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Abstract

Each generalized quadrangle (GQ) of order (q2, q) derived in the standard
way from a conical flock via a q-clan with q = 2e has subquadrangles of order
q associated with a family of q + 1 (not necessarily projectively equivalent)
ovals in PG(2, q). A new family of these GQ is announced in [1] and named
the Subiaco GQ. We begin a study of their collineation groups. When e is
odd, e ≥ 5, the group is determined. In the standard notation for the GQ,
the collineation group is transitive on the lines through the point (∞). As a
corollary we have that up to the usual notions of equivalence, just one conical
flock, one oval in PG(2, q), and one subquadrangle of order (q, q) arise.

1 Introduction

The objects studied in this paper are introduced in [1], and we thank its authors

for making their work available to us as it was being developed. Moreover, Tim
Penttila and Gordon Royle helped us eliminate a serious error in an early version of
this work.

Let F = GF(q), q = 2e. For each t ∈ F , let At =

(
xt yt
0 zt

)
be a 2× 2 matrix

over F . Put C = {At : t ∈ F}. Then C is a q-clan provided At − As is anisotropic
(i.e., α(At − As)α

T = 0 if and only if α = (0, 0)) whenever t, s ∈ F , t 6= s. This
holds if and only if (xt − xs)(zt − zs)(yt − ys)−2 has trace 1 whenever s 6= t. From
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now on we assume that C is a q-clan, so the three maps t 7→ xt, t 7→ yt, t 7→ zt are

all permutations. Put P =

(
0 1
1 0

)
. And for At ∈ C, put Kt = At + AT

t = ytP .

There is a standard construction of a generalized quadrangle (GQ) S = S(C) as
a coset geometry starting with the group

G = {(α, c, β) : α, β ∈ F 2, c ∈ F}

whose binary operation is given by

(α, c, β) ∗ (α′, c′, β ′) = (α+ α′, c+ c′ + β(α′)T , β + β ′), (1)

and a certain 4-gonal family of subgroups. Specifically, put A(∞) = {(~0, 0, β) ∈
G : β ∈ F 2}, and for t ∈ F , A(t) = {(α, αAtα

T , αKt) ∈ G : α ∈ F 2}. Put
F = {A(t) : t ∈ F ∪ {∞}}, and C = {(~0, 0,~0) ∈ G : c ∈ F}. For A ∈ F ,
put A∗ = AC . Then F is a 4-gonal family for G with associated groups (tangent
spaces) F∗ = {A∗ : A ∈ F}. We assume the reader is familiar with W. M. Kantor’s

construction of a GQ S(G,F) (cf. [3], [4], [8]). In [8], pp. 213–214, it is shown
that for a fixed t0 ∈ F , a new q-clan may be constructed so that each At ∈ C is
replaced with At − At0, and the “new” GQ is isomorphic to the original. Then the

new matrices may be reindexed so that A0 =

(
0 0
0 0

)
.

For two matrices A =

(
x y
z w

)
, B =

(
r s
t u

)
over F , let A ≡ B mean that

x = r, w = u, and y + z = s + t. So A ≡ B if and only if αAαT = αBαT for all

α ∈ F 2.

Let B =

(
a b
c d

)
∈ GL(2, F ). For At =

(
xt yt
0 zt

)
∈ C, put

At = B AtB
T ≡

(
a2xt + abyt + b2zt (ad+ bc)yt

0 c2xt + cdyt + d2zt

)
.

Then

(α, c, β) 7→ (αB−1, c, βBT) (2)

is an automorphism of G that replaces F with a 4-gonal family derived from the
q-clan C = {At : t ∈ F} and that produces a GQ isomorphic to the original.

