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Abstract

The generating rank is determined for the (long) root subgroup geometries of
SL(n, F),Ω+(2n, F), Ω(2n+ 1, F), and Ω−2n(F) where F is a finite prime field.
In each instance the generating rank is equal to the universal embedding
dimension. We also include a survey of other Lie incidence geometries for
which the generating rank is known.

1 Introduction

We assume the reader is familiar with the basic definitions related to a linear inci-
dence system or point-line geometry, Γ = (P, L). As a standard reference see [4]. In
particular, the concepts of a subspace in Γ, and the subspace 〈X〉Γ generated by a
subset X of P. We define the generating rank, gr(Γ), of a point-line geometry Γ to
be min{|X| ⊂ P |〈X〉Γ = P}, that is, the minimal cardinality of a generating set of
Γ.

We further assume familarity with the concept of a projective embedding e : P →
PG(V ) of a point-line geometry Γ = (P, L) as well as the notion of a relatively
universal embedding. We say that Γ is embeddable if some projective embedding of
Γ exists. When this is the case we shall define the embedding rank, er(Γ), of Γ to
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the maximal dimension of a vector space V for which there exists an embedding into
PG(V ). An immediate consequence of these definions is the following:

Lemma 1.1. Let Γ = (P, L) be an embeddable point-line geometry and let e : P →
PG(V ) be an embedding.

(i) dim(V ) ≤ gr(Γ). Consequently, er(Γ) ≤ gr(Γ).

(ii) If dim(V ) = gr(Γ) then e is relatively universal.

When the generating and embedding ranks are equal we say that the geometry Γ
has a basis (see [11]). In this paper we shall investigate several classes of embeddable
point-line geometries, specifically the (long) root subgroup geometries of the classical
groups - SL(nF), Ω±(2n,F), and Ω(2n + 1,F) - when the field F is finite of prime
order, and determine their generating ranks. Specifically, we prove

Theorem 1.2. Let F be a finite field of prime order.
(i) For n ≥ 3 the generating rank of the root subgroup geometry of SL(n,F) is

n2 − 1.
(ii) Let G = Ω(k,F) be a orthogonal group of isometries for a non-singular

orthogonal space of dimension k and Witt index n ≥ 3 (so k ∈ {2n, 2n + 1, 2n + 2}.
Then the generating rank of the long root subgroup geometry of G is

(
n
2

)
.

In all cases the generating and embedding ranks are equal. As we shall see it is
quite clear that these geometries have embeddings with the respective dimensions
n2−1,

(
k
n

)
and consequently, our result provides a simple proof that these embeddings

are relatively universal and that these are the universal embedding dimensions.

It does not appear to be the case, however, that the embedding dimension and
the generating rank are always equal for embeddable geometries: at least for odd
characteristic as it is likely that the usual G2(p) generalized hexagon, p an odd
prime, is a counterexample. However, on the basis of the evidence collected thus far
for the prime p = 2 we do make the following

Conjecture 1.3. If Γ = (P, L) is a finite embeddable F2 geometry then the embed-
ding rank of Γ is equal to the generating rank of Γ: gr(Γ) = er(Γ).

The outline of this paper is as follows: In section two we record some lemmas on
the generation of projective spaces and orthogonal polar spaces which will be used
in the subsequent sections. In section three we very briefly review the definition of
the long root subgroup geometry of a Chevalley group and identify the long root
subgroups in the special linear and orthogonal groups. In section four we investigate
the generation of the root subgroup geometry of the group SL(n,F),F a finite prime
field. In section five we determine the generating rank of the long root subgroup
geometry of Ω+(2n,F). The following section deals with the generation of the root
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subgroup geometry of Ω(2n + 1,F). Section seven deals with the case of Ω−(2n,F).
Finally, in section eight we survey all further instances known to us in which the
generating rank of a Lie incidence geometry has been determined.

2 Generating Projective Space and Classical Polar Spaces

Here we record some basic lemmas on the generation of an n − 1 dimensional pro-
jective space and the polar space of singular points and totally singular lines in
orthogonal space. The first lemma is obvious:

Lemma 2.1. Let V be an n−dimensional vector space over an arbitrary field. Let
P consist of the one dimensional spaces and L the two dimensional spaces, the latter
identified with the elements of P which it contains. Then er(P, L) = n.

We next take up the generation of non-degenerate orthogonal spaces and for
completeness include a general definition and recall some basic concepts. Thus, an
orthogonal space consists of a pair (V, Q) where V is a vector space over a field F
and Q : V → F is a quadratic form, that is, it satisfies

(1) Q(αv) = α2Q(v) for all α ∈ F, v ∈ V ; and

(2) The map (, ) : V × V → F defined by (v, w) = Q(v + w) −Q(v)−Q(w) is a
symmetric bilinear form.

We say two vectors are perpendicular or orthogonal and write v ⊥ w if (v, w) = 0.
We say that Q is non-degenerate if (, ) is non-degenerate, that is, if for every v ∈
V, v 6= 0 there is a w ∈ V such that (v, w) 6= 0. We say that Q is non-singular if
either it is non-degenerate or if dim V = 2k+1 and there is a unique one dimensional
space 〈v〉 with v ⊥ V and Q(v) 6= 0. This case can only occur if the characteristic
of F is two.

For a subspace U we set U⊥ = {v ∈ V |v ⊥ u, ∀u ∈ U}. A subspace U of V is
(totally) singular if Q(u) = 0 for all u ∈ U. Assume that n ≥ 3. It is well known that
the dimension of a totally singular subspace cannot exceed [dimV

2
] and all maximal

singular subspaces have the same dimension, called the Witt index of the form. We
will be concerned here with three types of non-singular orthogonal spaces and since
our ground field is finite we may assume it takes one of the following forms:

(1) (V, Q) is non-degenerate, dim V = 2n is even, the Witt index is n. In this
case we can find a basis xi, yi, 1 ≤ i ≤ n of singular vectors such that xi ⊥ xj, xi ⊥
yj, yi ⊥ yj, i 6= j, (xi, yi) = 1. This is called a hyperbolic space and such a basis is
referred to as a hyperbolic basis.

(2) (V, Q) is non-singular, dim V = 2n + 1 is odd, the Witt index is n. In this
case we can find a basis of singular vectors xi, yi, 1 ≤ i ≤ n − 1, zj, 1 ≤ j ≤ 3 such
that xi ⊥ xj, yj, zk; yi ⊥ yj, zk for i 6= j, k = 1, 2, 3, (xi, yi) = 1, 1 ≤ i ≤ n − 1, and
(z1, z2) = (z1, z3) = (z2, z3) = 1.
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(3) (V, Q) is non-degenerate, dim V = 2n + 2 even, the Witt index is n. There
is then a basis of singular vectors xi, yi, 1 ≤ i ≤ n − 1, zj, 1 ≤ j ≤ 4 such that
xi ⊥ xj, yj, zk; yi ⊥ yj, zk for i 6= j, k = 1, 2, 3, 4; (xi, yi) = 1, 1 ≤ i ≤ n − 1,
(zi, zj) = 1 for 1 ≤ i < j ≤ 4 and (i, j) 6= (3, 4), and (z3, z4) = d 6= 0.

