Adjoints, Multi-adjoints, Pluri-adjoints.

Alexandru Solian

T. M. Viswanathan

Abstract

Starting from a family of categories \mathcal{A}_{p}, where p ranges over a set P of indices, and functors $G_{p}: \mathcal{A}_{p} \longrightarrow \mathcal{X}, p \in P$, where \mathcal{X} is a category and each G_{p} has a left adjoint F_{p}, we construct a category \mathcal{A} and a functor $G: \mathcal{A} \longrightarrow \mathcal{X}$ that has a multi-adjoint in the sense of Y. Diers, and then a category $\overline{\mathcal{A}}$ and a functor $\bar{G}: \overline{\mathcal{A}} \longrightarrow \mathcal{X}$ that has a pluri-adjoint in the sense of the authors. These constructions show, at least in this instance, how the transition from adjoints to multi-adjoints to pluri-adjoints is performed. The problem of the existence and the characterization of a general class of pluri-adjoints arising in this manner invites further study.

1. Let P be a set, and let $\left(\mathcal{A}_{p}\right)_{p \in P}$ be a family of small categories. Let \mathcal{X} be a small category. Assume that, for each $p \in P$, there is given a functor $G_{p}: \mathcal{A}_{p} \longrightarrow \mathcal{X}$ that has a left adjoint $F_{p}: \mathcal{X} \longrightarrow \mathcal{A}_{p}, F_{p} \dashv G_{p}$. Let \mathcal{A} be the disjoint union of the categories $\mathcal{A}_{p}, p \in P$, that is, the coproduct in Cat (the category of small categories and functors between them) of the categories $\mathcal{A}_{p}, p \in P$. Recall that an object of \mathcal{A} is then a pair (A, p) with A an object of \mathcal{A}_{p} and $p \in P$. A morphism in \mathcal{A} between (A, p) and (B, q) is a morphism $A \longrightarrow B$ in \mathcal{A}_{p} if $p=q$ (otherwise there are no morphisms $(A, p) \longrightarrow(B, q))$. Thus,

$$
\mathcal{A}((A, p),(B, q))= \begin{cases}\mathcal{A}_{p}(A, B) & \text { if } p=q \\ \emptyset & \text { if } p \neq q\end{cases}
$$

Composition is clearly reduced to composition of morphisms in each \mathcal{A}_{p}. The identity of (A, p) in \mathcal{A} is id_{A} in \mathcal{A}_{p}. We shall abbreviate (A, p) to A when the context permits.

We shall define a functor

$$
G: \mathcal{A} \longrightarrow \mathcal{X}
$$

as the functor $\left[G_{p}\right]_{p \in P}$ arising from the functors $G_{p}, p \in P$, by the universal property of the coproduct. Explicitly, for $(A, p) \in \operatorname{Ob} \mathcal{A}$, we shall define $G(A, p)=G_{p}(A)$, and if $f:(A, p) \longrightarrow(B, p)$ is a morphism in \mathcal{A} (recall that the second components of the two objects must be equal for a morphism to exist), then, by definition, $G(f)=$ $G_{p}(f)$. The G thus defined is indeed a functor. For example, if $(A, p) \xrightarrow{f}(B, p) \xrightarrow{g}$ (C, p) are morphisms in \mathcal{A}, then $G(g \circ f)=G_{p}(g \circ f)=G_{p}(g) \circ G_{p}(f)=G(g) \circ G(f)$.

Proposition 1.1. The functor G defined above has a canonical left multi-adjoint, in the sense of Diers $[\mathbf{1 , 2}]$.

