Collineations of the Subiaco generalized quadrangles

S. E. Payne

Dedicated to J. A. Thas on his fiftieth birthday

Abstract

Each generalized quadrangle (GQ) of order $\left(q^{2}, q\right)$ derived in the standard way from a conical flock via a q-clan with $q=2^{e}$ has subquadrangles of order q associated with a family of $q+1$ (not necessarily projectively equivalent) ovals in $\operatorname{PG}(2, q)$. A new family of these GQ is announced in [1] and named the Subiaco GQ. We begin a study of their collineation groups. When e is odd, $e \geq 5$, the group is determined. In the standard notation for the GQ, the collineation group is transitive on the lines through the point (∞). As a corollary we have that up to the usual notions of equivalence, just one conical flock, one oval in $\operatorname{PG}(2, q)$, and one subquadrangle of order (q, q) arise.

1 Introduction

The objects studied in this paper are introduced in [1], and we thank its authors for making their work available to us as it was being developed. Moreover, Tim Penttila and Gordon Royle helped us eliminate a serious error in an early version of this work.

Let $F=\operatorname{GF}(q), q=2^{e}$. For each $t \in F$, let $A_{t}=\left(\begin{array}{cc}x_{t} & y_{t} \\ 0 & z_{t}\end{array}\right)$ be a 2×2 matrix over F. Put $\mathcal{C}=\left\{A_{t}: t \in F\right\}$. Then \mathcal{C} is a q-clan provided $A_{t}-A_{s}$ is anisotropic (i.e., $\alpha\left(A_{t}-A_{s}\right) \alpha^{T}=0$ if and only if $\left.\alpha=(0,0)\right)$ whenever $t, s \in F, t \neq s$. This holds if and only if $\left(x_{t}-x_{s}\right)\left(z_{t}-z_{s}\right)\left(y_{t}-y_{s}\right)^{-2}$ has trace 1 whenever $s \neq t$. From

[^0]now on we assume that \mathcal{C} is a q-clan, so the three maps $t \mapsto x_{t}, t \mapsto y_{t}, t \mapsto z_{t}$ are all permutations. Put $P=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. And for $A_{t} \in \mathcal{C}$, put $K_{t}=A_{t}+A_{t}^{T}=y_{t} P$.

There is a standard construction of a generalized quadrangle (GQ) $\mathcal{S}=\mathcal{S}(\mathcal{C})$ as a coset geometry starting with the group

$$
\bar{G}=\left\{(\alpha, c, \beta): \alpha, \beta \in F^{2}, c \in F\right\}
$$

whose binary operation is given by

$$
\begin{equation*}
(\alpha, c, \beta) *\left(\alpha^{\prime}, c^{\prime}, \beta^{\prime}\right)=\left(\alpha+\alpha^{\prime}, c+c^{\prime}+\beta\left(\alpha^{\prime}\right)^{T}, \beta+\beta^{\prime}\right), \tag{1}
\end{equation*}
$$

and a certain 4-gonal family of subgroups. Specifically, put $\bar{A}(\infty)=\{(\overrightarrow{0}, 0, \beta) \in$ $\left.\bar{G}: \beta \in F^{2}\right\}$, and for $t \in F, \bar{A}(t)=\left\{\left(\alpha, \alpha A_{t} \alpha^{T}, \alpha K_{t}\right) \in \bar{G}: \alpha \in F^{2}\right\}$. Put $\overline{\mathcal{F}}=\{\bar{A}(t): t \in F \cup\{\infty\}\}$, and $C=\{(\overrightarrow{0}, 0, \overrightarrow{0}) \in \bar{G}: c \in F\}$. For $A \in \overline{\mathcal{F}}$, put $A^{*}=A C$. Then $\overline{\mathcal{F}}$ is a 4 -gonal family for \bar{G} with associated groups (tangent spaces) $\overline{\mathcal{F}}^{*}=\left\{A^{*}: A \in \overline{\mathcal{F}}\right\}$. We assume the reader is familiar with W. M. Kantor's construction of a GQ $\mathcal{S}(\bar{G}, \overline{\mathcal{F}})$ (cf. [3], [4], [8]). In [8], pp. 213-214, it is shown that for a fixed $t_{0} \in F$, a new q-clan may be constructed so that each $A_{t} \in \mathcal{C}$ is replaced with $A_{t}-A_{t_{0}}$, and the "new" GQ is isomorphic to the original. Then the new matrices may be reindexed so that $A_{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.

For two matrices $A=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right), B=\left(\begin{array}{cc}r & s \\ t & u\end{array}\right)$ over F, let $A \equiv B$ mean that $x=r, w=u$, and $y+z=s+t$. So $A \equiv B$ if and only if $\alpha A \alpha^{T}=\alpha B \alpha^{T}$ for all $\alpha \in F^{2}$.

Let $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, F)$. For $A_{t}=\left(\begin{array}{cc}x_{t} & y_{t} \\ 0 & z_{t}\end{array}\right) \in \mathcal{C}$, put

$$
\bar{A}_{t}=B A_{t} B^{T} \equiv\left(\begin{array}{cc}
a^{2} x_{t}+a b y_{t}+b^{2} z_{t} & (a d+b c) y_{t} \\
0 & c^{2} x_{t}+c d y_{t}+d^{2} z_{t}
\end{array}\right) .
$$

Then

$$
\begin{equation*}
(\alpha, c, \beta) \mapsto\left(\alpha B^{-1}, c, \beta B^{T}\right) \tag{2}
\end{equation*}
$$

is an automorphism of \bar{G} that replaces $\overline{\mathcal{F}}$ with a 4 -gonal family derived from the q-clan $\overline{\mathcal{C}}=\left\{\bar{A}_{t}: t \in F\right\}$ and that produces a GQ isomorphic to the original.

