Invariance of *q*-completeness with corners under finite holomorphic surjections

Viorel Vâjâitu

1 Introduction

It was shown by Narasimhan [6] using purely cohomological methods that a complex space Y is Stein if, and only if, its normalization Y^* is Stein; more generaly, if $\pi : X \longrightarrow Y$ is a finite surjective holomorphic map, then X is Stein if, and only if, Y is Stein.

In the same circle of ideas, a more general invariance theorem was given in [10]; namely:

Theorem Let $\pi : X \longrightarrow Y$ be a finite holomorphic surjection of complex spaces. Then X is cohomologically q-complete if, and only if, Y is cohomologically q-complete.

We recall that a complex space Z is said to be "cohomologically q-complete" if the cohomology group $H^i(Z, \mathcal{F})$ vanishes for every integer $i \ge q$ and every coherent analytic sheaf \mathcal{F} on Z. Therefore, by the well-known theorem of Cartan and Serre, Stein spaces correspond to cohomologically 1-complete spaces.

In this paper we deal with a more geometrical aspect of an extension of Narasimhan's result, which is obtained for q = 1; namely we prove the following

Theorem 1 Let $\pi : X \longrightarrow Y$ be a finite holomorphic surjection of complex spaces. Then X is q-complete with corners (resp. q-convex with corners) if, and only if, Y is q-complete with corners (resp. q-convex with corners).

Bull. Belg. Math. Soc. 5 (1998), 713-718

Received by the editors $% \left({{{\rm{January}}} \left({{{\rm{January}}} \right.} \right)$

Communicated by R. Delanghe.

¹⁹⁹¹ Mathematics Subject Classification : 32F10, 32F05.

Key words and phrases : q-convexity with corners, finite morphisms, pseudoconvexity of general order.

In particular we get:

Corollary 1 A complex space is q-complete with corners (resp. q-convex with corners) if, and only if, its normalization is so.

Corollary 2 A complex space is q-complete with corners if, and only if, every irreducible component of it is q-complete with corners.

Finally, we obtain an extension of a well-known result of Lelong [4].

Proposition 1 Let M be a purely n-dimensional Stein manifold and $D \subset M$ an open set such that for every hypersurface H of M the intersection $H \cap D$ is q-complete with corners. Assume that $1 \leq q < n - 1$. Then D is q-complete with corners.

2 Preliminaries

Throughout this paper all complex spaces are assumed to be reduced and with countable topology.

(•) Let $D \subset \mathbf{C}^n$ be an open set. For $\varphi \in C^2(D, \mathbf{R})$ and $z \in D$ we define the quadratic form on \mathbf{C}^n by:

$$L(\varphi, z)(\xi, \eta) = \sum_{i,j=1}^{n} \frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j}(z) \xi_i \bar{\eta}_j, \, \xi, \eta \in \mathbf{C}^n.$$

We say that φ is *q*-convex (on *D*) if its Levi form $L(\varphi, z)(\xi) := L(\varphi, z)(\xi, \xi), \xi \in \mathbb{C}^n$, has at least n - q + 1 positive eigenvalues for every $z \in D$. Equivalently, this means that through each point $z \in D$ passes a (n - q + 1)-dimensional affine complex subspace H_z of \mathbb{C}^n so that $\varphi_{|_{H_z}}$ is strongly plurisubharmonic (or 1-convex according with our setting) on a neighborhood of z in H_z .

Let X be a complex space. A function $\varphi \in C^2(X, \mathbf{R})$ is said to be *q*-convex if each point $x \in X$ has an open neighborhood U together with an embedding $\iota : U \longrightarrow \hat{U}$ where $\hat{U} \subset \mathbf{C}^n$ is an open set, and a *q*-convex extension function $\hat{\varphi} \in C^2(\hat{U}, \mathbf{R})$ of $\varphi_{|_U}$. (This definition is independent of the local embeddings.)

We say that $\psi \in C^o(X, \mathbf{R})$ is *q*-convex with corners if each point $x \in X$ admits an open neighborhood U for which there are finitely many *q*-convex functions f_1, \ldots, f_k on U such that

$$\psi_{\mid_{U}} = \max\{f_1, \ldots, f_k\}.$$

A complex space X is said to be *q*-convex with corners if there is an continuous exhaustion function $\varphi : X \longrightarrow \mathbf{R}$ which is *q*-convex with corners on $X \setminus K$ for some compact subset of X. If we can take K the empty set, then X is said to be *q*-complete with corners. The normalization is chosen such that Stein spaces are precisely the spaces 1-complete with corners.

Examples. 1) An arbitrary finite intersection of q-complete with corners open sets of a given complex space stays q-complete with corners.

