of x is not reduced to a singleton, then B admits non trivial idempotents.

Proof: Let $P(X) = \prod_{j=1}^{q} (X - a_j)^{n_j}$, (with $a_i \neq a_j \ \forall i \neq j$). It is known that B admits non trivial idempotents if and only if q > 1. But on the other hand, the spectrum of x is clearly equal to $\{a_1, \dots, a_q\}$, so the conclusion follows.

Proof of Theorem 3: Obviously, if A admits an idempotent u different from 0 and 1, we have $s(u) = \{0, 1\}$ which is not infraconnected. Now, we suppose that A admits no non trivial idempotent, and that there exists $x \in A$ such that s(x)is not infraconnected, and we consider an annulus $\Gamma(a, r, l)$ which is an empty annulus of s(x). Let Θ be the canonical homomorphism from R(s(x)) into A, and let $B = \Theta(R(s(x)))$. Let P be the minimal polynomial of x. Then, B is isomorphic to $\frac{K[X]}{P(X)K[X]}$. Since A has no non trivial idempotents, neither has B. Hence by Lemma 4, if $P \neq 0$, s(x) is reduced to one point, which is a contradiction with s(x) not infraconnected. So, we may assume that the minimal polynomial of x is null. Let $b \in \Gamma(a, r, l)$, and let $t = \frac{x}{(x-b)^2}$. In K(X), we put $h(X) = \frac{X}{(X-b)^2}$. Let $\sigma = \sup\{|x| \mid x \in s(t)\}$, and let $\beta = |a - b|$. By Lemma 2 we know that s(t) = h(s(x)). Hence it is easily seen that we have

(1) $\sigma \leq \max(\frac{r}{\beta^2}, \frac{1}{s})$. Now, since *a* has no non trivial idempotent, by Theorem 5.10 of [2], the empty annulus Λ is not *x*-cleaved, then for every $\epsilon > 0$, there exists $\varphi_{\epsilon} \in Mult(A, \| . \|)$ such that the circular filter of the restriction of φ to R(s(x)) is secant with $\Gamma(a, \beta, \beta + \epsilon)$. As a consequence, we have $\varphi_{\epsilon}(t) \geq \frac{1}{\beta + \epsilon}$. Now, we can choose ϵ such that $\frac{1}{\beta + \epsilon} > \max(\frac{r}{\beta^2}, \frac{1}{l})$. As a consequence, we have $\|t\|_{si} \geq \max(\frac{r}{\beta^2}, \frac{1}{l})$, and then by (1), this is a contradiction of Property (q).

Proof of Theorem 4: As in Proof of Theorem 2, we take $l \in]0, 1[$ and denote by \mathcal{P} be the partition of d(0,1) that consists of the disks $d(\alpha, |\alpha|^{-})$ for $\alpha \in d(0,1)$ and $l \leq |\alpha| \leq 1$. Let $a \in C(0,1)$ and let $D = d(0,l^{-}) \cup d(a,1^{-})$. It is clear that for every $h \in R(D)$, we have $||h||_{\mathcal{P}} = \sup\{|h|(r), l \leq r \leq 1\}$. Let A be the completion of R(D) for the norm $|| \cdot ||_{\mathcal{P}}$. By construction, A is complete for its norm $|| \cdot ||_{si}$. Now, denoting by x the identical mapping on D, s(x) is equal to D, and therefore is not infraconnected. Now, suppose that A has a non trivial idempotent u. Since $||h||_{\mathcal{P}} \geq ||h||_{D}$ for all $h \in R(D)$, A is clearly isomorphic to a subalgebra of H(D). As a consequence, as a function in D, u is a constant equal to 0 or 1 in each set $d(0, l^{-})$, and $d(a, 1^{-})$. Without loss of generality, we may clearly assume that $u(\zeta) = 0 \ \forall \zeta \in d(0, l^{-})$ (because else, we consider 1 - u instead of u).

For every $r \in [l, 1[$, we denote by \mathcal{F}_r the circular filter of center 0, and diameter r, and we put $g(r) = \varphi_{\mathcal{F}_r}(u)$. Then g is known to be a continuous function of r that satisfies $g(l) = \lim_{|\zeta| \to l, |\zeta| < l} |u(\zeta)|$, hence g(l) = 0, and of course, g(r) = 0 or 1 for all $r \in [l, 1]$. As a consequence, we have g(r) = 0 for all $r \in [l, 1]$. So, $||u||_{\mathcal{P}} = 0$, and therefore u = 0. This proves that A only has trivial idempotents. Finally, the fact that A does not satisfy Property (q) is an obvious consequence of Theorem 3, but may also be directly cheked, just by considering any $b \in \Gamma(0, r, 1)$, and $t = \frac{x}{(x-b)^2}$ and this ends the proof.

Proof of Theorem 5: On one hand, it is obviously seen that if for every $\psi \in Mult(A, \|.\|), f \in A$, and $\epsilon > 0$, we have $V(\psi, f, \epsilon) \cap \Sigma \neq \emptyset$ then, for all $x \in A$, we have $\sup\{\varphi(x) | \varphi \in \Sigma\} = \sup\{\varphi(x) | \varphi \in Mult(A, \|.\|)\}$ and therefore $\|x\|_{\Sigma} = \|x\|_{si}$.