First, by reindexing the members of \mathcal{C} we may assume $x_{t}=t$ for all $t \in F$. So $A_{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $A_{1}=\left(\begin{array}{cc}1 & y_{1} \\ 0 & z_{1}\end{array}\right)$. Then using $B=\left(\begin{array}{cc}1 & 0 \\ 0 & y_{1}^{-1}\end{array}\right)$ in equation (2), we may assume $A_{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & \delta\end{array}\right)$, where $\delta \in F$ is some element with trace 1 . We again reindex the members of \mathcal{C} to obtain $y_{t}=t$ (probably destroying $x_{t}=t$) for all $t \in F$. So without loss of generality we may assume that the q-clan \mathcal{C} has been normalized to satisfy the following:

$$
A_{0}=\left(\begin{array}{cc}
0 & 0 \tag{3}\\
0 & 0
\end{array}\right) ; \quad A_{1}=\left(\begin{array}{cc}
1 & 1 \\
0 & \delta
\end{array}\right)(\text { with } \operatorname{tr}(\delta)=1) ; \quad A_{t}=\left(\begin{array}{cc}
x_{t} & t \\
0 & z_{t}
\end{array}\right), t \in F
$$

From [5] recall the following notation: For $\alpha \in F^{2},[\alpha]_{\infty}=(\overrightarrow{0}, 0, \alpha) \in \bar{G}$; for $t \in F,[\alpha]_{t}=\left(\alpha, \alpha A_{t} \alpha^{T}, \alpha K_{t}\right) ;$ for $c \in F,[c]=(\overrightarrow{0}, c, \overrightarrow{0}) \in \bar{G}$. For $t, u \in F \cup\{\infty\}$, $t \neq u$, put $\left([\alpha]_{t},[c],[\beta]_{u}\right):=[\alpha]_{t} *[c] *[\beta]_{u}$. A simple computation shows that

$$
\begin{equation*}
\left([\alpha]_{\infty},[c],[\beta]_{0}\right) *\left(\left[\alpha^{\prime}\right]_{\infty},\left[c^{\prime}\right],\left[\beta^{\prime}\right]_{0}\right)=\left(\left[\alpha+\alpha^{\prime}\right]_{\infty},\left[c+c^{\prime}+\beta\left(\alpha^{\prime}\right)^{T}\right],\left[\beta+\beta^{\prime}\right]_{0}\right) \tag{4}
\end{equation*}
$$

And with $\gamma=\alpha K_{t}$,

$$
\begin{align*}
{[\alpha]_{t} } & =\left(\alpha, \alpha A_{t} \alpha^{T}, \alpha K_{t}\right)=\left(\left[\alpha K_{t}\right]_{\infty},\left[\alpha A_{t} \alpha^{T}\right],[\alpha]_{0}\right) \tag{5}\\
& =\left([\gamma]_{\infty},\left[\gamma K_{t}^{-1} A_{t} K_{t}^{-1} \gamma^{T}\right],\left[\gamma K_{t}^{-1}\right]_{0}\right)
\end{align*}
$$

Since in the original description of $\bar{G},(\alpha, c, \beta)=\left([\alpha]_{0},[c],[\beta]_{\infty}\right)$, it follows that by interchanging the roles of ∞ and 0 in the description of \bar{G} the matrix $A_{t} \in \mathcal{C}$ is replaced with $K_{t}^{-1} A_{t} K_{t}^{-1} \equiv y_{t}^{-2}\left(\begin{array}{cc}z_{t} & y_{t} \\ 0 & x_{t}\end{array}\right)$. Now by using $B=P$ in equation (2), we have that $\hat{\mathcal{C}}=\left\{A_{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right\} \cup\left\{y_{t}^{-2} A_{t}: 0 \neq t \in F\right\}$ is a q-clan associated with a GQ isomorphic to that derived from \mathcal{C}. By combining this operation with the shift $\bar{A}_{t}=A_{t}-A_{t_{0}}$ mentioned earlier, we obtain

$$
\hat{\mathcal{C}}=\left\{\left(y_{t}-y_{t_{0}}\right)^{-2}\left(A_{t}-A_{t_{0}}\right): t_{0} \neq t \in F\right\} \cup\left\{\left(\begin{array}{ll}
0 & 0 \tag{6}\\
0 & 0
\end{array}\right)\right\}
$$

is a q-clan associated with a GQ isomorphic to (essentially the same as) that derived from \mathcal{C}, but recoordinatized so that the line $\left[A\left(t_{0}\right)\right]$ of $\mathcal{S}(\mathcal{C})$ through the point (∞) corresponds to the line $[A(\infty)]$ through (∞) in $\mathcal{S}(\hat{\mathcal{C}})$. (Also see [7], [9].)

A truly satisfactory geometric interpretation of the construction of a GQ from a q-clan (equivalent to a conical flock by J. A. Thas [10]) must somehow explain the existence of these $q+1$ distinct (and not always equivalent) q-clans. For the purpose of distinguishing flocks, it is important to note that there is a collineation of $\mathcal{S}(\mathcal{C})$ (fixing (∞) and $(\overrightarrow{0}, 0, \overrightarrow{0})$) moving the line $\left[A\left(t_{0}\right)\right]$ to the line $[A(\infty)]$ if and only if the flock associated with \mathcal{C} is equivalent to that associated with the q-clan $\hat{\mathcal{C}}$ obtained in equation (6).

We now recall the slightly modified description of \bar{G} introduced in [6] (cf. also [4]). In characteristic 2, this revised version seems to us to be more natural and useful.

Let $E=F(\zeta)=\operatorname{GF}\left(q^{2}\right), \zeta^{2}+\zeta+\delta=0$ (for some $\delta \in F$ with $\operatorname{tr}(\delta)=1$). Then $x \mapsto \bar{x}=x^{q}$ is the unique involutionary automorphism of E with fixed field F. Here $\zeta+\bar{\zeta}=1$ and $\zeta \bar{\zeta}=\delta$. The element $\alpha=a+b \zeta \in E(a, b \in F)$ is often (without notice) identified with the pair $(a, b) \in F^{2}$. For example, the inner product

$$
\begin{equation*}
\alpha \circ \beta=\alpha \bar{\beta}+\bar{\alpha} \beta \tag{7}
\end{equation*}
$$

on E as a vector space over F may also appear as $\alpha \circ \beta=\alpha P \beta^{T}$. Note that $\alpha \circ \beta=0$ if and only if $\{\alpha, \beta\}$ is F-dependent.