Proof. Let $X \in \operatorname{Ob\mathcal {X}}$. To construct a universal family of morphisms [cf. loc. cit.] from X to G, consider the family $\left(F_{p}(X)\right)_{p \in P}$ and the corresponding family $\left(F_{p}(X), p\right)_{p \in P}$ of objects of \mathcal{A}. For each p, let

$$
\eta^{p}(X): X \longrightarrow G_{p}\left(F_{p}(X)\right)=G\left(F_{p}(X), p\right)
$$

be the unit of the adjunction $F_{p} \dashv G_{p}$. To show that the family $\left(\eta^{p}(X)\right)_{p \in P}$ is universal (in the sense of the definition of the multi-adjoint), let $(A, p) \in \operatorname{Ob} \mathcal{A}$ and let

$$
f: X \longrightarrow G(A, p)=G_{p}(A)
$$

be a morphism in \mathcal{X}. Since $F_{p} \dashv G_{p}$, there is a unique morphism $g: F_{p}(X) \longrightarrow A$ in \mathcal{A}_{p} such that the composite

$$
X \xrightarrow{\eta^{p}(X)} G_{p}\left(F_{p}(X)\right) \xrightarrow{G_{p}(g)} G_{p}(A)
$$

is equal to f. In terms of \mathcal{A} and G, this means that the composite

$$
X \xrightarrow{\eta^{p}(X)} G\left(F_{p}(X), p\right) \xrightarrow{G(g)} G(A, p)
$$

is equal to f. But, of course, since (A, p) is given, p is unique and then, as shown, g is unique.
2. In order to go on with our construction, we need to make additional assumptions on the categories \mathcal{A}_{p} and \mathcal{X}. First, we shall assume that \mathcal{X} is a finitely complete category (that is, has all finite limits) and that it has a zero object (that is, the terminal object, which is the product of the empty family, is also initial), denoted 0 . As a consequence of this assumption, \mathcal{X} has a family of zero morphisms. That is, for each pair of objects X, Y of \mathcal{X}, there is the composite morphism $0_{X, Y}: X \longrightarrow 0 \longrightarrow$ Y, where the first, resp. second, arrow arises from the quality of 0 as a terminal,
resp. initial, object. We note that the composite of each such zero morphism with any morphism is also a zero morphism. In addition, we shall assume that each \mathcal{A}_{p}, $p \in P$, has a zero object 0_{p} and, of course, a class of zero morphisms. (In case any of these categories did not have a zero object, we can certainly add one.)

Now we are ready to construct a new category, denoted $\overline{\mathcal{A}}$. The objects of $\overline{\mathcal{A}}$ are finite sequences $A=\left(A_{p_{1}}, A_{p_{2}}, \ldots, A_{p_{n}}\right)$ of objects $A_{p_{i}}$ of $\mathcal{A}_{p_{i}}$, where the order of components does not really matter, but where it is assumed that components that lie on different spots come from different \mathcal{A}_{p} 's. Two such sequences, the above A and $B=\left(B_{q_{1}}, B_{q_{2}}, \ldots, B_{q_{m}}\right)$, will be considered equal and will be identified iff each one is obtained from the other one by adding or deleting zero objects from categories \mathcal{A}_{p}. If all components of such a sequence are zero objects, then that sequence will consequently be equal to the empty sequence, which will be a zero object of $\overline{\mathcal{A}}$ (this will become clear when we define the morphisms). If $A=\left(A_{p_{1}}, A_{p_{2}}, \ldots, A_{p_{n}}\right)$ and $B=\left(B_{p_{1}}, B_{p_{2}}, \ldots, B_{p_{n}}\right)$ are two objects (by the above identification of sequences, we can always assume that in A and B we have the same set of indices), the morphisms $A \longrightarrow B$ in $\overline{\mathcal{A}}$ will be all sequences $f=\left(f_{p_{1}}, f_{p_{2}}, \ldots, f_{p_{n}}\right)$, where $f_{p_{i}}: A_{p_{i}} \longrightarrow B_{p_{i}}$ in $\mathcal{A}_{p_{i}}, i=1,2, \ldots, n$. If in the above A one has $n=0$, then there is exactly one morphism from each object to A and exactly one from A to each object. Composition of morphisms will be performed componentwise, and the identity of an object will be the sequence of identities of the components in their respective categories. We note that \mathcal{A} is naturally a subcategory of $\overline{\mathcal{A}}$, namely, the one whose objects and morphisms have exactly one component.