On the other hand we suppose that $||x||_{\Sigma} = ||x||_{si}$ for all $x \in A$, and that there exists $\psi \in Mult(A, ||.||), t \in A$ and $\epsilon > 0$ such that $V(\psi, t, \epsilon) \cap \Sigma = \emptyset$. We put $\psi(t) = r$.

First, suppose r = 0. Since $\Sigma \supset Mult_m(A, \|.\|)$, 0 does not lie in s(t), hence t is invertible in A and satisfies $\psi(t)\psi(t^{-1}) = 1$, which contradicts $\psi(t) = 0$. So we

have r > 0. Now we can take $\delta \in]0, r[$ such that $|\varphi(t) - r| \ge \delta$ for every $\varphi \in S$. Since $Mult_m(A, \|.\|) \subset \Sigma$, it is seen that $s(t) \cap \Gamma(0, r - \delta, r + \delta) = \emptyset$. Let $\omega \in]0, \frac{\delta}{4}[$, and let $a, b \in K$ satisfy $r - \omega < |a| < r$ and $r + \delta - \omega < |b| < r + \delta$. Since a lies in $\Gamma(0, r - \delta, r + \delta), x - a$ is invertible in A. We put $u = \frac{t(t - b)}{(t - a)^2}$ and then we have $\psi(t - a) = \psi(t), \psi(t - b) = |b|$, hence we have $(1) \ \psi(u) = \frac{|b|}{r}$. First, we suppose $\varphi(t) \ge \psi(t) + \delta$. Then we have $\varphi(t - a) = \varphi(t - b) = \varphi(t)$, hence $\varphi(u) = 1$, and therefore $\psi(u) - \varphi(u) = \frac{|b|}{r} - 1 \ge \frac{r + \delta - \omega}{r} - 1 = \frac{\delta - \omega}{r}$. Since $\omega < \frac{\delta}{4}$, we obtain $\psi(u) - \varphi(u) \ge \frac{\delta}{2r}$. Now, we suppose $\varphi(t) \le \psi(t) - \delta$. Then we have $\varphi(t - a) = |a|, \varphi(t - b) = |b|$, hence $\varphi(u) = \frac{\varphi(t)|b|}{|a|^2}$, and then by (1) we have $\psi(u) - \varphi(u) = |b|(\frac{1}{r} - \frac{\varphi(t)}{|a|^2}) \ge |b|(\frac{1}{r} - \frac{r - \delta}{|a|^2}) \ge (r + \delta - \omega)(\frac{1}{r} - \frac{r - \delta}{(r - \omega)^2})$.

But since $\omega < \frac{\delta}{4}$, we obtain

$$(r+\delta-\omega)(\frac{1}{r}-\frac{r-\delta}{(r-\omega)^2}) \ge \frac{(r+\delta-\omega)(\delta-2\omega)}{r^2} \ge \frac{\delta-2\omega}{r} \ge \frac{\delta}{2r}$$

Thus we have proven that $\varphi(u) \leq \psi(u) - \frac{\delta}{2r}$ for every $\varphi \in \Sigma$, and therefore we have $||u||_{\Sigma} < ||u||_{si}$. This completes the proof of Theorem 5.

References

- [1] Escassut, A. Elements analytiques et filtres percés sur un ensemble infraconnexe, Ann. Mat. Pura Appl. t.110 p. 335-352 (1976).
- [2] Escassut, A. The ultrametric spectral theory, Periodica Mathematica Hungarica, Vol.11, (1), p7-60, (1980).
- [3] Escassut, A. Analytic Elements in p-adic analysis World Scientific Publishing, Singapore, (1995).
- [4] Garandel, G. Les semi-normes multiplicatives sur les algèbres d'élé ments analytiques au sens de Krasner, Indag. Math., 37, n4, p.327-341, (1975).
- [5] Guennebaud, B. Algèbres localement convexes sur les corps valués, Bull. Sci. Math. 91, p.75-96, (1967).
- [6] Guennebaud, B. Sur une notion de spectre pour les algèbres normées ultramétriques, thèse, Université de Poitiers, (1973).

- [7] Krasner, M. Prolongement analytique uniforme et multiforme dans les corps valués complets: éléments analytiques, préliminaires du théorème d'unicité. C.R.A.S. Paris, A 239, p.468-470, (1954).
- [8] Mainetti, N. Algebras of Abstract Analytic Elements. To appear in Lecture Notes in Pure and Applied Mathematics (Proceedings of the 4-th International Conference in p-adic Functional Analysis, Nijmegen, 1996).
- [9] Van Rooij, A.C.M. Non-Archimedean Functional Analysis, Marcel Dekker, inc. (1978).
- [10] Tate, J. Rigid Analytic Spaces. Inventiones mathematicae t.12, fasc.4, p 257-289, (1971).

Mathématiques Pures Université Blaise Pascal (Clermont-Ferrand) Complexe Scientifique des Cézeaux F. 63177 Aubière Cédex FRANCE e-mail: escassut@ucfma.univ-bpclermont.fr mainetti@ucfma.univ-bpclermont.fr