First, by reindexing the members of C we may assume xt = t for all t ∈ F . So

A0 =

(
0 0
0 0

)
and A1 =

(
1 y1

0 z1

)
. Then using B =

(
1 0
0 y−1

1

)
in equation (2),

we may assume A1 =

(
1 1

0 δ

)
, where δ ∈ F is some element with trace 1. We

again reindex the members of C to obtain yt = t (probably destroying xt = t) for

all t ∈ F . So without loss of generality we may assume that the q-clan C has been
normalized to satisfy the following:
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A0 =

(
0 0
0 0

)
; A1 =

(
1 1
0 δ

)
(with tr(δ) = 1); At =

(
xt t
0 zt

)
, t ∈ F. (3)

From [5] recall the following notation: For α ∈ F 2, [α]∞ = (
−→
0 , 0, α) ∈ G; for

t ∈ F , [α]t = (α, αAtα
T , αKt); for c ∈ F , [c] = (

−→
0 , c,

−→
0 ) ∈ G. For t, u ∈ F ∪ {∞},

t 6= u, put ([α]t, [c], [β]u) := [α]t ∗ [c] ∗ [β]u. A simple computation shows that

([α]∞, [c], [β]0) ∗ ([α′]∞, [c
′], [β ′]0) = ([α+ α′]∞, [c+ c′ + β(α′)T ], [β + β ′]0). (4)

And with γ = αKt,

[α]t = (α, αAtα
T , αKt) = ([αKt]∞, [αAtα

T ], [α]0) (5)

= ([γ]∞, [γK
−1
t AtK

−1
t γT ], [γK−1

t ]0).

Since in the original description of G, (α, c, β) = ([α]0, [c], [β]∞), it follows that
by interchanging the roles of ∞ and 0 in the description of G the matrix At ∈ C is

replaced with K−1
t AtK

−1
t ≡ y−2

t

(
zt yt
0 xt

)
. Now by using B = P in equation (2),

we have that Ĉ =

{
A0 =

(
0 0

0 0

)}
∪ {y−2

t At : 0 6= t ∈ F} is a q-clan associated

with a GQ isomorphic to that derived from C. By combining this operation with
the shift At = At −At0 mentioned earlier, we obtain

Ĉ = {(yt − yt0)−2(At − At0) : t0 6= t ∈ F} ∪
{(

0 0
0 0

)}
(6)

is a q-clan associated with a GQ isomorphic to (essentially the same as) that derived
from C, but recoordinatized so that the line [A(t0)] of S(C) through the point (∞)
corresponds to the line [A(∞)] through (∞) in S(Ĉ). (Also see [7], [9].)

A truly satisfactory geometric interpretation of the construction of a GQ from
a q-clan (equivalent to a conical flock by J. A. Thas [10]) must somehow explain
the existence of these q + 1 distinct (and not always equivalent) q-clans. For the
purpose of distinguishing flocks, it is important to note that there is a collineation

of S(C) (fixing (∞) and (
−→
0 , 0,

−→
0 )) moving the line [A(t0)] to the line [A(∞)] if and

only if the flock associated with C is equivalent to that associated with the q-clan Ĉ
obtained in equation (6).

We now recall the slightly modified description of G introduced in [6] (cf. also
[4]). In characteristic 2, this revised version seems to us to be more natural and
useful.

Let E = F (ζ) = GF(q2), ζ2 + ζ + δ = 0 (for some δ ∈ F with tr(δ) = 1). Then
x 7→ x = xq is the unique involutionary automorphism of E with fixed field F . Here
ζ + ζ = 1 and ζζ = δ. The element α = a + bζ ∈ E (a, b ∈ F ) is often (without
notice) identified with the pair (a, b) ∈ F 2. For example, the inner product

α ◦ β = αβ + αβ (7)
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on E as a vector space over F may also appear as α◦β = αPβT . Note that α◦β = 0
if and only if {α, β} is F -dependent.

Now put G = {(α, c, β) : α, β ∈ E = F 2, c ∈ F} with binary operation

(α, c, β) · (α′, c′, β ′) = (α + α′, c+ c′ +
√
β ◦ α′, β + β ′). (8)

It is straightforward to check that G→ G : (α, c, β) 7→ (α,
√
c, βP ) is an isomor-

phism mapping the 4-gonal family F for G to a 4-gonal family F of G defined as
follows:

A(∞) = {(−→0 , 0, β) ∈ G : β ∈ E}; (9)

A∗(∞) = {(−→0 , c, β) ∈ G : c ∈ F, β ∈ F 2}.