Now, we shall define the functor

$$
\bar{G}: \overline{\mathcal{A}} \longrightarrow \mathcal{X} .
$$

First, let us remark that each G_{p} sends the zero object 0_{p} of \mathcal{A}_{p} to the zero object of \mathcal{X}. This follows from the fact that each $G_{p}, p \in P$, has a left adjoint and the zero object of each one of this categories is terminal. Then the effect of G on each zero object is the same as the effect of the corresponding G_{p} on it (cf. Section 1.), that is, the zero object of \mathcal{X}. Then, if $A=\left(A_{p_{1}}, A_{p_{2}}, \ldots, A_{p_{n}}\right)$ is any object of $\overline{\mathcal{A}}$, we define

$$
\begin{equation*}
\bar{G}(A)=\prod_{i=1}^{n} G\left(A_{p_{i}}\right) \tag{1}
\end{equation*}
$$

Up to isomorphism, the right hand side of (1) does not depend on the way the object A is represented. Since, if we add/delete zero components to/from the sequence A, this will add/delete zero factors to/from the product. But the zero object is terminal, and thus, for each $X \in \operatorname{Ob} \mathcal{X}$, we have $X \times 0 \simeq X$. In particular, $\bar{G}(0)=0$. For morphisms, the definition is similar. If $f=\left(f_{p_{1}}, f_{p_{2}}, \ldots, f_{p_{n}}\right)$ is a morphism of $\overline{\mathcal{A}}$, then, by definition,

$$
\bar{G}(f)=\prod_{i=1}^{n} G\left(f_{p_{i}}\right)
$$

and \bar{G} carries zero morphisms to the corresponding zero morphisms. It is easily checked that \bar{G} thus defined is indeed a functor. Moreover, for objects and morphisms from \mathcal{A} (sequences with just one component), \bar{G} coincides with G.

Proposition 2.1. \bar{G} has a pluri-adjoint (cf. $[\mathbf{4}, \mathbf{5}]$).

Proof. Let $X \in \operatorname{Ob\mathcal {X}}, X \neq 0$. By assumption, each functor G_{p} has a left adjoint F_{p} and, hence, for each p, there is the unit $\eta^{p}(X): X \longrightarrow G_{p}\left(F_{p}(X)=\bar{G}\left(F_{p}(X)\right)\right.$. We shall take as objects of the index category $\mathcal{T}(X)$ at X all finite subsets of P. Let $\tau=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be such an object. Then the functor $\Theta(X): \mathcal{T}(X) \longrightarrow \overline{\mathcal{A}}$ will assign to τ the object $F^{\tau}(X)=\left(F_{p_{1}}(X), \ldots, F_{p_{n}}(X)\right)$. If $n=0$, then $\tau=\emptyset$ and $F^{\tau}(X)$ is the zero object of $\overline{\mathcal{A}}$. For each $\tau \in \operatorname{Ob} \mathcal{T}(X)$, we define the morphism

$$
h_{\tau}: X \longrightarrow \bar{G} F^{\tau}(X)=\bar{G}\left(F_{p_{1}}(X), \ldots, F_{p_{n}}(X)\right)=\prod_{i=1}^{n} G\left(F_{p_{i}}(X)\right.
$$

by $h_{\tau}=\left\langle\eta^{p_{1}}(X), \eta^{p_{2}}(X), \ldots, \eta^{p_{n}}(X)\right\rangle$, that is, the morphism obtained from $\eta^{p_{1}}(X)$, $\eta^{p_{2}}(X), \ldots, \eta^{p_{n}}(X)$ by the universal property of the product. If X is the zero object, then $\mathcal{T}(X)$ has by definition a single object, say $*$, and then $F^{*}(0)=0$ with $h_{*}: 0 \longrightarrow \bar{G} F^{*}(0)=0$ the unique possible morphism. And, of course, the morphisms $\sigma \longrightarrow \tau$ in $\mathcal{T}(X)$ are those morphisms $u: F^{\sigma}(X) \longrightarrow F^{\tau}(X)$ of $\overline{\mathcal{A}}$ for which $\bar{G}(u) \circ h_{\sigma}=h_{\tau}$.