Now put $G=\left\{(\alpha, c, \beta): \alpha, \beta \in E=F^{2}, c \in F\right\}$ with binary operation

$$
\begin{equation*}
(\alpha, c, \beta) \cdot\left(\alpha^{\prime}, c^{\prime}, \beta^{\prime}\right)=\left(\alpha+\alpha^{\prime}, c+c^{\prime}+\sqrt{\beta \circ \alpha^{\prime}}, \beta+\beta^{\prime}\right) \tag{8}
\end{equation*}
$$

It is straightforward to check that $\bar{G} \rightarrow G:(\alpha, c, \beta) \mapsto(\alpha, \sqrt{c}, \beta P)$ is an isomorphism mapping the 4 -gonal family $\overline{\mathcal{F}}$ for \bar{G} to a 4 -gonal family \mathcal{F} of G defined as follows:

$$
\begin{align*}
A(\infty) & =\{(\overrightarrow{0}, 0, \beta) \in G: \beta \in E\} \tag{9}\\
A^{*}(\infty) & =\left\{(\overrightarrow{0}, c, \beta) \in G: c \in F, \beta \in F^{2}\right\}
\end{align*}
$$

And for $t \in F$,

$$
\begin{align*}
A(t) & =\left\{\left(\alpha, \sqrt{\alpha A_{t} \alpha^{T}}, y_{t} \alpha\right) \in G: \alpha \in F\right\}, \tag{10}\\
A^{*}(t) & =\left\{\left(\alpha, c, y_{t} \alpha\right) \in G: \alpha \in E, c \in F\right\}
\end{align*}
$$

Clearly $\mathcal{F}=\{A(t): t \in F \cup\{\infty\}\}$ yields a GQ $\mathcal{S}(G, \mathcal{F})$ isomorphic to $\mathcal{S}(\bar{G}, \overline{\mathcal{F}})$. The revised description $\mathcal{S}(G, \mathcal{F})$ makes it easy to recognize subquadrangles.

2 Subquadrangles and ovals

Let \mathcal{C} be a q-clan (normalized as in equation (3)) with corresponding 4 -gonal family \mathcal{F} for G (in the revised form just given), etc., and let $\mathcal{S}=\mathcal{S}(G, \mathcal{F})$ be the associated GQ. For $\overrightarrow{0} \neq \alpha \in E$, put

$$
\begin{equation*}
G_{\alpha}=\{(a \alpha, c, b \alpha) \in G: a, b, c \in F\} . \tag{11}
\end{equation*}
$$

Since $\alpha \circ \beta=0$ if $\beta=c \alpha, c \in F$, in G_{α} we have

$$
\begin{equation*}
(a \alpha, c, b \alpha) \cdot\left(a^{\prime} \alpha, c^{\prime}, b^{\prime} \alpha\right)=\left(\left(a+a^{\prime}\right) \alpha, c+c^{\prime},\left(b+b^{\prime}\right) \alpha\right) . \tag{12}
\end{equation*}
$$

So G_{α} is an elementary abelian group with order q^{3}. Define the following subgroups of G_{α} :

$$
\begin{align*}
& A_{\alpha}(\infty)=A(\infty) \cap G_{\alpha}=\{(\overrightarrow{0}, 0, b \alpha) \in G: b \in F\} \tag{13}\\
& A_{\alpha}^{*}(\infty)=A^{*}(\infty) \cap G_{\alpha}=\{(\overrightarrow{0}, c, b \alpha) \in G: c, b \in F\}
\end{align*}
$$

And for $t \in F$,

$$
\begin{align*}
& A_{\alpha}(t)=A(t) \cap G_{\alpha}=\left\{\left(a \alpha, a \sqrt{\alpha A_{t} \alpha^{T}}, a t \alpha\right) \in G: a \in F\right\} \tag{14}\\
& A_{\alpha}^{*}(t)=A^{*}(t) \cap G_{\alpha}=\{(a \alpha, c, a t \alpha) \in G: a, c \in F\}
\end{align*}
$$

Here $\mathcal{F}_{\alpha}=\left\{A_{\alpha}(t): t \in F \cup\{\infty\}\right\}$ is immediately seen to be a 4-gonal family for G_{α}. Moreover, by [6] we may view $\mathcal{S}_{\alpha}=\mathcal{S}\left(G_{\alpha}, \mathcal{F}_{\alpha}\right)$ as a subquadrangle (of order
q) of $\mathcal{S}=\mathcal{S}(G, \mathcal{F})$. Clearly G_{α} is isomorphic to F^{3} under componentwise addition. Moreover, we can define a scalar multiplication on G_{α} by

$$
\begin{equation*}
d(a \alpha, c, b \alpha)=(d a \alpha, d c, d b \alpha), a, b, c, d \in F \tag{15}
\end{equation*}
$$

Then it is also clear that \mathcal{F}_{α} is an oval in the projective plane naturally associated with the 3 -dimensional F-linear space G_{α}.

Consider the three projective points $p_{1}=(\alpha, 0, \overrightarrow{0}), p_{2}=(\overrightarrow{0}, 1, \overrightarrow{0}), p_{3}=(\overrightarrow{0}, 0, \alpha)$. The scalar triple $\left(1, \sqrt{\alpha A_{t} \alpha^{T}}, t\right)$ on the points p_{1}, p_{2} and p_{3} results in $(\alpha, 0, \overrightarrow{0}) \cdot\left(\overrightarrow{0}, \sqrt{\alpha A_{t} \alpha^{T}}, \overrightarrow{0}\right) \cdot(\overrightarrow{0}, 0, t \alpha)=\left(\alpha, \sqrt{\alpha A_{t} \alpha^{T}}, t \alpha\right) \leftrightarrow A_{\alpha}(t)$ considered as a projective point. Hence the oval \mathcal{F}_{α} is the set of $q+1$ points represented by the following set of triples of coordinates:

$$
\begin{equation*}
\mathcal{O}_{\alpha}=\{(0,0,1)\} \cup\left\{\left(1, \sqrt{\alpha A_{t} \alpha^{T}}, t\right): t \in F\right\}, \text { with nucleus }(0,1,0) \tag{16}
\end{equation*}
$$

We say that the map $t \mapsto \sqrt{\alpha A_{t} \alpha^{T}}$ is an \mathcal{O}-permutation. Specifically, a permutation $\gamma: F \rightarrow F$ is an \mathcal{O}-permutation provided
(i) $\gamma: 0 \mapsto 0$, and
(ii) $\frac{s^{\gamma}-t^{\gamma}}{s-t} \neq \frac{s^{\gamma}-u^{\gamma}}{s-u}$
whenever s, t and u are distinct members of F.
Note. This language is suggested by the term \mathcal{O}-polynomial in [2], except that we find it more convenient NOT to require that γ be normalized so that $\gamma: 1 \mapsto 1$. (We could also avoid $\gamma: 0 \mapsto 0$, but this holds in all the specific examples we consider.)