2) If $A \subset \mathbf{P}^n$ is an analytic set such that every irreducible component has dimension $\geq n - q$, then $\mathbf{P}^n \setminus A$ is q-complete with corners (see [7]).

3) If X is a Stein manifold and $D \subset X$ an open set such that $H^i(D, \mathcal{O}_X)$ vanishes for all $i \geq q$, then D is q-complete with corners (see, for instance [11]).

An open set D of a complex space X is said to be *locally q-complete with corners* if every point of the boundary ∂D of D in X admits an open neighborhood U such that $U \cap D$ is *q*-complete with corners.

(•) Now let M be a purely *n*-dimensional complex manifold, q a positive integer less than n, and $D \subset M$ an open set. Following [3] we say that D is *pseudoconvex* of order n - q if the next property holds:

For every $\xi \in \partial D$ and every coordinate neighborhood $(U, (z_1, \ldots, z_n))$ which contains ξ as the origin one has:

(**♣**) If for some R > 0, the set $\{(z_1, \ldots, z_q, 0, \ldots, 0) \in U; 0 < \sum_{i=1}^q |z_i|^2 < R\}$ is contained in D, then there is r > 0 such that for every (w_{q+1}, \ldots, w_n) with $|w_j| < r, q+1 \le j \le n$, the set $\{(z_1, \ldots, z_q, w_{q+1}, \ldots, w_n) \in U; \sum_{i=1}^q |z_i|^2 < R\}$ contains at least one point of $M \setminus D$.

Next we relate this property with the local q-completeness with corners. (This characterization will be useful in proving proposition 1.)

Lemma 1 Keeping the notations from above, the following statements are equivalent.

- (a) D is locally q-complete with corners.
- (b) D is pseudoconvex of order n q.
- (c) For every open set $U \subset M$ and (n-q)-convex function φ on U, the restriction $\varphi_{|U\setminus D}$ does not attain a maximal value.

Proof. The equivalence of (a) and (b) is shown in [11] or [5]. We show now that (a) \Rightarrow (c). We do this by reductio ad absurdum. Thus there are: a point $\xi_o \in \partial D$, an open neighborhood U of ξ_o such that $U \cap D$ is q-complete with corners, and a (n-q)-convex function φ on U such that $\varphi|_{U \setminus D} \leq \varphi(\xi_o)$.

Take $H \ni \xi_o$ be a complex submanifold of X of dimension q + 1 such that $\varphi|_H$ is 1-convex (we may shrink U, if necessary). Since $H \cap D \cap U$ is q-complete with corners, we may assume without any loss of generality that q = n - 1, and by some coordinate changes that $\xi_o = 0$. Therefore φ is 1-convex. Now, by developping φ into Taylor series around 0, we get

$$\varphi(z) = \varphi(0) + \operatorname{Re} f(z) + L(\varphi, 0)z + o(||z||^2),$$

on a small enough open ball $B \subset U$ centered at 0 with f holomorphic (in fact given by a holomorphic polynomial of degree at most 2) on a neighborhood of the closure of B in U.

Note that for every c > 0, the set $\{z \in B ; f(z) = c\}$ is contained in D.

Now let $\psi : U \cap D \longrightarrow \mathbf{R}$ be (n-1)-convex with corners and exhaustive and $\lambda \in \mathbf{R}$ be given as the maximum of ψ on the compact set $\{z \in \partial B, |f(z)| \leq 1\}$ of

 $D \cap U$. If we apply the maximum principle for (n-1)-convex functions with corners on the analytic sets $\{f = c\}$ (which are of dimension $\geq n-1$), we deduce that the set $\{z \in B; f(z) = c, 0 < c < 1\}$ is contained in the compact set $\{z \in U \cap D; \psi(z) \leq \lambda\}$; hence it is relatively compact. But this is absurd !

Now we turn to the implication (c) \Rightarrow (b). Here we follow the preprint of Ueda [9]. Again we use the *reductio ad absurdum* method. Thus for some point $\xi_o \in \partial D$ there exists a coordinate neighborhood $(U, (z_1, \ldots, z_n))$ which contains ξ_o as the origin such that if we set $z' = (z_1, \ldots, z_q)$ and $z'' = (z_{q+1}, \ldots, z_n)$ one has:

There is a positive number R with $\{(z', 0) \in U; 0 < ||z'|| \le R\} \subset D$, and there exist a sequence $\{z''_{\nu}\}$ which converges to 0 in \mathbb{C}^{n-q} such that $\Gamma_{\nu} := \{(z', z''_{\nu}); ||z'|| \le R\} \subset D$.