The orthogonal polar space has as its points the collection P of singular one
dimensional subspaces and as lines the set L of totally singular two dimensional
subspaces. In the next three lemmas we show the bases given above, in the respec-
tive cases, span a set of singular points which generate the respective geometries.
The first result is well known and can be found in [11] but we include a proof for
completeness.

Lemma 2.2. Assume (V, Q) is as in (1) with n ≥ 2. Then {〈xi〉, 〈yi〉|1 ≤ i ≤ n}
generates (P, L).

Proof: Let Z be the set of points spanned by the basis in (1) and let S be the
subspace of the polar geometry (P, L) generated by these points. Set X = 〈xi|1 ≤
i ≤ n〉, Y = 〈yi|1 ≤ i ≤ n〉. Then V = X ⊕ Y. X, Y are maximal totally singular
subspaces. By (2.1) every point of X and every point of Y is in S. Now let 〈u〉 be an
arbitrary singular point. Then there are unique x ∈ X, y ∈ Y such that u = x + y.
Now 0 = Q(u) = (x, y) so that x ⊥ y. Then 〈u〉 lies on the line 〈x, y〉 ⊂ S. �

Lemma 2.3. Assume that (V, Q) is as in (2) with n ≥ 2. Then {〈xi〉, 〈yi〉|1 ≤ i ≤
n− 1} ∪ {〈zj〉|j = 1, 2, 3} generates (P, L).

Proof: Let Z{〈xi〉, 〈yi〉|1 ≤ i ≤ n−1}∪{〈zj〉|j = 1, 2, 3} and S be the subspace
of P spanned by Z. Let X = 〈xi|1 ≤ i ≤ n − 1〉, Y = 〈yi|1 ≤ i ≤ n − 1〉. For
{i, j, k} = {1, 2, 3} set Ui = X ⊕ Y ⊕ 〈zj, zk〉. The orthogonal spaces (Ui, Q|Ui)
are of type (1). By 2.3 every singular point in Ui, i = 1, 2, 3 is in S. Now suppose
〈u〉 is an arbitrary singular point. Without loss of generality we may assume u
does not belong to Ui, i = 1, 2, 3. Now dim u⊥ is four and, consequently, u⊥ is not
contained in X ⊕ Y + 〈u〉. Since u⊥/〈u〉 is non-singular there must be a singular
point in 〈w〉 in u⊥ such that 〈u, w〉∩ [(X ⊕ Y ) + 〈u〉] = 〈u〉. Now the line 〈u, w〉
intersects each of Ui, i = 1, 2, 3 in a point. These points cannot all be identical
since U1 ∩ U2 ∩ U3 = X ⊕ Y. Suppose Ui ∩ 〈u, w〉 = 〈vi〉, Uj ∩ 〈u, w〉 = 〈vj〉 are
distinct for a some pair i 6= j ∈ {1, 2, 3}. Then 〈vi〉, 〈vj〉 ∈ S and consequently
〈u〉 ∈ 〈u, w〉 = 〈vi, vj〉 ⊂ S. �

Remark: Over a finite field the point-line geometry of any two non-singular
orthogonal spaces of odd dimension are isomorphic.

Lemma 2.4. Assume (V, Q) is as in (3). Let Z = {〈xi〉, 〈yi〉|1 ≤ i ≤ n − 1} ∪
{z1, z2, z3, z4} and let S be the subspace of P generated by Z. Then S = P.

Proof: Set X = 〈xi|1 ≤ i ≤ n − 1〉, Y = 〈yi|1 ≤ i ≤ n − 1〉. For j ∈ {1, 2, 3, 4}
set Uj = X ⊕ Y ⊕ 〈zk|1 ≤ k ≤ 4, k 6= j〉. Then each Uj is non-degenerate. By (2.3)
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and the above remark every singular point contained of Uj, j = 1, 2, 3, 4 is contained
in S. Also, ∩4

j=1Uj = X ⊕ Y. Now let 〈u〉 be an arbitrary singular point. Without
loss of generality 〈u〉 does not belong to any of the Uj . As argued in (2.3) there must
be a singular vector w such that 〈u, w〉∩ [X ⊕ Y + 〈u〉] = 〈u〉. Then 〈u, w〉 cannot
meet all Uj in the same point and by an argument similar to that in (2.3) we get
〈u〉 ∈ S. �

3 The Long Root Subgroup Geometry of Cl assical Gr oups

The following is essentially (12.1) in [1] and is also proved explicitly for the excep-
tional groups in [9]. As an additional reference see [14].

Theorem 3.1. Let G be any finite Chevalley group of rank at least two, other than
2F4(q). Let X and Y be centers of distinct long roots subgroups, of order q. Then
one of the following holds:

(i) 〈X, Y 〉 is elementary Abelian and is the union of q + 1 long roots subgroups
which pairwise intersect trivially;

(ii) 〈X, Y 〉 is elementary Abelian and X ∪ Y are the only long root elements
contained in 〈X, Y 〉;

(iii) 〈X, Y 〉 is isomorphic to a Sylow subgroup of order q3 in SL(3, q), Z =
Z(〈X, Y 〉) is a conjugate long root subgroup (hence conjugate to X and Y ), and
each of XZ, Y Z are a union of q + 1 long roots subgroups as in (i);

(iv) 〈X, Y 〉 ∼= SL(2, q) (or PSL(2, q) in PΩ+(4, q)).

Before proceeding we introduce some notation. If V is a vector space, v ∈ V and
τ : V → V an endomorphism, then [τ, v] = τ (v)− v = (τ − IV )(v). Also, by [τ, V ]
we shall mean the subspace of V spanned by all [τ, v], v ∈ V.

The linear groups, SL(n,F) and the orthogonal groups, Ω±(2n,F), Ω(2n + 1,F)
are Chevalley groups. We now describe the long root subgroups in SL(n,F) ∼=
SL(V ), V an n− dimensional vector space over F. Thus, let 〈v〉 be a one-dimensional
subspace of V and H a hyperplane containing 〈v〉. The group χ(〈v〉, H) = {τ : V →
V |[τ, V ] ⊂ 〈v〉, [τ, H] = 0} is a full root subgroup. The elements of χ(〈v〉, H) are
called transvections with axis H and center 〈v〉. Two such subgroups, χ(〈vi〉, Hi), i =
1, 2 bear the relation (i) of (3.1) if either 〈v1〉 = 〈v2〉 or H1 = H2. In the first instance
the root subgroups partitioning the subgroup they generate, 〈χ(〈v1〉, H1), χ(〈v1〉, H2)〉,
are {χ(〈v1〉, H)|H ⊃ H1 ∩H2}. In the second instance the partition is by the sub-
groups {χ(〈v〉, H1)|〈v〉 ⊂ 〈v1, v2〉}.