For $\alpha=\left(a_{1}, a_{2}\right) \neq(0,0), A_{t}=\left(\begin{array}{cc}x_{t} & t \\ 0 & z_{t}\end{array}\right)$, the above becomes

$$
\begin{equation*}
t \mapsto a_{1} \sqrt{x_{t}}+\sqrt{a_{1} a_{2}} \sqrt{t}+a_{2} \sqrt{z_{t}} \text { is an } \mathcal{O} \text {-permutation. } \tag{18}
\end{equation*}
$$

In the next section it will be convenient to represent q-clans in the form $\mathcal{C}=$ $\left\{A_{t}=\left(\begin{array}{cc}f(t) & t^{1 / 2} \\ 0 & g(t)\end{array}\right): t \in F\right\}$. If $\sigma: x \mapsto x^{2}$ is the Frobenius automorphism of F, then clearly $\mathcal{C}^{\sigma}=\left\{A_{t}^{\sigma}=\left(\begin{array}{cc}f(t)^{2} & t \\ 0 & g(t)^{2}\end{array}\right): t \in F\right\}$ is also a q-clan, so

$$
\begin{equation*}
t \mapsto a^{2} f(t)+a b t^{1 / 2}+b^{2} g(t) \tag{19}
\end{equation*}
$$

is an \mathcal{O}-permutation whenever $(a, b) \neq(0,0)$.
Note. T. Penttila (private communication) has given a direct proof of (19) without mentioning GQ.

Using standard notation for the GQ $\mathcal{S}=\mathcal{S}(G, \mathcal{F})$, let Γ be the dual grid spanned by the points (∞) and $(\overrightarrow{0}, 0, \overrightarrow{0})$. All the subquadrangles \mathcal{S}_{α} constructed above contain Γ. We know that two subquadrangles of order q in \mathcal{S} that have a dual grid (with $2(q+1)$ points) in common must have in common just the points and lines of that dual grid. Hence \mathcal{S}_{α} and \mathcal{S}_{β} are identical if $\{\alpha, \beta\}$ is F-dependent, and they meet in Γ otherwise. It follows that we have constructed a family of $q+1$ subquadrangles \mathcal{S}_{α} of order q pairwise intersecting in Γ.

3 Collineations

Suppose without loss of generality that the matrices of the q-clan \mathcal{C} are given in the form $A_{t}=\left(\begin{array}{cc}f(t) & t^{1 / 2} \\ 0 & g(t)\end{array}\right), t \in F$, with $f(0)=g(0)=0$ and $f(1)=1$. Then $K_{t}^{-1} A_{t} K_{t}^{-1} \equiv\left(\begin{array}{cc}t^{-1} g(t) & t^{-1 / 2} \\ 0 & t^{-1} f(t)\end{array}\right)$. Starting with the paragraph following equation (5), it is straightforward to prove the following.

Theorem 3.1 If $f\left(t^{-1}\right)=t^{-1} g(t)$ (equivalently, $g\left(t^{-1}\right)=t^{-1} f(t)$), then the automorphism $\theta: G \rightarrow G:(\alpha, c, \beta) \mapsto\left(\beta P, c+\sqrt{\alpha P \beta^{T}}, \alpha P\right)$ induces a collineation of $\mathcal{S}(G, F)$ that interchanges $A(\infty)$ and $A(0)$, and interchanges $A(t)$ and $A\left(t^{-1}\right)$ for $0 \neq t \in F$.

We now recall a result from [7], but modified to fit our group G introduced at the end of section 1 .

Theorem 3.2 Let $\mathcal{C}=\left\{A_{t}: t \in F\right\}$ be a q-clan with $A_{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. Let θ be a collineation of the $\mathrm{GQ} \mathcal{S}=\mathcal{S}(G, \mathcal{F})$ derived from \mathcal{C} which fixes the point (∞), the line $[A(\infty)]$ and the point $(\overrightarrow{0}, 0, \overrightarrow{0})$. Then the following must exist:
(i) A permutation $t \mapsto t^{\prime}$ of the elements of F;
(ii) $\lambda \in F, \lambda \neq 0$;
(iii $\sigma \in \operatorname{Aut}(F)$;
(iv) $D \in \mathrm{GL}(2, q)$ for which $A_{t^{\prime}} \equiv \lambda D^{T} A_{t}^{\sigma} D-A_{0^{\prime}}$ for all $t \in F$.

Conversely, given σ, D, λ and a permutation $t \mapsto t^{\prime}$ satisfying the above conditions, the following automorphism θ of G induces a collineation of $\mathcal{S}(G, \mathcal{F})$ fixing (∞), $[A(\infty)]$ and $(\overrightarrow{0}, 0, \overrightarrow{0})$:

$$
\begin{align*}
& \theta=\theta(\sigma, D, \lambda): G \rightarrow G: \tag{20}\\
&(\alpha, c, \beta) \mapsto\left(\lambda^{-1} \alpha^{\sigma} D^{-T}, \lambda^{-1 / 2} c^{\sigma}+\lambda^{-1} \sqrt{\alpha^{\sigma} D^{-T} A_{0^{\prime}} D^{-1}\left(\alpha^{\sigma}\right)^{T}},\right. \\
&\left.\beta^{\sigma} P D P+\lambda^{-1} y_{0^{\prime}} \alpha^{\sigma} D^{-T}\right) .
\end{align*}
$$

Theorem 3.3 For $A_{t}=\left(\begin{array}{cc}f(t) & t^{1 / 2} \\ 0 & g(t)\end{array}\right)$, the conditions in theorem 3.2 are equivalent to having a permutation $t \mapsto t^{\prime}, 0 \neq \lambda \in F, D=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) \in \operatorname{GL}(2, F)$, $\sigma \in \operatorname{Aut}(F)$, for which
(i) $t^{\prime}=\lambda^{2}(a d+b c)^{2} t^{\sigma}+0^{\prime}$, for all $t \in F$.
(ii) $f\left(t^{\prime}\right)=\lambda\left[a^{2} f(t)^{\sigma}+a b t^{\sigma / 2}+b^{2} g(t)^{\sigma}\right]+f\left(0^{\prime}\right)$, for all $t \in F$.
(iii) $g\left(t^{\prime}\right)=\lambda\left[c^{2} f(t)^{\sigma}+c d t^{\sigma / 2}+d^{2} g(t)^{\sigma}\right]+g\left(0^{\prime}\right)$, for all $t \in F$.

For completeness, we note that right multiplication by elements of G induces a group of q^{5} collineations of $\mathcal{S}(G, \mathcal{F})$ acting regularly on the set of points not collinear with (∞) and fixing each line through (∞).