And for t ∈ F ,

A(t) = {(α,
√
αAtαT , ytα) ∈ G : α ∈ F}, (10)

A∗(t) = {(α, c, ytα) ∈ G : α ∈ E, c ∈ F}.

Clearly F = {A(t) : t ∈ F ∪ {∞}} yields a GQ S(G,F) isomorphic to S(G,F).
The revised description S(G,F) makes it easy to recognize subquadrangles.

2 Subquadrangles and ovals

Let C be a q-clan (normalized as in equation (3)) with corresponding 4-gonal family
F for G (in the revised form just given), etc., and let S = S(G,F) be the associated

GQ. For ~0 6= α ∈ E, put

Gα = {(aα, c, bα) ∈ G : a, b, c ∈ F}. (11)

Since α ◦ β = 0 if β = cα, c ∈ F , in Gα we have

(aα, c, bα) · (a′α, c′, b′α) = ((a + a′)α, c+ c′, (b+ b′)α). (12)

So Gα is an elementary abelian group with order q3. Define the following sub-
groups of Gα:

Aα(∞) = A(∞) ∩ Gα = {(~0, 0, bα) ∈ G : b ∈ F}; (13)

A∗α(∞) = A∗(∞) ∩Gα = {(~0, c, bα) ∈ G : c, b ∈ F}.

And for t ∈ F ,

Aα(t) = A(t) ∩Gα = {(aα, a
√
αAtαT , atα) ∈ G : a ∈ F}; (14)

A∗α(t) = A∗(t) ∩Gα = {(aα, c, atα) ∈ G : a, c ∈ F}.

Here Fα = {Aα(t) : t ∈ F ∪ {∞}} is immediately seen to be a 4-gonal family for
Gα. Moreover, by [6] we may view Sα = S(Gα,Fα) as a subquadrangle (of order
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q) of S = S(G,F). Clearly Gα is isomorphic to F 3 under componentwise addition.
Moreover, we can define a scalar multiplication on Gα by

d(aα, c, bα) = (daα, dc, dbα), a, b, c, d ∈ F. (15)

Then it is also clear that Fα is an oval in the projective plane naturally associated

with the 3-dimensional F -linear space Gα.
Consider the three projective points p1 = (α, 0,~0), p2 = (~0, 1,~0), p3 = (~0, 0, α).

The scalar triple (1,
√
αAtαT , t) on the points p1, p2 and p3 results in

(α, 0,~0) · (~0,
√
αAtαT ,~0) · (~0, 0, tα) = (α,

√
αAtαT , tα) ↔ Aα(t) considered as a

projective point. Hence the oval Fα is the set of q + 1 points represented by the
following set of triples of coordinates:

Oα = {(0, 0, 1)} ∪ {(1,
√
αAtαT , t) : t ∈ F},with nucleus (0, 1, 0). (16)

We say that the map t 7→
√
αAtαT is an O-permutation. Specifically, a permutation

γ : F → F is an O-permutation provided

(i) γ : 0 7→ 0, and

(ii)
sγ − tγ
s− t 6=

sγ − uγ
s− u

(17)

whenever s, t and u are distinct members of F .
Note. This language is suggested by the term O-polynomial in [2], except that we
find it more convenient NOT to require that γ be normalized so that γ : 1 7→ 1. (We
could also avoid γ : 0 7→ 0, but this holds in all the specific examples we consider.)