We will verify that the above data satisfy the conditions for a pluri-adjoint (cf. [5]).
(1). Global covering property. Let $g: X \longrightarrow \bar{G} A$ be given in \mathcal{X}. If $A=$ $\left(A_{p_{1}}, A_{p_{2}}, \ldots, A_{p_{n}}\right)$, take $\tau=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Since G has a multi-adjoint with $\left(\eta^{p}(X)\right)_{p \in P}$ as universal family (cf. 1.), there is a unique morphism $\varphi_{i}: F_{p_{i}} \longrightarrow A_{p_{i}}$ in \mathcal{A} such that the composite

$$
\begin{equation*}
X \xrightarrow{g} \bar{G}(A)=\prod_{k=1}^{n} G\left(A_{p_{k}}\right) \xrightarrow{\operatorname{proj}_{i}} G\left(A_{p_{i}}\right) \tag{2}
\end{equation*}
$$

is equal to $G\left(\varphi_{i}\right) \circ \eta^{p_{i}}(X)$, where proj_{i} is the $i^{\text {th }}$ projection of the product. Then

$$
\prod_{i=1}^{n} G \varphi_{i}: \prod_{i=1}^{n} G\left(F_{p_{i}}(X)\right)=\bar{G} F^{\tau}(X) \longrightarrow \prod_{i=1}^{n} G A_{p_{i}}=\bar{G}(A)
$$

has the property that $\prod_{i=1}^{n} G \varphi_{i} \circ h_{\tau}=g$. Indeed, this can be checked by "projecting onto the factors." If "proj" is the standard symbol for projection, then

$$
\operatorname{proj}_{i} \circ \prod_{k=1}^{n} G \varphi_{k} \circ h_{\tau}=G \varphi_{i} \circ \operatorname{proj}_{i} \circ h_{\tau}=G \varphi_{i} \circ \eta^{p_{i}}(X)=\operatorname{proj}_{i} \circ g
$$

(2). Inductive injectivity. Let $\tau \in \operatorname{Ob} \mathcal{T}(X)$ where $X \in \operatorname{Ob} \mathcal{X}$, let $A \in \operatorname{Ob} \mathcal{A}$, and let $f_{1}, f_{2}: F^{\tau}(X) \longrightarrow A$ be such that

$$
\begin{equation*}
\bar{G} f_{1} \circ h_{\tau}=\bar{G} f_{2} \circ h_{\tau} \tag{3}
\end{equation*}
$$

By adding zero components to $F^{\tau}(X)$ and A, we can assume that $A=\left(A_{p_{1}}, A_{p_{2}}, \ldots\right.$, $\left.A_{p_{n}}\right), F^{\tau}(X)=\left(V_{p_{1}}, V_{p_{2}}, \ldots, V_{p_{n}}\right)$ (same set of indices), where some of the components $V_{p_{i}}$ are $F_{p_{i}}(X)$ and some are zero objects. Similarly, $f_{1}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$,
$f_{2}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Denote $\operatorname{proj}_{i} \circ h_{\tau}=\zeta_{i}$, where $\operatorname{proj}_{i}: \bar{G} F^{\tau}(X) \longrightarrow G\left(V_{p_{i}}\right)$ is the canonical projection. Then ζ_{i} is either $\eta^{p_{i}}(X)$ (if $V_{p_{i}}=F_{p_{i}}(X)$) or the corresponding zero morphism (if $V_{p_{i}}$ is a zero object). Projecting (3) onto the i th factor, we get $G\left(u_{i}\right) \circ \zeta_{i}=G\left(v_{i}\right) \circ \zeta_{i}$ for $i=1,2, \ldots, n$. If $\zeta_{i}=\eta^{p_{i}}(X)$, we get $u_{i}=v_{i}$ by the uniqueness condition for the multi-adjoint; if $\zeta_{i}=0$, then $V_{p_{i}}$ is a zero object and hence $u_{i}=v_{i}$. Thus, $f_{1}=f_{2}$. Hence we can take $\sigma=\tau$ and $r=\operatorname{id}_{F^{\tau}(X)}$ to get $f_{1} \circ r=f_{2} \circ r$.
(3). Directedness. Let $X \in \operatorname{Ob} \mathcal{X}$, and let $\tau, \rho \in \operatorname{Ob} \mathcal{T}(X)$. We can assume that $F^{\tau}(X)=\left(V_{p_{1}}, V_{p_{2}}, \ldots, V_{p_{n}}\right), F^{\rho}(X)=\left(W_{p_{1}}, W_{p_{2}}, \ldots, W_{p_{n}}\right)$ (same set of indices), where some of the $V_{p_{i}}$'s and/or $W_{p_{i}}$'s might be zero. (It is, however, convenient, and possible, to assume that, for each i, at least one of $V_{p_{i}}$ and $W_{p_{i}}$ is nonzero since otherwise we can delete both of them.) Let $\xi=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and hence $F^{\xi}(X)=\left(F_{p_{1}}(X), F_{p_{2}}(X), \ldots, F_{p_{n}}(X)\right)$. We shall define the morphisms