The Subiaco GQ introduced in [1] all have q-clans of the form used in theorem 3.3 with the following additional specializations:
(i) $\quad f(t)=\frac{f^{\prime}(t)}{k(t)}+H t^{1 / 2}, t \in F$;
(ii) $g(t)=\frac{g^{\prime}(t)}{k(t)}+K t^{1 / 2}, t \in F$; where
(iii) $k(t)$ is the square of an irreducible quadratic polynomial $\left(\right.$ say $\left.k(t)=t^{4}+c_{2} t^{2}+c_{0}\right)$;
(iv) $\quad f^{\prime}(t)$ and $g^{\prime}(t)$ are polynomials over F of degree at most 4 with $f^{\prime}(0)=g^{\prime}(0)=0($ and $f(1)=1)$; and
(v) $\quad H$ and K are nonzero elements of F.

Then the conditions of theorem 3.3 can be rewritten.
Theorem 3.4 Suppose $A_{t}=\left(\begin{array}{cc}\frac{f^{\prime}(t)}{k(t)}+H t^{1 / 2} & t^{1 / 2} \\ 0 & \frac{g^{\prime}(t)}{k(t)}+K t^{1 / 2}\end{array}\right)$, $t \in F$, with the conditions of (22) satisfied. Then the conditions in equation (21) of theorem 3.3 take on the following form:
(i) $t^{\prime}=\lambda^{2}(a d+b c)^{2} t^{\sigma}+0^{\prime}$.
(ii) $f^{\prime}\left(t^{\prime}\right) k(t)^{\sigma} k\left(0^{\prime}\right)+\lambda\left(a^{2} f^{\prime}(t)^{\sigma}+b^{2} g^{\prime}(t)^{\sigma}\right) k\left(t^{\prime}\right) k\left(0^{\prime}\right)+k\left(t^{\prime}\right) k(t)^{\sigma} f^{\prime}\left(0^{\prime}\right)$ $+\lambda k\left(t^{\prime}\right) k(t)^{\sigma} k\left(0^{\prime}\right)\left[a^{2} H^{\sigma}+a b+b^{2} K^{\sigma}+H(a d+b c)\right] t^{\sigma / 2}=0$
(iii) $g^{\prime}\left(t^{\prime}\right) k(t)^{\sigma} k\left(0^{\prime}\right)+\lambda\left(c^{2} f^{\prime}(t)^{\sigma}+d^{2} g^{\prime}(t)^{\sigma}\right) k\left(t^{\prime}\right) k\left(0^{\prime}\right)+k\left(t^{\prime}\right) k(t)^{\sigma} g^{\prime}\left(0^{\prime}\right)$ $+\lambda k\left(t^{\prime}\right) k(t)^{\sigma} k\left(0^{\prime}\right)\left[c^{2} H^{\sigma}+c d+d^{2} K^{\sigma}+K(a d+b c)\right] t^{\sigma / 2}$.

In equations (23)(ii) and (iii) replace t^{\prime} with $\lambda^{2}(a d+b c)^{2} t^{\sigma}+0^{\prime}$ and write the resulting expressions as polynomials in t^{σ}. Now square both sides. The terms touched by $t^{\sigma / 2}$ (before squaring) have odd positive integer exponents ≤ 17. The other terms have even exponents ≤ 16. Since $e \geq 5$, the coefficients on $t^{\sigma / 2}$ in equations (23)(ii) and (iii) must be zero. Hence equation (23) can be replaced with
(i) $\left(a^{2} H^{\sigma}+a b+b^{2} K^{\sigma}\right) / H=a d+b c=\left(c^{2} H^{\sigma}+c d+d^{2} K^{\sigma}\right) / K \neq 0$.
(ii) $f^{\prime}\left(t^{\prime}\right) k(t)^{\sigma} k\left(0^{\prime}\right)+\lambda\left[a^{2} f^{\prime}(t)^{\sigma}+b^{2} g^{\prime}(t)^{\sigma}\right] k\left(t^{\prime}\right) k\left(0^{\prime}\right)=k\left(t^{\prime}\right) k(t)^{\sigma} f^{\prime}\left(0^{\prime}\right)$.
(iii) $g^{\prime}\left(t^{\prime}\right) k(t)^{\sigma} k\left(0^{\prime}\right)+\lambda\left[c^{2} f^{\prime}(t)^{\sigma}+d^{2} g^{\prime}(t)^{\sigma}\right] k\left(t^{\prime}\right) k\left(0^{\prime}\right)=k\left(t^{\prime}\right) k(t)^{\sigma} g^{\prime}\left(0^{\prime}\right)$.

4 Subiaco GQ with $q=2^{e}$, e odd

From now on we assume $F=\operatorname{GF}(q), q=2^{e}, e$ odd and $e \geq 5$. So $1+t^{2}+t^{4} \neq 0$ for all $t \in F . \mathcal{C}=\left\{A_{t}=\left(\begin{array}{cc}h(t)+t^{1 / 2} & t^{1 / 2} \\ 0 & t^{2} h(t)+t^{1 / 2}\end{array}\right): t \in F\right\}$, where $h(t)=$ $\left(t+t^{2}\right) /\left(1+t^{2}+t^{4}\right)$. Let \mathcal{F} denote the corresponding 4-gonal family for G, and let $\mathcal{S}=\mathcal{S}(\mathcal{C})=\mathcal{S}(G, \mathcal{F})$ be the associated GQ. This example arises as a specialization of the general construction of Subiaco GQ in [1].

Theorem 4.1 Each $\sigma \in$ Aut (F) induces a collineation of \mathcal{S} fixing $[A(\infty)]$ and mapping $[A(t)]$ to $\left[A\left(t^{\sigma}\right)\right]$ for $t \in F$.

Proof. Clearly $f(t)^{\sigma}=f\left(t^{\sigma}\right)$ and $g(t)^{\sigma}=g\left(t^{\sigma}\right)$. In equation (21) put $\lambda=a=d=$ $1, b=c=0^{\prime}=0$. Then the conditions are all satisfied with $t^{\prime}=t^{\sigma}$.

Theorem 4.2 There is a collineation of \mathcal{S} interchanging $[A(\infty)]$ and $[A(0)]$ and interchanging $[A(t)]$ and $\left[A\left(t^{-1}\right)\right]$ for $0 \neq t \in F$.

Proof. Check that $f\left(t^{-1}\right)=t^{-1} g(t)$, with $f(t)=h(t)+t^{1 / 2}$ and $g(t)=t^{2} h(t)+t^{1 / 2}$, and use theorem 3.1.