For α = (a1, a2) 6= (0, 0), At =

(
xt t
0 zt

)
, the above becomes

t 7→ a1
√
xt +

√
a1a2

√
t+ a2

√
zt is an O-permutation. (18)

In the next section it will be convenient to represent q-clans in the form C ={
At =

(
f(t) t1/2

0 g(t)

)
: t ∈ F

}
. If σ : x 7→ x2 is the Frobenius automorphism of F ,

then clearly Cσ =

{
Aσ
t =

(
f(t)2 t

0 g(t)2

)
: t ∈ F

}
is also a q-clan, so

t 7→ a2f(t) + abt1/2 + b2g(t) (19)

is an O-permutation whenever (a, b) 6= (0, 0).
Note. T. Penttila (private communication) has given a direct proof of (19)

without mentioning GQ.
Using standard notation for the GQ S = S(G,F), let Γ be the dual grid spanned

by the points (∞) and (~0, 0,~0). All the subquadrangles Sα constructed above contain
Γ. We know that two subquadrangles of order q in S that have a dual grid (with
2(q + 1) points) in common must have in common just the points and lines of that
dual grid. Hence Sα and Sβ are identical if {α, β} is F -dependent, and they meet in

Γ otherwise. It follows that we have constructed a family of q + 1 subquadrangles
Sα of order q pairwise intersecting in Γ.
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3 Collineations

Suppose without loss of generality that the matrices of the q-clan C are given in

the form At =

(
f(t) t1/2

0 g(t)

)
, t ∈ F , with f(0) = g(0) = 0 and f(1) = 1. Then

K−1
t AtK

−1
t ≡

(
t−1g(t) t−1/2

0 t−1f(t)

)
. Starting with the paragraph following equa-

tion (5), it is straightforward to prove the following.

Theorem 3.1 If f(t−1) = t−1g(t) (equivalently, g(t−1) = t−1f(t)), then the auto-

morphism θ : G → G : (α, c, β) 7→ (βP, c +
√
αPβT , αP ) induces a collineation of

S(G,F ) that interchanges A(∞) and A(0), and interchanges A(t) and A(t−1) for
0 6= t ∈ F .

We now recall a result from [7], but modified to fit our group G introduced at
the end of section 1.

Theorem 3.2 Let C = {At : t ∈ F} be a q-clan with A0 =

(
0 0
0 0

)
. Let θ be a

collineation of the GQ S = S(G,F) derived from C which fixes the point (∞), the
line [A(∞)] and the point (~0, 0,~0). Then the following must exist:

(i) A permutation t 7→ t′ of the elements of F ;

(ii) λ ∈ F , λ 6= 0;

(iii σ ∈ Aut(F );

(iv) D ∈ GL(2, q) for which At′ ≡ λDTAσ
tD − A0′ for all t ∈ F .

Conversely, given σ, D, λ and a permutation t 7→ t′ satisfying the above conditions,

the following automorphism θ of G induces a collineation of S(G,F) fixing (∞),
[A(∞)] and (~0, 0,~0):

θ = θ(σ,D, λ) : G→ G : (20)

(α, c, β) 7→ (λ−1ασD−T , λ−1/2cσ + λ−1
√
ασD−TA0′D−1(ασ)T ,

βσPDP + λ−1y0′α
σD−T ).

Theorem 3.3 For At =

(
f(t) t1/2

0 g(t)

)
, the conditions in theorem 3.2 are equiv-

alent to having a permutation t 7→ t′, 0 6= λ ∈ F , D =

(
a c
b d

)
∈ GL(2, F ),

σ ∈ Aut(F ), for which

(i) t′ = λ2(ad+ bc)2tσ + 0′, for all t ∈ F.
(ii) f(t′) = λ[a2f(t)σ + abtσ/2 + b2g(t)σ] + f(0′), for all t ∈ F.

(iii) g(t′) = λ[c2f(t)σ + cdtσ/2 + d2g(t)σ] + g(0′), for all t ∈ F.
(21)
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For completeness, we note that right multiplication by elements of G induces a group
of q5 collineations of S(G,F) acting regularly on the set of points not collinear with

(∞) and fixing each line through (∞).
The Subiaco GQ introduced in [1] all have q-clans of the form used in theorem 3.3

with the following additional specializations:

(i) f(t) = f ′(t)
k(t)

+Ht1/2, t ∈ F ;

(ii) g(t) = g′(t)
k(t)

+Kt1/2, t ∈ F ; where

(iii) k(t) is the square of an irreducible quadratic polynomial
(say k(t) = t4 + c2t

2 + c0);
(iv) f ′(t) and g′(t) are polynomials over F of degree at most 4

with f ′(0) = g′(0) = 0 (and f(1) = 1); and

(v) Hand Kare nonzero elements of F.