Set $\Gamma_o := \{(z',0); \|z'\| \leq R\}, \Delta' := \{z' \in \mathbb{C}^q; \|z'\| < R\}, \Delta'' := \{z'' \in \mathbb{C}^{n-q}; \|z''\| < r\}$ with r > 0 small enough such that $\{(z',z''); \|z'\| = R, \|z''\| \leq r\} \subset D$, and $\Delta := \Delta' \times \Delta''$. Set $\Omega_{\nu} := \Delta \setminus \Gamma_{\nu}$. Define φ_{ν} on Ω_{ν} by

$$\varphi_{\nu}(z',z'') = ||z'||^2 + ||z''-z_{\nu}''||^{-2}.$$

Clearly φ_{ν} has q+1 positive eigenvalues, hence it is (n-q)-convex. Now remark that $L_{\nu} := \partial(\Omega_{\nu} \setminus D)$ is contained in $\overline{\Delta}' \times \partial \Delta''$ (This is obvious!) and $\varphi_{\nu}|_{L_{\nu}} \leq R^2 + 1/r^2$, for all ν . On the other hand, the sequence $\{\sup_{\xi \in \Gamma_o \setminus D} \varphi_{\nu}(\xi)\}_{\nu}$ diverges to infinity. Thus, if ν is large enough, $\varphi_{\nu}|_{\Omega_{\nu} \setminus D}$ attains a maximum. This concludes the proof of the lemma.

The proof of propositon 1.

In virtue of Peternell's result [7], one has to show that D is locally q-complete with corners. Assume this is not true. Hence by the above lemma there are: a point $\xi_o \in \partial D$, an open neighborhood U of ξ_o , and a (n-q)-convex function φ on U such that $\varphi|_{U \setminus D} \leq \varphi(\xi_o)$.

Take $H \ni \xi_o$ be a complex submanifold of X of dimension q + 1 such that $\varphi|_H$ is 1-convex (we may shrink U, if necessary). Now we employ the lemma 1 again to the q-complete with corners open set $D \cap H$ of the Stein manifold H, and we derive easily a contradiction.

Remark. *Mutatis mutandis*, the statement of proposition 1 remains true if we replace M by a purely n-dimensional projective manifold.

3 The proof of theorem 1

We show firstly the "if" part. Let $\psi : Y \longrightarrow \mathbf{R}$ be *q*-convex with corners and exhaustive. Then there exists an open covering $\{V_i\}_{i \in I}$ of Y such that: $\{\overline{V}_i\}_{i \in I}$ is locally finite, each \overline{V}_i is a Stein compactum, and there are *q*-convex functions with corners $\psi_{ij}, j = 1, \ldots, k_i$, defined on a neighborhood of \overline{V}_i with

 $\psi(y) = \max\{\psi_{ij}(y); i \text{ and } j \text{ such that } y \in V_i\}$

and if $y \in \partial V_i$ then $\psi_{ij}(y) < \psi(y)$ for all $j = 1, \ldots, k_i$. This can be easily satisfied.

Now set $U_i := \pi^{-1}(V_i), i \in I$, and $\varphi_{ij} := \psi_{ij} \circ \pi$. Let θ_i be 1-convex on a neighborhood of \overline{U}_i . For every sequence $\epsilon = {\epsilon_i}_i$ of positive numbers we define a function, not necessarily continuous, $\varphi_{\epsilon} : X \longrightarrow \mathbf{R}$ as follows: For $x \in X$ we put

$$\varphi_{\epsilon}(x) := \max\{\varphi_{ij}(x) + \epsilon_i \theta_i(x), j = 1, \dots, k_i, x \in U_i\}$$

Then $\varphi_{\epsilon} > \psi \circ \pi$; consequently φ_{ϵ} is exhaustive. Moreover, if $\epsilon_i > 0$ are sufficiently small, one gets for all i and $x \in \partial U_i$ that

$$\max\{\varphi_{ij}(x), j=1,\ldots,k_i\} < \varphi_{\epsilon}(x).$$

In particular we deduce that φ_{ϵ} is continuous and *q*-convex with corners. (On each ϵ_i we impose finitely many restrictions.) The proof of the "if" part follows.

To show the "only if" part, we use induction over the dimension n of X. The case n = 0 being clear, let n > 0 and assume the theorem proven for complex spaces X of dimension less than n.

Consider $Y' \subset Y$ a thin analytic set such that $\pi : X \setminus X' \longrightarrow Y \setminus Y', X' := \pi^{-1}(Y')$, is a covering map, say, with k sheets. Since X' is q-complete with corners, by the induction hypothesis, Y' is also q-complete with corners. Then there are: $W \subset Y$ an open neighborhood of Y' and $\psi' : U \longrightarrow \mathbf{R}$ a function q-convex with corners on a neighborhood U of \overline{W} such that ψ' restricted to \overline{W} is exhaustive. This can be done similarly as in [2], theorem 1.