From the form of f and g we know that \mathcal{S} is not classical. (Alternatively, we will show that the group of collineations fixing the point (∞) and the line $[A(\infty)]$ is not transitive on the other lines through (∞).) Hence the point (∞) is fixed by the full collineation group of \mathcal{S} (cf. [9]). And because of theorem 4.1, to find all collineations fixing $[A(\infty)]$, it suffices to find all solutions of equation (24) (since the q-clan of this section has the form given in theorem 3.4 with $\sigma=i d$. And we use $g^{\prime}(t)=t^{2} f^{\prime}(t), f^{\prime}(t)=t+t^{2}, t^{\prime}=\lambda^{2}(a d+b c)^{2} t+0^{\prime}$. Now compute $\left(t^{\prime}\right)^{2}$ times equation (24)(ii) added to equation (24)(iii), and divide by $k\left(t^{\prime}\right)$ to obtain:

$$
\begin{align*}
& \lambda\left(t+t^{2}\right) k\left(0^{\prime}\right)\left[a ^ { 2 } \left(\lambda^{4}(a d+b c)^{4} t^{2}+\left(0^{\prime}\right)^{2}\right.\right. \\
&\left.\quad+b^{2} t^{2}\left(\lambda^{4}(a d+b c)^{4} t^{2}+\left(0^{\prime}\right)^{2}\right)+c^{2}+d^{2} t^{2}\right] \\
&=\lambda^{4}(a d+b c)^{4} t^{2}\left(1+t^{2}+t^{4}\right) f^{\prime}\left(0^{\prime}\right) . \tag{25}
\end{align*}
$$

The coefficient on t in equation (25) is $\lambda k\left(0^{\prime}\right)\left[a^{2}\left(0^{\prime}\right)^{2}+c^{2}\right]$, implying

$$
\begin{equation*}
c=a 0^{\prime} \tag{26}
\end{equation*}
$$

The coefficient on t^{2} is then $\lambda k\left(0^{\prime}\right) \lambda^{4}(a d+b c)^{4} f^{\prime}\left(0^{\prime}\right)$, implying $f^{\prime}\left(0^{\prime}\right)=0$. Hence

$$
\begin{equation*}
0^{\prime} \in\{0,1\} . \tag{27}
\end{equation*}
$$

The coefficient on t^{5} is $\lambda k\left(0^{\prime}\right) b^{2} \lambda^{4}(a d+b c)$, implying

$$
\begin{equation*}
b=0 \text { and } a d \neq 0 \tag{28}
\end{equation*}
$$

Then from equation (24)(i), $a^{2}=a d$, so

$$
\begin{equation*}
a=d \tag{29}
\end{equation*}
$$

Now equation (25) appears as $\lambda\left(t+t^{2}\right) k\left(0^{\prime}\right)\left[a^{2} \lambda^{4} a^{8} t^{2}+a^{2} t^{2}\right]=0$, from which we conclude

$$
\begin{equation*}
\lambda a^{2}=1 \tag{30}
\end{equation*}
$$

We now have established the following:

$$
\begin{align*}
\text { (i) } & 0^{\prime} \in\{0,1\} \\
\text { (ii) } & c=a 0^{\prime} \\
\text { (iii) } & b=0 \neq a=d \tag{31}\\
\text { (iv) } & \lambda a^{2}=1 .
\end{align*}
$$

A straightforward check shows that if the conditions of equation (31) all hold, then the conditions of equation (24) all hold with $t^{\prime}=t+0^{\prime}$. This establishes the following:

Theorem 4.3 The group of collineations of \mathcal{S} fixing $[A(\infty)]$ and $(\overrightarrow{0}, 0, \overrightarrow{0})$ (and of course $(\infty))$ has order $2 e(q-1)$ and has $\{[A(0)],[A(1)]\}$ as an orbit.

At this point, including collineations induced by right multiplication by elements of G, we have a group of collineations of $\mathcal{S}=\mathcal{S}(G, \mathcal{F})$ with order $6 e(q-1) q^{5}$, and which as a permutation group acting on the set of indices of the lines through the point (∞) includes the following:
(i) For $\sigma \in \operatorname{Aut}(F), \sigma: \infty \mapsto \infty$ and $\sigma: t \mapsto t^{\sigma}$ for $t \in F$.
(ii) $\theta: \infty \leftrightarrow 0$, and $\theta: t \leftrightarrow t^{-1}$ for $0 \neq t \in F$.
(iii) $\phi: \infty \leftrightarrow \infty$, and $\phi: t \mapsto t+1$ for $t \in F$.

The set $\{\infty, 0,1\}$ is invariant under the permutations exhibited in equation (32). $\mathcal{S}_{3} \cong\langle\theta, \phi\rangle$ has $\{\infty, 0,1\}$ as one orbit, and for $t \in F \backslash\{0,1\}$ has $\Omega_{t}=\{t, t+1,(t+$ $\left.1)^{-1}, t /(t+1),(t+1) / t, t^{-1}\right\}$ as an orbit. Note that $\left|\Omega_{t}\right|=6$ since $q=2^{e}$ with e odd. But the automorphisms $\sigma \in \operatorname{Aut}(F)$ act on the Ω_{t} differently for different t and different e.

For example, when $e=5$, there are five disjoint Ω_{t} on which $\operatorname{Aut}(F)$ acts transitively: $\Omega_{t} \cap \Omega_{t^{\sigma}} \neq \phi$ if and only if $\sigma=i d$. So in this case (i.e., $q=32$), the collineation group of \mathcal{S} either has two orbits on the lines through the point (∞) (one of which is $\{[A(\infty)],[A(0)],[A(1)]\}$), or it has just one orbit. (We will show in section 5 that the full collineation group is transitive on the set of $q+1$ lines through (∞) for all odd $e \geq 5$.)

Note. If $3 \mid e$, then $x^{3}+x^{2}+1=0$ has a root $t_{0} \in F$. In this case $\Omega_{t_{0}}$ is broken into two orbits under Aut (F), since for each $t \in \Omega_{t_{0}}, t^{2}=(t+1)^{-1}$.