We next describe the long root subgroup geometry of an orthogonal group Ω(V )
where (V, Q) is a non-singular orthogonal space of Witt index at least three. Ω(V )
will be the subgroup of O(V ) = {τ : V → V |Q(τ (v)) = Q(V ), ∀v ∈ V } generated
by the root elements. Let U = 〈v, w〉 be a totally singular projective line of V. The
group χ(U) = {τ : V → V |[τ, V ] ⊂ U, [τ, U⊥] = 0} is a long root subgroup. These
are the root subgroups. Two distinct such subgroups, χ(Ui), i = 1, 2, are related as
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in (i) of 3.1 if U1 ∩ U2 6= 0 and U2 ⊂ U⊥1 . In this case if X = U1 ∩ U2, Y = 〈U1, U2〉
then the subgroup 〈χ(U1), χ(U2)〉 is partitioned by {χ(U)|X ⊂ U ⊂ Y } and these
are the lines of the root subgroup geometry.

4 Generating the Root Subgroup Geometry of SL(n,F)

In light of the description given in section two of the root subgroup geometry of
SL(V ), V an n−dimensional vector space over a field F, we can make the following
identification:

Let Πk denote the subspaces of V of dimension k and set P = {(〈v〉, H) ∈
Π1 × Πn−1|v ∈ H}. The lines are then in one-to-one correspondence with

{(U, H) ∈ Π2 × Πn−1|U ⊂ H} ∪ {(〈v〉, M) ∈ Π1 × Πn−2|v ∈M}.

The line corresponding to the first type, (U, H) ∈ Π2×Πn−1 is the set {(〈v〉, H)|v ∈
U} and to the second type, (〈v〉, M), the set {(〈v〉, H)|H ⊂ M}. Thus two points
(〈vi〉, Hi) ∈ P , i = 1, 2 are collinear if and only if either 〈v1〉 = 〈v2〉 in which case the
line on this is the set corresponding to (〈v1〉, H1 ∩H2) or if H1 = H2 and then the
line corresponds to (〈p1, p2〉, H1). We let L be the set of all such lines and denote by
Γ the pair (P ,L). For convenience of notation we set Π = Π1 and H = Πn−1.

It follows from [16] and [17] that for finite fields F the embedding rank of the
root subgroup geometry of SL(n,F) is n2− 1 and consequently the generating rank
of this geometry is at least n2 − 1 by (1.1).

The principal result of this section is part (i) of our main theorem:

Theorem 4.1. Let F be a prime field. Then the root subgroup geometry of SL(n,F)
= SL(V ) has generating rank n2 − 1.

For a point x ∈ Π we let (x) = {(x, H)|H ∈ H, x ⊂ H} and similarly for H ∈ H
we set (H) = {(x, H)|x ∈ Π, x ⊂ H}. Then the geometry induced on any (x) or (H)
is a projective space of rank n− 2 and therefore by (2.1) can be generated by n− 1
points. Suppose now that v1, v2, . . . , vn is a basis for V. Then each of the subspaces
(〈vi〉), 1 ≤ i ≤ n is a projective space of rank n − 2 and can be generated by n − 1
points. Likewise the subspace (〈v1 +v2 + · · ·+vn〉) can be generated by n−1 points.
Taking generating set of each of these we obtain (n+1)(n−1) = n2−1 points. This
will be the set which we shall show generates our geometry. That this set generates
Γ = (P ,L) when our underlying field is a prime field F will be a consequence of the
next several lemmas. For convenience set pi = 〈vi〉, 1 ≤ i ≤ n, pn+1 = 〈v1 + · · ·+vn〉.

Lemma 4.2. The subspace S of P generated by (pi), 1 ≤ i ≤ n+1 contains (〈vi+vj〉)
for every pair i 6= j.
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Proof: Without loss of generality we may assume that i = 1, j = 2. Set Ω =
{1, 2, . . . , n}. First note that if Φ ∈ Ω{n−1} and HΦ = 〈vi|i ∈ Φ〉 then (HΦ) ⊂ S
since (pi, HΦ) ∈ S for each i ∈ Φ and these points generate (HΦ) by (2.1). It
then follows that S contains (〈v1 + v2〉, 〈v1, v2〉 ⊕M∆) where ∆ ∈ [Ω \ {1, 2}]{n−3}

and M∆ = 〈vk|k ∈ ∆〉. These n − 2 points span a hyperplane T in (〈v1 + v2〉).
Now let H = 〈v1 + v2, v3, . . . , vn〉. X contains the points (pi, H), 3 ≤ i ≤ n, which
generate a hyperplane in (H). However, (pn+1) contains (〈v1 + v2 + · · · + vn〉, H).
Therefore, S ⊃ (H). But (〈v1 + v2〉, H) ∈ (H). Now this point together with T
generate (〈v1 + v2〉) completing the lemma. �

Now, set X0 = {〈v1〉, 〈v2〉, . . . , 〈vn〉, 〈v1 + v2 + · · · + vn〉}. Assume that Xk has
been defined for k ∈ N. Then Xk+1 will consist of all those points 〈u〉 ∈ PG(V )
for which there exists a basis u1, u2, . . . , un such that u = u1 + u2 and such that
〈u1〉, 〈u2〉, . . . , 〈un〉, 〈u1 + u2 + · · ·+ un〉 ∈ Xk. Let X = ∪k∈NXk. 4.1 will be a direct
consequence of

Lemma 4.3. X = {〈∑n
i=1 zivi〉|(z1, z2, . . . , zn) ∈ Zn}.

Proof: For the remainder of this section let Z = {〈∑n
i=1 zivi〉|(z1, z2, . . . , zn) ∈

Zn}. We begin by showing that X ⊃ Z. We prove this part of the lemma in a
sequence of six steps.

(1) Let u1, . . . , un be a basis for V such that 〈ui〉 ∈ X for each i, 1 ≤ i ≤ n and
〈u1 + . . . un〉 ∈ X. Then, for any subset I ⊂ {1, 2, . . . , n}, 〈∑i∈I ui〉 ∈ X.

Let k(I) = min{|I |, n− |I |}. We do induction on k. In the initial case, k = 0,
by hypothesis 〈u1 + u2 + . . . un〉 ∈ X. Assume then k(I) = k and that the result
is true for all subsets J of {1, 2, . . . , n} with k(J) < k. Suppose first that |I | = k.
Without loss of generality we may assume that I = {1, 2, . . . , k} and we can assume
that k > 2 since 〈u1 + u2〉 ∈ X. By hypothesis 〈u1 + . . . uk−1〉, 〈uk−1 + . . . un〉 ∈ X.
Set w1 = u1 + . . . uk−1, w2 = uk. For 3 ≤ i ≤ n − k + 2 set wi = uk+i−2. For
n − k + 3 ≤ i ≤ n set wi = −ui+k−n−2 . Then w1, . . . , wn is a basis for V and
〈wi〉 ∈ X, 1 ≤ i ≤ n. Moreover, w1 + . . . wn = uk−1 + . . . un and consequently
〈w1 + . . . wn〉 ∈ X. Therefore, 〈u1 + . . . uk〉 = 〈w1 + w2〉 ∈ X.