(22)

Then the conditions of theorem 3.3 can be rewritten.

Theorem 3.4 Suppose At =

 f ′(t)
k(t)

+ Ht1/2 t1/2

0 g′(t)
k(t)

+Kt1/2

, t ∈ F , with the con-

ditions of (22) satisfied. Then the conditions in equation (21) of theorem 3.3 take
on the following form:

(i) t′ = λ2(ad+ bc)2tσ + 0′.
(ii) f ′(t′)k(t)σk(0′) + λ(a2f ′(t)σ + b2g′(t)σ)k(t′)k(0′) + k(t′)k(t)σf ′(0′)

+λk(t′)k(t)σk(0′)[a2Hσ + ab+ b2Kσ +H(ad+ bc)]tσ/2 = 0
(iii) g′(t′)k(t)σk(0′) + λ(c2f ′(t)σ + d2g′(t)σ)k(t′)k(0′) + k(t′)k(t)σg′(0′)

+λk(t′)k(t)σk(0′)[c2Hσ + cd+ d2Kσ +K(ad+ bc)]tσ/2.

(23)

In equations (23)(ii) and (iii) replace t′ with λ2(ad + bc)2tσ + 0′ and write the
resulting expressions as polynomials in tσ. Now square both sides. The terms

touched by tσ/2 (before squaring) have odd positive integer exponents ≤ 17. The
other terms have even exponents ≤ 16. Since e ≥ 5, the coefficients on tσ/2 in
equations (23)(ii) and (iii) must be zero. Hence equation (23) can be replaced with

(i) (a2Hσ + ab+ b2Kσ)/H = ad+ bc = (c2Hσ + cd + d2Kσ)/K 6= 0.
(ii) f ′(t′)k(t)σk(0′) + λ[a2f ′(t)σ + b2g′(t)σ]k(t′)k(0′) = k(t′)k(t)σf ′(0′).

(iii) g′(t′)k(t)σk(0′) + λ[c2f ′(t)σ + d2g′(t)σ]k(t′)k(0′) = k(t′)k(t)σg′(0′).
(24)

4 Subiaco GQ with q = 2e, e odd

From now on we assume F = GF(q), q = 2e, e odd and e ≥ 5. So 1 + t2 + t4 6= 0

for all t ∈ F . C =

{
At =

(
h(t) + t1/2 t1/2

0 t2h(t) + t1/2

)
: t ∈ F

}
, where h(t) =

(t+ t2)/(1 + t2 + t4). Let F denote the corresponding 4-gonal family for G, and let

S = S(C) = S(G,F) be the associated GQ. This example arises as a specialization
of the general construction of Subiaco GQ in [1].
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Theorem 4.1 Each σ ∈ Aut (F ) induces a collineation of S fixing [A(∞)] and
mapping [A(t)] to [A(tσ)] for t ∈ F .

Proof. Clearly f(t)σ = f(tσ) and g(t)σ = g(tσ). In equation (21) put λ = a = d =
1, b = c = 0′ = 0. Then the conditions are all satisfied with t′ = tσ. 2

Theorem 4.2 There is a collineation of S interchanging [A(∞)] and [A(0)] and
interchanging [A(t)] and [A(t−1)] for 0 6= t ∈ F .

Proof. Check that f(t−1) = t−1g(t), with f(t) = h(t)+t1/2 and g(t) = t2h(t)+t1/2,

and use theorem 3.1. 2

From the form of f and g we know that S is not classical. (Alternatively, we
will show that the group of collineations fixing the point (∞) and the line [A(∞)]
is not transitive on the other lines through (∞).) Hence the point (∞) is fixed by

the full collineation group of S (cf. [9]). And because of theorem 4.1, to find all
collineations fixing [A(∞)], it suffices to find all solutions of equation (24) (since
the q-clan of this section has the form given in theorem 3.4 with σ = id. And we
use g′(t) = t2f ′(t), f ′(t) = t + t2, t′ = λ2(ad + bc)2t + 0′. Now compute (t′)2 times

equation (24)(ii) added to equation (24)(iii), and divide by k(t′) to obtain:

λ(t + t2)k(0′)[a2(λ4(ad+ bc)4t2 + (0′)2

+b2t2(λ4(ad+ bc)4t2 + (0′)2) + c2 + d2t2]

= λ4(ad+ bc)4t2(1 + t2 + t4)f ′(0′). (25)

The coefficient on t in equation (25) is λk(0′)[a2(0′)2 + c2], implying

c = a0′. (26)

The coefficient on t2 is then λk(0′)λ4(ad+ bc)4f ′(0′), implying f ′(0′) = 0. Hence

0′ ∈ {0, 1}. (27)

The coefficient on t5 is λk(0′)b2λ4(ad+ bc), implying

b = 0 and ad 6= 0. (28)

Then from equation (24)(i), a2 = ad, so

a = d. (29)

Now equation (25) appears as λ(t + t2)k(0′)[a2λ4a8t2 + a2t2] = 0, from which we
conclude

λa2 = 1. (30)

We now have established the following:

(i) 0′ ∈ {0, 1}
(ii) c = a0′

(iii) b = 0 6= a = d
(iv) λa2 = 1.

(31)

A straightforward check shows that if the conditions of equation (31) all hold, then
the conditions of equation (24) all hold with t′ = t+0′. This establishes the following:
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Theorem 4.3 The group of collineations of S fixing [A(∞)] and (~0, 0,~0) (and of
course (∞)) has order 2e(q − 1) and has {[A(0)], [A(1)]} as an orbit.

At this point, including collineations induced by right multiplication by elements
of G, we have a group of collineations of S = S(G,F) with order 6e(q − 1)q5, and
which as a permutation group acting on the set of indices of the lines through the
point (∞) includes the following:

(i) For σ ∈ Aut (F ), σ :∞ 7→ ∞ and σ : t 7→ tσ for t ∈ F .
(ii) θ :∞↔ 0, and θ : t↔ t−1 for 0 6= t ∈ F.
(iii) φ :∞↔∞, and φ : t 7→ t + 1 for t ∈ F.

(32)

The set {∞, 0, 1} is invariant under the permutations exhibited in equation (32).
S3
∼= 〈θ, φ〉 has {∞, 0, 1} as one orbit, and for t ∈ F\{0, 1} has Ωt = {t, t + 1, (t +

1)−1, t/(t + 1), (t + 1)/t, t−1} as an orbit. Note that |Ωt| = 6 since q = 2e with e

odd. But the automorphisms σ ∈ Aut (F ) act on the Ωt differently for different t
and different e.

For example, when e = 5, there are five disjoint Ωt on which Aut(F ) acts tran-
sitively: Ωt ∩ Ωtσ 6= φ if and only if σ = id. So in this case (i.e., q = 32), the

collineation group of S either has two orbits on the lines through the point (∞)
(one of which is {[A(∞)], [A(0)], [A(1)]}), or it has just one orbit. (We will show in
section 5 that the full collineation group is transitive on the set of q+1 lines through
(∞) for all odd e ≥ 5.)

Note. If 3|e, then x3 + x2 + 1 = 0 has a root t0 ∈ F . In this case Ωt0 is broken
into two orbits under Aut (F ), since for each t ∈ Ωt0, t

2 = (t + 1)−1.

5 Recoordinatizing the GQ

Start with the standard form of the q-clan given at the beginning of section 4. Fix
w ∈ F . The idea is to let w play the role of ∞, i.e., w plays the role of t0 in
equation (6).