5 Recoordinatizing the GQ

Start with the standard form of the q-clan given at the beginning of section 4. Fix $w \in F$. The idea is to let w play the role of ∞, i.e., w plays the role of t_{0} in equation (6).

$$
\begin{align*}
& \mathcal{C}^{w}=\left\{A_{t}^{w}=\left(\begin{array}{cc}
\frac{h(t)+h(w)}{t+w}+(t+w)^{-1 / 2} & (t+w)^{-1 / 2} \\
0 & \frac{t^{2} h(t)+w^{2} h(w)}{t+w}+(t+w)^{-1 / 2}
\end{array}\right): w \neq t \in F\right\} \\
& \cup\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right\} . \tag{33}
\end{align*}
$$

Put $x=(t+w)^{-1}$, so $t=w+x^{-1}$, and substitute into equation (33) to obtain

$$
\mathcal{C}^{w}=\left\{A_{x}^{w}=\left(\begin{array}{cc}
f^{w}(x)+x^{1 / 2} & x^{1 / 2} \tag{34}\\
0 & g^{w}(x)+x^{1 / 2}
\end{array}\right): x \in F\right\}
$$

where
(i) $\quad f^{w}(x)=f^{\prime}(x) / k(x), g^{w}(x)=g^{\prime}(x) / k(x)$, and
(ii) $f^{\prime}(t)=t^{4}\left(1+w^{2}+w^{4}\right)+t^{3}\left(1+w+w^{4}\right)+t\left(w+w^{2}\right)$,
(iii) $g^{\prime}(t)=t^{4}\left(w^{2}+w^{4}+w^{6}\right)+t^{3}\left(w+w^{4}+w^{5}\right)$
$+t^{2}\left(1+w^{2}+w^{4}\right)+t\left(1+w^{2}+w^{3}\right)$,
(iv) $k(t)=t^{4}\left(1+w^{2}+w^{4}\right)^{2}+\left(t^{2}+1\right)\left(1+w^{2}+w^{4}\right)$.

If there is a collineation of the GQ \mathcal{S} (with q-clan in standard form) mapping $[A(\infty)]$ to $[A(w)]$, then there must be a collineation $\theta=\theta(\sigma, D, \lambda)$ (in the new coordinatization) which is an involution fixing $[A(\infty)]$ and interchanging all other lines through (∞) in pairs. So there is an involution θ of the form

$$
\begin{align*}
& \theta:(\alpha, c, \beta) \mapsto \tag{36}\\
& \quad\left(\lambda^{-1} \alpha^{\sigma} D^{-T}, \lambda^{-1 / 2} c^{\sigma}+\lambda^{-1} \sqrt{\alpha^{\sigma} D^{-T} A_{0^{\prime}} D^{-1}\left(\alpha^{\sigma}\right)^{T}} \beta^{\sigma} P D P+\lambda^{-1} y_{0^{\prime}} \alpha^{\sigma} D^{-T}\right),
\end{align*}
$$

with $D=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) \in \operatorname{GF}(2, q)$.
Since theorem 3.4 applies (with the new coordinates), equation (24)(i) holds with $H=K=1$.

$$
\begin{equation*}
a d+b c=a^{2}+a b+b^{2}=c^{2}+c d+d^{2} \tag{37}
\end{equation*}
$$

Compute the effect of $\theta^{2}=i d$ on $(\overrightarrow{0}, c, \overrightarrow{0}) \in G:(\overrightarrow{0}, c, \overrightarrow{0})=\left(\overrightarrow{0}, \lambda^{-(\sigma+1) / 2} c^{\sigma^{2}}, \overrightarrow{0}\right)$ for all $c \in F$. This implies $\sigma^{2}=i d$, so $\sigma=i d$ since e is odd, and also $\lambda=1$. Similarly, $i d=\theta^{2}:(\overrightarrow{0}, 0, \beta) \mapsto\left(\overrightarrow{0}, 0, \beta(P D P)^{2}\right)$ for all $\beta \in F^{2}$, implying $D^{2}=I$. This implies $a=d$ and $1=\operatorname{det}(D)=a^{2}+b c=a^{2}+a b+b^{2}=a^{2}+a c+c^{2}$, forcing $1-a^{2}=b c=a b+b^{2}=a c+c^{2}$. Hence $b(a+b+c)=c(a+b+c)=0$. Suppose first that $a+b+c \neq 0$. Then $D=I$, and from the fact that the coefficient on $t^{\sigma}=t$ in equation (24)(ii) must be 0 it follows that $0^{\prime}=0$. This means that θ is not the involution we seek, hence $a+b+c=0$.

The coefficients on $\left(t^{\sigma}\right)^{7}=t^{7}$ in equation (24)(ii) and (iii) must both be 0 . This leads to a system of two linear equations in a^{2} and b^{2} which is easily solved. And then $c^{2}=a^{2}+b^{2}$ leads to the following:

Put $v=\left(1+w+w^{2}\right)^{1 / 2}$. Then

$$
\begin{align*}
\text { (i) } & a=d=\left(1+w^{5}\right) / v^{5}, \\
\text { (ii) } & b=\left(1+w+w^{4}\right) / v^{5}, \tag{38}\\
\text { (iii) } & c=\left(w+w^{4}+w^{5}\right) / v^{5} .
\end{align*}
$$

Finally, considering the coefficient of $t^{\sigma}=t$ in equation (24)(ii), we compute

$$
\begin{equation*}
0^{\prime}=1 / v^{2} \tag{39}
\end{equation*}
$$

It is now a tedious but uninspired task to show that the unique possible involution θ determined by equations (38) and (39) does satisfy the conditions of equation (24). Tracing back through the recoordinatization process, we find that the involution θ induces the following permutation on the indices of the lines through (∞) in the original coordinatization of section 4:

$$
\begin{equation*}
t \mapsto\left(t\left(1+w^{2}\right)+w^{2}\right) /\left(t+1+w^{2}\right) \tag{40}
\end{equation*}
$$

In particular, $\infty \leftrightarrow 1+w^{2}$ and $w \leftrightarrow w$. Here w can be any element of F, and $w=1$ gives the original involution found in theorem 4.2. This proves the following:

Theorem 5.1 The full collineation group \mathcal{G} of the GQ given in section 4 (with $q \geq 32$) has order $2 e\left(q^{2}-1\right) q^{5}$ and acts transitively on the lines through the point (∞).

6 The Action of \mathcal{G} on the subquadrangles \mathcal{S}_{α}

The action of the full collineation group \mathcal{G} on the subquadrangles \mathcal{S}_{α} is determined by its action on the subgroups G_{α}. Clearly the stabilizer \mathcal{G}_{0} of the point $(\overrightarrow{0}, 0, \overrightarrow{0})$ must leave the dual grid Γ invariant, so it must permute the \mathcal{S}_{α} among themselves.