On the other hand, assume that k = n− |I |. Without loss of generality we may
assume that I = {1, 2, . . . , n − k}. By the inductive hypothesis 〈u1 + . . . un−k +
un−k+1〉 ∈ X and
lngu1 + . . . uk−1〉 ∈ X. Now set w1 = u1 + . . . un−k + un−k+1 , w2 = −un−k+1. For 3 ≤
i ≤ n−k+1 set wi = −un−k+3−i and for n−k+2 ≤ i ≤ n set wi = u2n+2−k−i. Then
w1, . . . , wn is a basis for V, 〈wi〉 ∈ X and 〈w1 +w2 + . . . wn〉 = 〈un−k+2 + . . . un〉 ∈ X.
Then 〈u1 + . . . un−k〉 = 〈w1 + w2〉 ∈ X. �

(2) If u1, . . . , un is a basis for V and 〈u1 + . . . un〉, 〈ui〉 ∈ X, 1 ≤ i ≤ n then
〈ui − uj〉 for i 6= j.

Without loss of generality it suffices to prove that 〈u1 − u2〉 ∈ X. Now w1 =
u1 + u3, w2 = −(u2 + u3), w3 = u2, w4 = u4, . . . , wn = un is a basis for V. The sum
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of these vectors is u1 + u3 + u4 + · · ·+ un and by (1) 〈u1 + u3 + u4 + · · ·+ un〉 ∈ X.
Therefore 〈w1 + w2〉 = 〈u1 + u3 + (−u2 − u3)〉 = 〈u1 − u2〉 ∈ X.

For z ∈ Zn set m(z) =max{|zi| : 1 ≤ i ≤ n}; l(z) = |{i|zi 6= 0, 1 ≤ i ≤ n}|; and
w(z) =

∑n
i=1 |zi|. We now proceed to prove the lemma by induction on w(z).

(3) Assume m(z) = 1. We know the result is true if l(z) = 2 by (2). Therefore
we may assume that l(z) > 2. Set p(z) = |{i|zi > 0}|, n(z) = |{i|zi < 0}|. By (1)
we may assume that p(z)n(z) 6= 0. Without loss of generality we may assume that
n(z) ≥ p(z) so n(z) > 1.

Suppose p(z) = 1, n(z) = 2. Without loss of generality we can take
z = (1,−1,−1, 0, 0, . . . , 0). Now set u1 = v1−v2; ui = −vi+1, 2 ≤ i ≤ n−1, un = −v1.
Then u1, . . . , un are independent, 〈ui〉 ∈ X. Additionally, 〈u1 + u2 + · · · + un〉 =
〈 − (v2 + v3 + · · ·+ vn)〉 ∈ X by (1). Then 〈v1 − v2 − v3〉 = 〈u1 + u2〉 ∈ X.

Suppose now that p(z) = n(z) = 2. Without loss of generality we can take
z = (1, 1,−1,−1, 0, . . . , 0). Now set u1 = v1 + v2 − v3; ui = −vi+2, 2 ≤ n− 2; un−1 =
−(v1 + v2), un = −(v3 + v4 + · · ·+ vn). Then u1, . . . , un is independent and 〈ui〉 ∈ X.
Now

∑n
i=1 ui = −2(v3 + v4 + · · · + vn) and consequently 〈∑n

i=1 ui〉 ∈ X. Thus
〈v1 + v2 − v3 − v4〉 = 〈u1 + u2〉 ∈ X.

We may assume n(z) > 2. Set p(z) = s, n(z) = t. Without loss of generality
z = (1, 1, . . . , 1,−1,−1, . . . ,−1, 0, . . . , 0). Note that zs+t−2 = −1. Now set u1 =
v1 + . . . vs − vs+1 − · · · − vs+t−1; ui = −vs+t+i−2, 2 ≤ i ≤ n + 2− s− t; un+2−s−t+j =
−vj, 1 ≤ j ≤ s + t − 3, and un = −(vs+t−2 + vs+t−1 + . . . vn). Then u1, . . . , un are
independent and 〈ui〉 ∈ X.

∑n
i=1 ui = −2(vs+t−2 + vs+t−1 + · · · + vn) and hence by

(1) 〈∑n
i=1 ui〉 ∈ X. Then 〈v1 + v2 + · · ·+ vs− vs+1− vs+2− · · ·− vt〉 = 〈u1 +u2〉 ∈ X.

(4) May now assume that m = m(z) > 1. By reordering if necessary we may
assume that |z1| ≥ |z2| ≥ . . . |zn| and also if |zi| = |zi+1| then zi ≥ zi+1. We may also
assume that z1 > 0 so that z1 = m.

Assume first that |z2| = m. In this case set u1 =
∑n
i=1 zivi − (z1v1 + z2v2).

Note that w(0, 0, z3, z4, . . . , zn) < w(z) so that by induction 〈u1〉 ∈ X. Next set
u2 = z1v1 + z2v2 = m(v1 ± v2) so that, by (2), 〈u2〉 ∈ X. Now for 3 ≤ i ≤ n let
ui = −zivi if zi 6= 0 and mvi if zi = 0. Then u1, . . . , un is independent and for each
i, 〈ui〉 ∈ X. Also

∑n
i=1 ui = m(v1±v2+

∑
j>2,zj=0 vj) and by (3) 〈∑n

i=1 ui〉 ∈ X. Then
〈∑n

i=1 zivi〉 = 〈u1 + u2〉 ∈ X.

(5) We may now assume that |z2| < m. Suppose that l(z) = 2. We first treat the
case that m = z1 = 2. Take u1 = v1 + z2v2, u2 = −v1, ui = z2vi, i > 2. Then the ui
are independent, 〈ui〉 ∈ X, and 〈∑n

i=1 ui〉 = 〈 ± (v2 + v3 + · · · + vn)〉 ∈ X by (1).
Then by (3) 〈z1v1 + z2v2〉 = 〈2v1 + z2v2〉 = 〈u1 − u2〉 ∈ X by (3).

So now assume that z1 > 2. Set u1 = (z1 − 1)v1, u2 = −v1 − z2v2, u3 = z2v2 +
(z1 − 2)v3, and for i > 3 set ui = (z1 − 2)vi, We remark that w((−1,−z2, 0, . . . , 0)),
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w((0, z2, z1 − 2, 0, . . . , 0)) < w((z1, z2, 0, . . . , 0)) and so by our inductive hypothesis
〈u2〉, 〈u3〉 ∈ X. Since u1, ui, i > 3 are multiples of vj all 〈ui〉 ∈ X. Furthermore, since
z1 > 2, u1, . . . , un are independent. Note that

∑n
i=1 ui = (z1−2)(v1+v3+v4+· · ·+vn)

so that 〈∑n
i=1 ui〉 ∈ X by (1). By (3) 〈z1v2 + z2v2〉 = 〈u1 − u2〉 ∈ X.