Cw =

Aw
t =

 h(t)+h(w)
t+w

+ (t+ w)−1/2 (t + w)−1/2

0 t2h(t)+w2h(w)
t+w

+ (t + w)−1/2

 : w 6= t ∈ F


∪
{(

0 0
0 0

)}
. (33)

Put x = (t + w)−1, so t = w + x−1, and substitute into equation (33) to obtain

Cw =

{
Aw
x =

(
fw(x) + x1/2 x1/2

0 gw(x) + x1/2

)
: x ∈ F

}
, (34)

where

(i) fw(x) = f ′(x)/k(x), gw(x) = g′(x)/k(x), and
(ii) f ′(t) = t4(1 + w2 + w4) + t3(1 + w + w4) + t(w + w2),

(iii) g′(t) = t4(w2 + w4 + w6) + t3(w + w4 + w5)

+t2(1 + w2 + w4) + t(1 + w2 + w3),
(iv) k(t) = t4(1 + w2 + w4)2 + (t2 + 1)(1 + w2 + w4).

(35)
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If there is a collineation of the GQ S (with q-clan in standard form) mapping [A(∞)]
to [A(w)], then there must be a collineation θ = θ(σ,D, λ) (in the new coordinatiza-

tion) which is an involution fixing [A(∞)] and interchanging all other lines through
(∞) in pairs. So there is an involution θ of the form

θ : (α, c, β) 7→ (36)

(λ−1ασD−T , λ−1/2cσ + λ−1
√
ασD−TA0′D−1(ασ)TβσPDP + λ−1y0′α

σD−T ),

with D =

(
a c
b d

)
∈ GF(2, q).

Since theorem 3.4 applies (with the new coordinates), equation (24)(i) holds with
H = K = 1.

ad+ bc = a2 + ab+ b2 = c2 + cd+ d2. (37)

Compute the effect of θ2 = id on (~0, c,~0) ∈ G : (~0, c,~0) = (~0, λ−(σ+1)/2cσ
2
,~0) for all

c ∈ F . This implies σ2 = id, so σ = id since e is odd, and also λ = 1. Similarly,
id = θ2 : (~0, 0, β) 7→ (~0, 0, β(PDP )2) for all β ∈ F 2, implying D2 = I . This

implies a = d and 1 = det(D) = a2 + bc = a2 + ab + b2 = a2 + ac + c2, forcing
1− a2 = bc = ab+ b2 = ac+ c2. Hence b(a+ b+ c) = c(a+ b+ c) = 0. Suppose first
that a + b + c 6= 0. Then D = I , and from the fact that the coefficient on tσ = t
in equation (24)(ii) must be 0 it follows that 0′ = 0. This means that θ is not the

involution we seek, hence a + b+ c = 0.
The coefficients on (tσ)7 = t7 in equation (24)(ii) and (iii) must both be 0. This

leads to a system of two linear equations in a2 and b2 which is easily solved. And

then c2 = a2 + b2 leads to the following:
Put v = (1 + w + w2)1/2. Then

(i) a = d = (1 + w5)/v5,
(ii) b = (1 + w + w4)/v5,

(iii) c = (w + w4 + w5)/v5.

(38)

Finally, considering the coefficient of tσ = t in equation (24)(ii), we compute

0′ = 1/v2. (39)

It is now a tedious but uninspired task to show that the unique possible involution

θ determined by equations (38) and (39) does satisfy the conditions of equation (24).
Tracing back through the recoordinatization process, we find that the involution θ
induces the following permutation on the indices of the lines through (∞) in the
original coordinatization of section 4:

t 7→ (t(1 + w2) + w2)/(t + 1 + w2). (40)

In particular, ∞ ↔ 1 + w2 and w ↔ w. Here w can be any element of F , and
w = 1 gives the original involution found in theorem 4.2. This proves the following:

Theorem 5.1 The full collineation group G of the GQ given in section 4 (with
q ≥ 32) has order 2e(q2 − 1)q5 and acts transitively on the lines through the point
(∞).



Collineations of the Subiaco generalized quadrangles 437

6 The Action of G on the subquadrangles Sα
The action of the full collineation group G on the subquadrangles Sα is determined
by its action on the subgroups Gα. Clearly the stabilizer G0 of the point (~0, 0,~0)
must leave the dual grid Γ invariant, so it must permute the Sα among themselves.