Let $w \in F$. Then the map ϕ_{w} defined by

$$
\begin{equation*}
\phi_{w}: G \rightarrow G:(\alpha, c, \beta) \mapsto\left(\left(y_{w} \alpha+\beta\right) P, c+\sqrt{\alpha A_{w} \alpha^{T}+\alpha P \beta^{T}}, \alpha P\right) \tag{41}
\end{equation*}
$$

is an automorphism of G that corresponds to the recoordinatization of section 5. It is convenient to have its inverse

$$
\begin{equation*}
\phi_{w}^{-1}: G \rightarrow G:(\gamma, d, \delta) \mapsto\left(\delta P, d+\sqrt{\delta P A_{w} P \delta^{T}+\delta P \gamma^{T}},\left(y_{w} \delta+\gamma\right) P\right) \tag{42}
\end{equation*}
$$

Now consider an involution of the recoordinatized GQ of the type $\theta_{w}=\theta_{w}(i d, D, 1)$ with D as in equation (38). For such a $D, P D^{-T} P=D$ and $P D P=D^{T}=D^{-T}$.

$$
\begin{align*}
\theta_{w}: G & \rightarrow G: \\
(\alpha, c, \beta) & \mapsto\left(\alpha D^{-T}, c+\sqrt{\alpha D^{-T} A_{0^{\prime}} D^{-1} \alpha^{T}},\left(\beta+0^{\prime} \alpha\right) D^{-T}\right), \tag{43}
\end{align*}
$$

with $0^{\prime}=\left(1+w+w^{2}\right)^{-1}$.
Then $\bar{\theta}_{w}=\phi_{w} \circ \theta_{w} \circ \phi_{w}^{-1}$ (doing ϕ_{w} first) as an automorphism of G is an involution of the GQ \mathcal{S} expressed in the original coordinates. To consider its effect on the G_{α} we do not need to compute the middle coordinate.

$$
\begin{equation*}
\bar{\theta}_{w}:(\alpha, c, \beta) \mapsto\left(\left(\alpha+0^{\prime}\left(y_{w} \alpha+\beta\right)\right) D,-, 0^{\prime} y_{w}^{2} \alpha D+\left(y_{w} 0^{\prime}+1\right) \beta D\right) . \tag{44}
\end{equation*}
$$

From equation (44) it is clear that $G_{\alpha} \rightarrow G_{\alpha D}$.
From here on we use just the group \mathcal{G}_{0}. The stabilizer $\mathcal{G}_{0, \infty}$ of $[A(\infty)]$ (see theorem 4.3) has order $2 e(q-1)$, and for $0 \neq a \in F, \sigma \in \operatorname{Aut}(F), 0^{\prime} \in\{0,1\}$, consists of the following maps:

$$
\begin{equation*}
(\alpha, c, \beta) \mapsto\left(a \alpha^{\sigma} K, a c^{\sigma}+a \sqrt{\alpha^{\sigma} K A_{0^{\prime}} K^{T}\left(\alpha^{\sigma}\right)^{T}}, a\left(\beta^{\sigma}+0^{\prime} \alpha^{\sigma}\right) K\right), \tag{45}
\end{equation*}
$$

with

$$
K=\left(\begin{array}{cc}
1 & 0 \\
0^{\prime} & 1
\end{array}\right)
$$

Put $\alpha=(0,1)$ and determine the stabilizer of this α. Since $\alpha K=\left(0^{\prime}, 1\right)$, the stabilizer of α in $\mathcal{G}_{0, \infty}$ has order $e(q-1)$, since 0^{\prime} must be 0 . Write $D(w)$ for the D given by equation (38). The collineations $\theta(i d, D(w), 1)$ are coset representatives for those cosets of $\mathcal{G}_{0, \infty}$ in \mathcal{G}_{0} different from $\mathcal{G}_{0, \infty}$. So to find the stabilizer of α in $\mathcal{G}_{0, \infty} \cdot D(w)$ we consider $\alpha K D(w)=\left(0^{\prime}, 1\right) \cdot D(w)=\left(0^{\prime}\left(1+w^{5}\right)+1+w+w^{4}, 0^{\prime}(w+\right.$ $\left.\left.w^{4}+w^{5}\right)+1+w^{5}\right) /\left(1+w+w^{2}\right)^{5 / 2}$. The first coordinate is 0 if and only if $0^{\prime}=1$ and $w=0$. So there are $e(q-1)$ such collineations, implying that the stabilizer of G_{α} in \mathcal{G}_{0} has order $2 e(q-1)$. As \mathcal{G}_{0} has order $2 e\left(q^{2}-1\right), \mathcal{G}_{0}$ is transitive on the set of $q+1 G_{\alpha}$, and hence on the $q+1 \mathcal{S}_{\alpha}$ as well, implying also that only one oval arises.

References

[1] W. Cherowitzo, T. Penttila, I. Pinneri, and G. Royle. Flocks and ovals. In preparation.
[2] W. E. Cherowitzo. Hyperovals in Desarguesian planes of even order. Ann. Discrete Math., 37, pp. 87-94, 1988.
[3] W. M. Kantor. Some generalized quadrangles with parameters $\left(q^{2}, q\right)$. Math Z., 192, pp. 45-50, 1986.
[4] S. E. Payne. A new family of generalized quadrangles. Congr. Numer, 49, pp. 115-128, 1985.
[5] S. E. Payne. An essay on skew translation generalized quadrangles. Geom. Dedicata, 32, pp. 93-118, 1989.
[6] S. E. Payne and C. C. Maneri. A family of skew-translation generalized quadrangles of even order. Congr. Numer., 36, pp. 127-135, 1982.
[7] S. E. Payne and L. A. Rogers. Local group actions on generalized quadrangles. Simon Stevin, 64, pp. 249-284, 1990.
[8] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles, volume 104 of Research Notes in Mathematics. Pitman, 1984.
[9] S. E. Payne and J. A. Thas. Conical flocks, partial flocks, derivation, and generalized quadrangles. Geom. Dedicata, 38, pp. 229-243, 1991.
[10] J. A. Thas. Generalized quadrangles and flocks of cones. Europ. J. Combinatorics, 8, pp. 441-452, 1987.

S. E. Payne

Department of Mathematics
CU-Denver Camp Box 170
PO Box 173364
Denver CO 80217-3364
USA.

[^0]: Received by the editors in February 1994
 AMS Mathematics Subject Classification : Primary 51E12, Secondary 05B25
 Keywords : Generalized quadrangles, q-clan geometry, flocks