(6) We now complete the inclusion X ⊃ Z by doing induction on l(z). The
case l(z) = 1 is satisfied by hypothesis and l(z) = 2 in the previous step. As-
sume that t ∈ N, t > 2 and that for all z = (z1, z2, . . . , zn) ∈ Zn if l(z) < t then
〈∑n

i=1 zivi〉 ∈ X. Now assume z = (z1, z2, . . . , zn) ∈ Zn satisfies l(z) = t. We know
that m = m(z) > 1. For 1 ≤ i ≤ t let ai = zt

zi
|zi| . Set u1 =

∑t
i=1 zivi −

∑t
i=1 aivi

and u2 =
∑t
i=1 aivi. Further, for 3 ≤ i ≤ t set ui = −(zi − ai)vi−1 if zi − ai 6= 0,

alternatively, ui = (z1− a1)vi−1 if zi− ai = 0. For t + 1 ≤ i ≤ n set ui = (z1− a1)vi.
Then 〈u1〉 ∈ X since l((z1 − a1, . . . , zt−1 − at−1, 0, . . . , 0)) < l(z). Also, 〈u2〉 ∈ X
since w((a1, a2, . . . , at, 0, . . . , 0)) < w(z). Clearly for i ≥ 3, 〈ui〉 ∈ X. Furthermore,
〈∑n

i=1 ui〉 ∈ X by (4) since it is a multiple of a vector
∑n
i=1 eivi with ei ∈ {0,−1, 1}.

Consequently, 〈∑t
i=1 zivi〉 = 〈u1 + u2〉 ∈ X. This completes the proof that X ⊃ Z.

(7) Finally, we prove that X ⊂ Z. Of course, if F is a prime field (including
the rational numbers) then this is obvious and in that case we have already proved
(4.1). However since it is of interest to see what subspace of P is generated by
∪n+1
i=1 (pi) we deal with the general case of an arbitrary field. In that case, let F0

be its prime subfield. Suppose to the contrary that X is not contained in Z. Let
m ∈ N be minimal such that there exists a point 〈u〉 ∈ Xm, 〈u〉 /∈ Z. Clearly
m > 0. Then there is a basis u1, . . . , un for V such that 〈ui〉 ∈ Xm−1, 1 ≤ i ≤ n,
〈u1 + u2 + · · · + un〉 ∈ Xm−1, and 〈u〉 = 〈u1 + u2〉. Since m − 1 < m there are
vectors xi ∈ Z and scalars ai ∈ F, 1 ≤ i ≤ n + 1 such that ui = aixi, 1 ≤ i ≤ n,
an+1xn+1 = u1 + u2 + · · ·+ un. Set x = xn+1, a = an+1.

Since the xj ∈ Z they are each a F0 linear combinations of v1, . . . , vn say

xj =
n∑
i=1

cijvi

where cij ∈ F0, 1 ≤ j ≤ n. Likewise x is a F0 linear combination of v1, . . . , vn :

x =
n∑
i=1

divi.

Now set α = (a1, a2, . . . , an)
T , C = (cij) and d = (d1, . . . , dn)

T . We then have the
matrix equation Cα = ad. However, since C is non-singular with entries in F0

and d has entries in F0 there is a unique solution β ∈ Fn such that Cβ = d. It
therefore follows that if β = (b1, . . . , bn)

T then ai = abi. However, in this case,
u = u1 + u2 = a1x1 + a2x2 = ab1x1 + ab2x2. Suppose now that F0 is a finite field.
Then there are integers b′i, i = 1, 2 so that b′i.1F = bi In this case 〈u1 + u2〉 =
〈ab1x1 + ab2x2〉 = 〈b1x1 + b2x2〉 = 〈b′1x1 + b′2x2〉 ∈ Z. When F0 is the rationals

there are integers b′i, i = 1, 2 and f such that bi =
b′i
f
, i = 1, 2. Then 〈v1 + u2〉 =

〈ab1x1 + ab2x2〉 = 〈 a
f
(b′1x1 + b′2x2)〉 = 〈b′1x1 + b′2x2〉 ∈ Z, again a contradiction. This

completes the proof. �
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5 The orthogonal geometry Ω+(2n,F)

In this section we consider the root subgroup geometry of an orthogonal space of
type (1) that is non-degenerate of even dimension 2n and Witt index n. As in
the previous section we will work with an equivalent geometry which allows us to
express the points and lines in terms of the underlying orthogonal space rather than
subgroups in the orthogonal group. The identification established here will apply in
the following two sections as well.

We continue with the notation of sections two and three so that (V, Q) is an
orthogonal space of one of the types (1) - (3) over a field F and has Witt index at
least three. Let Πk denote the set of totally singular subspaces of V of dimension
k. Set P = Π2, the totally singular projective lines. These are the points of this
equivalent geometry. Two distinct such “points” l, m will be “collinear” in this
geometry when l ∩ m 6= 0 an m ⊂ l⊥. The “line” on this pair is then the set
{l′ ∈ P|l ∩m ⊂ l′ ⊂ 〈l, m〉}. We let L denote the set of lines and Γ the pair (P ,L).

We now specialize, for the remainder of this section, to the case that (V, Q) is
of type (1) and dimension of V is 2n ≥ 6. It is well known that the module ∧2(V )
for the group Ω+(2n,F) = {σ : V → V |Q(σ(v)) = Q(V ), ∀v ∈ V } is of dimension
2n2 − n and affords an embedding for this geometry (when the characteristic of
F is not two this module is irreducible and isomorphic to the adjoint module of
Ω+(2n,F)). By (1.1) it is clearly the case that the generating rank of Ω+(2n,F) is
at least 2n2 − n.

The main objective of this section is the proof of the following which deals with
one of the cases of our main theorem

Theorem 5.1. For a prime field F the generating rank of Ω+(2n,F) is 2n2 − n.

Proof: For a singular point x let (x) = {l ∈ P|x ⊂ l}. This is a subspace of
Γ = (P ,L) and is isomorphic to the polar space of singular points and singular lines
in an orthogonal space Ω+(2n−2,F). By 2.3 this can be generated by 2n−2 points,
consisting of a set of lines li, mi, i = 1, 2, . . . , n− 1 such that the points li/x, mi/x is
a hyperbolic basis for x⊥/x.

Consider now the following set, Z, of singular lines from V :

〈xi, xj〉, 〈yi, yj〉, 〈xi, yj〉, i 6= j;

〈x1 + x2 + · · · + xn, y1 − yi〉, i = 2, . . . , n; 〈x1 − y2, y1 + x2〉.