Let w ∈ F . Then the map φw defined by

φw : G→ G : (α, c, β) 7→ ((ywα + β)P, c+
√
αAwαT + αPβT , αP ) (41)

is an automorphism of G that corresponds to the recoordinatization of section 5. It

is convenient to have its inverse

φ−1
w : G→ G : (γ, d, δ) 7→ (δP, d+

√
δPAwPδT + δPγT , (ywδ + γ)P ). (42)

Now consider an involution of the recoordinatized GQ of the type θw=θw(id,D, 1)
with D as in equation (38). For such a D, PD−TP = D and PDP = DT = D−T .

θw : G → G :

(α, c, β) 7→ (αD−T , c+
√
αD−TA0′D−1αT , (β + 0′α)D−T ), (43)

with 0′ = (1 + w + w2)−1.

Then θw = φw◦θw◦φ−1
w (doing φw first) as an automorphism of G is an involution

of the GQ S expressed in the original coordinates. To consider its effect on the Gα

we do not need to compute the middle coordinate.

θw : (α, c, β) 7→ ((α + 0′(ywα+ β))D,−, 0′y2
wαD + (yw0′ + 1)βD). (44)

From equation (44) it is clear that Gα → GαD.
From here on we use just the group G0. The stabilizer G0,∞ of [A(∞)] (see

theorem 4.3) has order 2e(q − 1), and for 0 6= a ∈ F , σ ∈ Aut(F ), 0′ ∈ {0, 1},
consists of the following maps:

(α, c, β) 7→ (aασK, acσ + a
√
ασKA0′KT (ασ)T , a(βσ + 0′ασ)K), (45)

with

K =

(
1 0
0′ 1

)
.

Put α = (0, 1) and determine the stabilizer of this α. Since αK = (0′, 1), the
stabilizer of α in G0,∞ has order e(q − 1), since 0′ must be 0. Write D(w) for the
D given by equation (38). The collineations θ(id,D(w), 1) are coset representatives

for those cosets of G0,∞ in G0 different from G0,∞. So to find the stabilizer of α in
G0,∞ ·D(w) we consider αKD(w) = (0′, 1) ·D(w) = (0′(1 +w5) + 1 +w+w4, 0′(w+
w4 +w5)+1+w5)/(1+w+w2)5/2. The first coordinate is 0 if and only if 0′ = 1 and
w = 0. So there are e(q − 1) such collineations, implying that the stabilizer of Gα

in G0 has order 2e(q − 1). As G0 has order 2e(q2 − 1), G0 is transitive on the set of
q + 1Gα, and hence on the q + 1Sα as well, implying also that only one oval arises.



438 S. E. Payne

References

[1] W. Cherowitzo, T. Penttila, I. Pinneri, and G. Royle. Flocks and ovals.
In preparation.

[2] W. E. Cherowitzo. Hyperovals in Desarguesian planes of even order. Ann.
Discrete Math., 37, pp. 87–94, 1988.

[3] W. M. Kantor. Some generalized quadrangles with parameters (q2, q). Math
Z., 192, pp. 45–50, 1986.

[4] S. E. Payne. A new family of generalized quadrangles. Congr. Numer, 49,
pp. 115–128, 1985.

[5] S. E. Payne. An essay on skew translation generalized quadrangles. Geom.
Dedicata, 32, pp. 93–118, 1989.

[6] S. E. Payne and C. C. Maneri. A family of skew-translation generalized

quadrangles of even order. Congr. Numer., 36, pp. 127–135, 1982.

[7] S. E. Payne and L. A. Rogers. Local group actions on generalized quad-

rangles. Simon Stevin, 64, pp. 249–284, 1990.

[8] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles, volume 104

of Research Notes in Mathematics. Pitman, 1984.

[9] S. E. Payne and J. A. Thas. Conical flocks, partial flocks, derivation, and

generalized quadrangles. Geom. Dedicata, 38, pp. 229–243, 1991.

[10] J. A. Thas. Generalized quadrangles and flocks of cones. Europ. J. Combi-

natorics, 8, pp. 441–452, 1987.

S. E. Payne
Department of Mathematics
CU-Denver Camp Box 170

PO Box 173364
Denver CO 80217-3364
USA.