$$
\begin{aligned}
u & =\left(u_{1}, u_{2}, \ldots, u_{n}\right): F^{\xi}(X) \longrightarrow F^{\tau}(X) \\
v & =\left(v_{1}, v_{2}, \ldots, v_{n}\right): F^{\xi}(X) \longrightarrow F^{\rho}(X)
\end{aligned}
$$

in the following way: If, for a given i, both $V_{p_{i}}$ and $W_{p_{i}}$ are nonzero, we have $V_{p_{i}}=W_{p_{i}}=F_{p_{i}}(X)$, and we define both u_{i} and v_{i} as the identity of $F_{p_{i}}(X)$; if $V_{p_{i}} \neq 0$ and $W_{p_{i}}=0$, we define u_{i} as above and v_{i} as the unique morphism to 0 ; in case $V_{p_{i}}=0$ and $W_{p_{i}} \neq 0$, we interchange the roles of u_{i} and v_{i}.

We claim that

$$
\begin{equation*}
\bar{G}(u) \circ h_{\xi}=h_{\tau} \text { and } \bar{G}(v) \circ h_{\xi}=h_{\rho} . \tag{4}
\end{equation*}
$$

Indeed, for the first equality, projecting the left-hand side onto the i th factor, we get:

$$
\operatorname{proj}_{i} \circ \bar{G}(u) \circ h_{\xi}=G\left(u_{i}\right) \circ \operatorname{proj}_{i} \circ h_{\xi}=G\left(u_{i}\right) \circ \eta^{p_{i}}(X)
$$

The latter is either $\eta^{p_{i}}(X)$ if $V_{p_{i}} \neq 0$ or the zero morphism if $V_{p_{i}}=0$. On the other hand, $\operatorname{proj}_{i} \circ h_{\tau}$ is the same thing. This proves the first equality (4). The proof for the second equality is similar.

Because of (4), u and v are morphisms of the category $\mathcal{T}(X)$, namely, $u: \xi \longrightarrow \tau$, $v: \xi \longrightarrow \rho$.

References

[1] Y. Diers, Spectres et localisations relatifs à un foncteur, C. R. Acad. Sc. Paris, Sér. A, 287 (1978), 985-988.
[2] Y. Diers, Familles universelles de morphismes, Annales Soc. Sc. Bruxelles 93, II (1979), 175-195.
[3] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics 5, Springer-Verlag, New York, 1971.
[4] A. Solian and T. M. Viswanathan, Pluri-adjoints and preservation of finite limits, J. Pure and Appl. Algebra 65 (1990), 69-90.
[5] A. Solian and T. M. Viswanathan, Colimits of Hom-sets and Pluri-representable Functors, Bull. Soc. Math. Belgique 44, fasc. 2, Série B (1992), 147-163.

Alexandru Solian,
Department of Mathematics,
University of North Carolina at Charlotte, Charlotte N.C. 28223.
T. M. Viswanathan,

Department of Mathematical Sciences, University of North Carolina at Wilmington, Wilmington, N.C. 28403.