The number of such lines is 2×
(
n
2

)
+n(n−1)+(n−1)+1 = 2n(n−1)+n−1+1 =

2n2 − n. We will show these lines generate Γ when F is a prime field. We proceed
by induction. Let S denote the subspace of P spanned by Z.
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Assume first that n = 3. Let U be a vector space over F of dimension four
with basis u1, u2, u3, u4. In the space

∧2(U) let uij = ui ∧ uj, i < j. This is a six
dimensional space. The map Q̃ : ∧2(U)→ F given by

Q̃(
∑
i<j

αijuij) = α12α34 − α13α24 + α14α23

is a hyperbolic quadratic form on U2 = ∧2(U). Thus, U2 and V are isomorphic
orthogonal spaces and can be identified. Under this identification there is an iso-
morphism between the geometry of the previous section whose points consisted of
pairs (u, H) where u is a projective point in U and H is a hyperplane containing
u and the geometry of singular lines of U2 = ∧2(U). It is given by the map which
takes (x, H) to x ∧H.

Next note that the basis u14, u23; u24,−u13; u34, u12 is a hyperbolic. Therefore we
may make the identification xi = ui4, i = 1, 2, 3; y1 = u23, y2 = −u13, y3 = u12. Let
I = {1, 2, 3, 4} and for J ⊂ I{3} set UJ = {uj|j ∈ J}. Also denote by u the vector
u1 + u2 + u3 + u4. From the preceeding section we know that the root subgroup
geometry of SL(4,F) is generated by {(〈ui〉, UJ )|i ∈ J ∈ I{3}} together with any
three points which generate (〈u〉), in particular, the points (〈u〉, 〈u1 + u2, u3, u4〉),
(〈u〉, 〈u1, u2 +u3, u4〉), and (〈u〉, 〈u1, u2, u3 +u4〉). Under the identification of the uij
with the xi, yj the first twelve lines are just the 〈xi, xj〉, 〈yi, yj〉, 〈xi, yj〉. For example,
(〈u1〉, 〈u1, u2, u3〉) is identified with 〈u12, u13〉 = 〈y2, y3〉. On the other hand we have
the following identification of the other three points:

(〈u〉, 〈u1 + u2, u3, u4〉)→ 〈y1 − y2 + x3, x1 + x2 + x3〉;

(〈u〉, 〈u1, u2 + u3, u4〉)→ 〈x1 − y2 + y3, x1 + x2 + x3〉;

(〈u〉, 〈u1, u2, u3 + u4〉)→ 〈x1 − y2 + y3, y1 + x2 − y3〉.

Thus, in order to prove that Z is a generating set in this case we need to show
that the above three points are in S.

Set x = x1+x2+x3. First note that for a given i that the four lines 〈xi, xj〉, 〈xi, yj〉,
j 6= i generate (〈xi〉) by an application of (2.2). Consequently, for each i, 〈x, xi〉 ∈ S.
By assumption 〈x, y1− y2〉, 〈x, y1− y3〉 ∈ Z and whence in S. As we have just seen,
also 〈x, x2〉, 〈x, x3〉 ∈ S. But these four points span (〈x〉) by again appealing to (2.2)
and therefore (〈x〉) ⊂ S. Therefore 〈y1−y2 +x3, x1 +x2 +x3〉, 〈x1−y2 +y3, x1 +x2 +
x3〉 ∈ S. Now by assumption 〈x1 − y2, y1 + x2〉 ∈ Z. Since (〈x3〉) ⊂ S, in particular
〈x3, x1 − y2〉, 〈x3, y1 + x2 + x3〉 ∈ S. Then 〈x1 − y2, y1 + x2〉 and 〈x3, x1 − y2〉 are
collinear points in S and so S contains every point on the line spanned by these two
points, and hence contains 〈x1−y2, y1+x2+x3〉. Now S contains 〈x1−y2, y1+x2+x3〉
and 〈x3, y1 + x2 + x3〉 which are two collinear points and from this it follows that S
contains 〈x1 − y2 + y3, y1 + x2 − y3〉. This establishes the result in the case n = 3.
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Now assume n > 3 and for every k, 3 ≤ k < n the result has been established.
Again let S denote the subspace spanned by Z. Set x = x1 + x2 + · · ·+ xn. Now by
the argument used above (〈x〉) ⊂ Y. Consequently, for every i 6= j, 〈x, yi − yj〉 ∈ Y.
Set y = yi− yj. The set of points {〈y, z〉|z ∈ 〈x1, x2, . . . , xn〉∩y⊥} is a subspace of Γ
and a projective space of rank n− 2 and therefore is generated by any n− 1 points
not contained in a hyperplane. Since the points 〈xk, y〉, k 6= i, j are in S as is 〈x, y〉,
these points generate this projective space and therefore 〈xi + xj, yi− yj〉 ∈ S. Now
the set of lines 〈xk, y〉, 〈yk, y〉, k 6= i, j; 〈xi + xj, y〉, 〈yi, yj〉 is a hyperbolic basis for
(〈y〉) contained in S and therefore (〈y〉) ⊂ S.

Suppose J ⊂ {1, 2, . . . , n}. Set xJ =
∑
j∈J xj. By what we have shown, 〈xJ , yi −

yk〉 ∈ Y for any pair {i, k} ⊂ J. In particular, 〈x1 + x2 + x3, y1 − yi〉 ∈ S, i = 2, 3.
Since 〈x1 − y2, y1 + x2〉 ∈ S it follows from the previous case that every singular
line contained in 〈xi, yi|i = 1, 2, 3〉 is an element of S. In particular, 〈x2 − y3, y2 +
x3〉, 〈x1− y3, y1 +x3〉 ∈ S. Suppose J ⊂ I, |J | = n− 1 and let Xj = 〈xj|j ∈ J〉, YJ =
〈yj|j ∈ J〉, VJ = XJ ⊕ YJ . Aslo let X = 〈xj|1 ≤ j ≤ n〉, Y = 〈yj|1 ≤ j ≤ n〉. By
induction every singular line contained in VJ is an element of S. It is therefore the
case that for any i 6= j, α ∈ F, (〈xi + αxj〉), (〈yi + αyj〉) ⊂ S.

We now claim for any x ∈ X, (〈x〉) ⊂ S and similarly for a y ∈ Y. Suppose
x =

∑n
i=1 αixi. By relabeling the indices if necessary we can assume that α1 = 1

and that αi 6= 0, 1 ≤ i ≤ t, αi = 0, i > t. By what has already been shown, the
lines 〈x, xi〉 ∈ S for 2 ≤ i ≤ n. Also the lines 〈x, yi〉 ∈ S for i > t. Additionally, by
what we have thus far shown, the lines 〈x, αiy1 − yi〉 ∈ S, 2 ≤ i ≤ t. These form a
hyperbolic basis for (〈x〉), hence (〈x〉) ⊂ S. Similarly, for y ∈ Y , (〈y〉) ⊂ S.