Let $\varphi : X \longrightarrow \mathbf{R}$ be q-convex with corners and exhaustive. From [8], there is a function $\sigma : X \longrightarrow \mathbf{R} \cup \{-\infty\}$ such that: $\{\sigma = -\infty\} = X', \exp \sigma$ is smooth, and every point $x \in X$ admits an open neighborhood Ω for which there is a smooth function h on Ω with $\sigma + h$ is 1-convex on $\Omega \setminus X'$. Therefore, if $\chi \in C^{\infty}(\mathbf{R}, \mathbf{R})$ is rapidly increasing and convex, $\varphi' := \chi(\varphi) + \sigma$ is q-convex with corners on $X \setminus X'$ and exhaustive on $X \setminus \pi^{-1}(V)$, where V is an open neighborhood of $Y', \overline{V} \subset W$. Moreover, notice that the sequence $\{\varphi'(x_{\nu})\}$ diverges to $-\infty$ whenever the sequence $\{x_{\nu}\} \subset X \setminus X'$ converges to some point of X'.

Now we define a continuous function $\theta: Y \setminus Y' \longrightarrow \mathbf{R}$ as follows: For every point $y \in Y \setminus Y'$ let $\pi^{-1}(y) = \{x_1, \ldots, x_k\}$; then set

$$\theta(y) = \max\{\varphi'(x_1), \dots, \varphi'(x_k)\}.$$

Since π induces a covering map with k sheets between $X \setminus X'$ and $Y \setminus Y'$, one gets easily that θ is q-convex with corners, θ restricted to $Y \setminus V$ is exhaustive, and for every sequence $\{y_{\nu}\}_{\nu}$ in $Y \setminus Y'$ which converges to a point of Y' the sequence $\{\theta(y_{\nu})\}_{\nu}$ diverges to $-\infty$.

Set $t_o := \min_{\overline{W} \setminus V} \theta$ which is a real number since θ restricted to $\overline{W} \setminus V$ is exhaustive; then select a smooth function $\mu : \mathbf{R} \longrightarrow \mathbf{R}$ which is strictly increasing and convex such that $\mu(t) = t$ if $t \leq t_o - 1$ and $\mu(\theta) > \psi'$ on $\overline{W} \setminus V$. We define $\psi : Y \longrightarrow \mathbf{R}$ as follows

$$\psi := \begin{cases} \max\{\mu(\theta), \psi'\} & \text{on } W;\\ \mu(\theta), & \text{on } Y \setminus \overline{V}. \end{cases}$$

Then ψ is well-defined, q-convex with corners, and exhaustive for Y. Therefore Y is q-complete with corners; whence the proof of the induction step.

The q-convex with corners analogue is to be treated in a similar way and we omit it.

References

- [1] Andreotti, A. and Grauert, H.: Théorèmes de finitude pour la cohomologie des espaces complexes, *Bull. Soc. Math. France* **90** (1962), 193–259.
- [2] Demailly, J.-P.: Cohomology of q-convex spaces in top degrees, Math. Z, 204 (1990), 283–295.
- [3] Fujita, O.: Domaines pseudoconvexes d'ordre général et fonctions pseudoconvexes d'ordre général, J. Math. Kyoto Univ., 30 (1990), 637–649.
- [4] Lelong, P.: Domaines convexes par rapport aux fonctions plurisousharmoniques, J. Math., 2 (1952), 178–208.
- [5] Matsumoto, K.: Boundary distances functions and q-convexity of pseudoconvex domains of general order in Kähler manifolds, J. Math. Soc. Japan, 48 (1996), 85–107.
- [6] Narasimhan, R.: A note on Stein spaces and their normalizations, Ann. Scuola Norm. Sup. Pisa, 16 (1962), 327–333.
- [7] Peternell, M.: Continuous q-convex functions, Invent. Math., 85 (1986), 249– 262.
- [8] Peternell, M.: Algebraische varietäten und q-vollständige komplexe Räume, Math. Z. 200, (1989), 547–581.
- [9] Ueda, T.: Pseudoconvex sets of general order and essential singularities of analytic sets, Preprint.
- [10] Vâjâitu, V.: Invariance of cohomological q-completeness under finite holomorphic surjections, manuscripta math., 82 (1994), 113-124.
- [11] Vâjâitu, V.: On *P*-complete morphisms of complex spaces, Geometric Complex Analysis, Proc. the third International Research Institute, Math. Soc. Japan, Hayama 1995; Eds. J. Noguchi, H. Fujimoto, J. Kajiwara, and T. Ohsawa, pp. 653–665, World Scientific Publ. Co., Singapore, 1996.

Institute of Mathematics of the Romanian Academy P.O. Box 1–764, RO 70700 Bucharest, Romania e-mail : vvajaitu@stoilow.imar.ro