We now proceed to the general case. Let z = x + y, x ∈ X, y ∈ Y. Suppose for
some J ⊂ {1, 2, . . . , n}, |J | = n−1 that z ∈ VJ . Then by induction every line on z in
VJ is contained in S. On the other hand, if i /∈ J then 〈z, xi〉, 〈z, yi〉 are singular lines
and contained in S and together with the lines on z in VJ these generate (〈z〉). We
now prove that there must be a J ⊂ {1, 2, . . . , n}, |J | = n − 1 such that x⊥ ∩ VJ 6=
z⊥∩VJ 6= y⊥∩VJ . Suppose to contrary. Let Ji = {1, 2, . . . , n}\{i}, i = 1, 2. We may
suppose x⊥ ∩ VJ1 = z⊥ ∩ VJ1 . Since XJ1 ⊂ x⊥ it follows that y ∈ 〈y1〉 and therefore,
since y 6= 0, we may assume that y = y1. It then follows that x⊥ ∩ VJ2 6= z⊥ ∩ VJ2

and therefore z⊥ ∩ VJ2 = y⊥ ∩ VJ2 and hence x = αx2 for some α ∈ F. But we have
already seen that in this case (〈z〉) ⊂ S.

So, let J be a proper subset of {1, 2. . . . , n} such that x⊥∩VJ 6= z⊥∩VJ 6= y⊥∩VJ
and choose a vector u ∈ z⊥ ∩ VJ \ 〈x, y〉⊥. Now let Xy = X ∩ y⊥ a hyperplane in
X. Choose a basis a1, a2, . . . , an−1 = x. Also, Y ∩ x⊥ is a hyperplane. For each
i < n − 1 let Ai = 〈ak|1 ≤ k ≤ n − 1, k 6= i〉. Then Y ∩ A⊥i is a two dimensional
space containing y. Let bi ∈ Y ∩ A⊥i such that (ai, bi) = 1. Now the 2n − 3 lines
〈z, ai〉, 〈z, bi〉, 1 ≤ i ≤ n − 2, and 〈x, y〉, all of which contain z, span a geometric
hyperplane in (〈z〉) namely consisting of those points which are collinear with the
point 〈x, y〉. Now the point 〈z, u〉 is not contained in this subspace of (〈z〉). Since
u ∈ VJ , (〈u〉) ⊂ S. Thus, (〈z〉) ⊂ S which completes the result. �
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6 Generating The Root Subgroup Geometry of Ω(2n + 1,F)

We continue with the notation of sections two, three and five and let (V, Q) be a
non-singular orthogonal space of type Ω(2n + 1,F) where F is a finite prime field.
We set xn = z1, yn = z2, z = z3.

It is well known that the space ∧2(V ) for the group Ω(2n + 1,F) of dimension
2n2 + n affords an embedding of this geometry (when characteristic of F is not two
it is irreducible and isomorphic to the adjoint module) so that the generating rank
of the long root subgroup geometry of Ω(2n + 1,F) is at least 2n2 + n.

It is the purpose of his section to prove the following part of our main theorem:

Theorem 6.1. Let F be a prime field. Then the generating rank of the long root
subgroup geometry of Ω(2n + 1,F), n ≥ 3, is 2n2 + n.

Proof: Let Z consist of the following singular lines of Z :

〈xi, xj〉, 〈yi, yj〉, 〈xi, yj〉, i 6= j;

〈x1 + x2 + · · ·+ xn, y1 − yi〉, 2 ≤ i ≤ n; 〈x1 − y2, y1 + x2〉;

〈xi, z〉, 〈yi, z〉, 1 ≤ i < n; 〈x1 + x2 + · · ·+ xn, y1 − z〉; 〈y1 + y2 + · · · + yn, x1 − z〉.

Let X = 〈xi|1 ≤ i ≤ n− 1〉, Y = 〈yi|1 ≤ i ≤ n− 1〉 and Vn−1 = X ⊕ Y. Further,
let Vn = Vn−1 ⊕ 〈xn, yn〉, Vx = Vn−1 ⊕ 〈xn, z〉, Vy = Vn−1 ⊕ 〈yn, z〉.

Let S be the subspace of Γ generated by Z. We show that Z contains every
singular line of V. First note that by (5.1) if u ∈ Vn, is a singular vector then
{l ∈ (〈u〉)|l ⊂ Vn} is contained in S. Also note that for any singular vector u that
the subspace (〈u〉) is isomorphic to a polar space of type Ω(2n−1,F). Moreover, for
u ∈ Vn the subspace {l ∈ (〈u〉)|l ⊂ Vn} is a geometric hyperplane and a maximal
subspace of (〈u〉).

We now claim for each of the vectors xi, yi, 1 ≤ i ≤ n− 1 that (〈xi〉), (〈yi〉) ⊂ S.
By what we have just stated, it suffices to prove that for each such vector there
is a line on this vector in Z but not contained in Vn. Since 〈xi, z〉 ∈ Z, 〈yi, z〉 ∈
Z, 1 ≤ i ≤ n − 1 this is satisfied and the claim is established. Also note that
since x1 + x2 + · · · + xn, y1 + y2 + · · · + yn ∈ Vn and 〈x1 + x2 + · · · + xn, y1 −
z〉 ∈ Z, 〈y1 + y2 + · · · + yn, x1 − z〉 ∈ Z it also follows by the same argument that
(〈x1 + x2 + · · ·+ xn〉), (〈y1 + y2 + · · · + yn〉) ⊂ S.

We next prove that if u1, u2 ∈ Vn, u1 ⊥ u2 and (〈u1〉), (〈u2〉) ⊂ S then for every
vector u ∈ 〈u1, u2〉, u 6= 0 that (〈u〉) ⊂ S. This follows since there are singular vectors
in 〈u1, u2〉⊥ which are not contained in Vn. Suppose w is such a vector. Then the
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lines 〈ui, w〉 ∈ S, i = 1, 2. It then follows that 〈u, w〉 ∈ S and consequently there
are singular lines on u which are elements of S which are not contained in Vn. As a
result (〈u〉) ⊂ S.

We can now complete the proof. The subgeometry of the polar space of singular
points and singular lines contained in Vn is generated by the points xi, yi, 1 ≤ i < n
together with the two points x1 + x2 + · · ·+ xn, y1 + y2 + · · ·+ yn and it is therefore
the case that for every singular vector u ∈ Vn, (〈u〉) ⊂ S. Since Vn is a hyperplane
of V every singular line meets Vn and thus S = P . This completes the proof. �

7 Generating the Root Subgroup Geometry of Ω−(2n+2,F), n ≥
3.

We continue with the notation of sections two, three and five and let (V, Q) be of
type Ω−(2n + 2,F),F a prime field.

As in section five and six, it is well known that the space ∧2(V ) of dimension
2n2 + 3n + 1 (which is irreducible when characteristic of F is not two) affords an
embedding of this geometry so that the generating rank of the long root subgroup
geometry of Ω(2n + 1,F) is at least 2n2 + 3n + 1.

In this section we complete the proof of our main theorem by treating the last
case of an orthogonal geometry. This is achieved in

Theorem 7.1. Let F be a prime field and n ≥ 3. Then the generating rank of the
long root subgroup geometry of Ω−(2n + 2,F), is 2n2 + 3n + 1.

Proof: For a subspace M of V let P(M) = {l ∈ P|l ⊂ M}. Set V2n−2 =
〈x1, yi|1 ≤ i ≤ n − 1〉, V2n−1 = V2n−2 ⊕ 〈z1〉, V2n = V2n1 ⊕ 〈z2〉 and U = V2n ⊕ 〈z3〉.
U is a non-singular subspace of dimension 2n + 1. Let Z0 be the following set of
singular lines from U :

〈xi, xj〉, 〈xi, yj〉, 〈yi, yj〉, i 6= j;

〈xi, zj〉, 〈yi, zj〉, 1 ≤ i ≤ n− 1, j = 1, 2, 3;

〈x1 + x2 + · · ·+ xn−1 + z1, y1 − yi〉, 2 ≤ i ≤ n− 1,

〈x1 + x2 + · · ·+ xn−1 + z1, y1 − z2〉, 〈x1 − y2, y1 + x2〉;

〈x1 + x2 + · · ·+ xn−1 + z1, y1 − z3〉; 〈y1 + y2 + · · ·+ yn−1 + z2, x1 − z3〉.
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Note that there are 2n2 + n lines in Z0. By the proof of (6.1) the subspace S0 of
P generated by Z0 is P(U). We now remark that for any singular vector u ∈ U that
(〈u〉) ∩ P(U) = P(U ∩ u⊥) is a subspace of P isomorphic to Ω(2n − 1,F) and is a
geometric hyperplane in (〈u〉). Therefore, if l is any singular line on u not contained
in P(U) then the subspace spanned by l and (〈u〉) ∩ P(U) is (〈u〉).

Now let Z1 be the following set of singular lines:

〈xi, z4〉, 〈yi, z4〉, 1 ≤ i ≤ n − 1;

〈x1 + z1, y1 − z4〉, 〈x1 + z2, y1 − z4〉, 〈x1 + z3, dy1 − z4〉.

There are 2n + 1 lines in Z1. Set Z = Z0 ∪Z1 and note that |Z| = 2n2 + 3n + 1.
Let S be the subspace spanned by Z. Next note that for each i, 1 ≤ i ≤ n − 1 that
〈xi, z4〉 is a line on xi not contained in U and so by the argument of the previous
paragraph, (〈xi〉) ⊂ S, 1 ≤ i ≤ n − 1. Similarly, (〈yi〉) ⊂ S. By the argument of the
proof of Theorem C for every singular point w ∈ Vn−1, (〈w〉) ⊂ S.

Now since 〈x1 + z1, y1 − z4〉 is a singular line on x1 + z1 ∈ U which is not in
P(U) it follows by the same reasoning that (〈x1 + z1〉) ⊂ S. Since the polar space
of singular points and lines in V2n−1 is generated by the singular points contained
in V2n−2 together with x1 + z1 it then follows that for every singular vector in V2n,
S contains (〈w〉). Arguing in similar fashion we next get every line on x1 + z2 is
contained in S and then for every singular point w ∈ V2n, (〈w〉) ⊂ S. In like fashion
because the singular line 〈x1 + z3, dy1− z4〉 ∈ Z we conclude that for every singular
vector w ∈ U, (〈w〉) ⊂ S. We are now done: U is a hyperplane of V. If l is a singular
line l ∩ U 6= 0. If w ∈ l ∩ U then l ∈ (〈u〉) ⊂ S. �

8 Generating Sets of Lie Incidence Geometries

In this section we collect what is known about the generation of Lie incidence ge-
ometries. The first result can be found explicitly in [2], [11], and implicitly in [15].

Theorem 8.1. (a) Let F be any field.

(i) The generating rank of the Lie incidence system An,k(F) is
(
n+1
k

)
.

(ii) The generating rank of the Lie incidence geometry Dn,n(F) is 2n−1.
(iii) The generating rank of the Lie incidence geometry E6,1(F) is 27 and the

generating rank of the Lie incidence geometry E7,1(F) is 56.
(b) Assume the characteristic of F is not two. Then the generating rank of

Bn,n(F) is 2n.

In each instance the generating rank is equal to the embedding rank.

The following results are contained in [5] and [7], respectively:
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Theorem 8.2 (Cooperstein). Let F be a field, |F| > 2. Then the generating rank
of the Lie incidence geometry Cn,n(F), which is isomorphic to the dual polar space

DSP (2n,F) of symplectic type, is
(

2n
n

)
−
(

2n
n−2

)
.

Theorem 8.3 (Cooperstein). Let F be a field, |F| > 2. Then the generating rank
of the Lie incidence geometry 2A2n−1,n(F), which is isomorphic to the dual polar

space DSU(2n,F) of unitary type, is
(

2n
n

)
.

Note that in characteristic two the geometries Bn,n(F) and Cn,n(F) are identical
and so, except for the field of two elements, the generating rank of this geometry is
known as well. Andries Brouwer has made the following:

Conjecture 8.4. The embedding rank of the dual polar space DSP (2n, 2) is
(2n+1)(2n−1+1)

3
.

Brouwer has demonstrated that er(DSP (2n, 2)) ≥ (2n+1)(2n−1+1)
3

. The cases n ≤
5 of this conjecture are known to be true: When n = 2 this incidence geometry is
just the (2,2) generalized quadrangle which has embedding rank 5 and generating
rank 5. Brouwer [3] has shown that the embedding rank of the dual polar space
DSP (6, 2) is 15 and Cooperstein and Shult prove in [10] that the generating rank
is also 15. Brouwer has also demonstrated that the embedding rank of DSP (8, 2)
is 51. In [6] Cooperstein proves that the generating rank is 51 when n = 4 and 187
when n = 5, also settling Brouwer’s conjecture affirmatively in the latter case. Thus
we have

Theorem 8.5. For 2 ≤ n ≤ 5 the generating rank of the dual polar space of type

DSP (2n, 2) is (2n+1)(2n−1+1)
3

.

Another general gap in our knowledge exists for the dual polar spaces DSU(2n, 2)
of unitary type over the field with two elements. It has been conjectured [13] that the
embedding rank of this geometry is 4n+2

3
. The cases n = 2, 3 are known: When n = 2

this geometry is the generalized quadrangle with parameters (2,4) which consists of
the singular points and lines in the orthogonal space Ω−(6, 2) which has embedding
rank and generating rank six. On the other hand, Yoshiara in [18] has shown that
DSU(6, 2) has embedding rank 22. The generating rank of this geometry has also
been obtained (see [8])

Theorem 8.6 (Cooperstein). The generating rank of DSU(6, 2) is 22.

Finally, Frohardt and Johnson [12] show that each of the generalized hexagons
with parameters (2,2) have embedding rank 14. In [8] the generating ranks of these
Lie incidence geometries are determined:

Theorem 8.7 (Cooperstein). The generating rank of either generalized hexagon
with parameters (2,2) is 14.

Added in proof :

In ”A note on Embeddable GF(2)-Geometries” Stefan Heiss has given an elegant
counterexample to Conjecture 1.3.
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